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1. INTRODUCTION

Consider a standard linear stationary MIMO system. In the present paper, we study a system
described by differential equations; nevertheless, all the main results can be almost word for word
stated for systems described by difference equations.

The above-mentioned system has the form

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where A ∈ Rn×n, B ∈ Rn×l, and C ∈ Rl×n are known constant matrices, x(t) is the state vector of
the system, y(t) is the output, and u(t) is the input. We consider a “square” system; i.e., the di-
mensions of the input and the output coincide. In addition, we assume that rankB = rankC = l.

The notion of zero dynamics, that is, the dynamics of the system for y(t) ≡ 0, plays an important
role in automated control theory (especially in the solution of stabilization problems). This is related
to the fact that the stability of the zero dynamics essentially guarantees that once the output is
stabilized at zero, the system is globally stabilized. To describe the zero dynamics, it is convenient
to use the Rosenbrock matrix

R(s) =

(
sI −A −B

C 0

)
, s ∈ C.

It is well known (see [1, p. 67]) that the values of s∗ for which the determinant R(s) is zero
(the so-called invariant zeros of the system) define the spectrum of the zero dynamics. Set
β(s) = |R(s)|. (From now on, |A| is the determinant of a matrix A.) The polynomial β(s) is
sometimes called the characteristic polynomial of the zero dynamics. It follows from the definition
of the matrix R(s) that degβ(s) ≤ n− l.

The notion of relative degree is closely related to the zero dynamics of the system. Let us
introduce this notion in accordance with [2, p. 220] and with regard of the linearity of the system.

Definition 1. A vector r = (r1, . . . , rl) ∈ Nl is called a relative degree vector of system (1) if
the following conditions are satisfied.

1. CiB = 0, CiAB = 0, . . . , CiA
ri−2B = 0, CiA

ri−1B ̸= 0.

2. |H(r)| ̸= 0.
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1062 FOMICHEV et al.

Here the Ci are the rows of the matrix C, i = 1, . . . , l, and

H(r) =

C1A
r1−1B

. . .

ClA
rl−1B

.

Condition 1 of the definition indicates which derivative of the ith output depends explicitly on
the inputs; i.e.,

yi(t) = Cix(t),
dyi(t)

dt
= CiAx(t), . . . ,

dri−1yi(t)

dtri−1
= CiA

ri−1x(t),

driyi(t)

dtri
= CiA

rix(t) + CiA
ri−1Bu(t);

condition 2 implies that the outputs “depend on all inputs.”

In the scalar case (l = 1), the relative degree of system (1) in general position (i.e., for a con-
trollable and observable system) is uniquely determined. In this case, there is a close relationship
between the dimension of the zero dynamics and the relative degree; namely, degβ(s) = n − r,
where r is the relative degree for l = 1.

In the vector case, the situation is much more complicated. It was shown in the mono-
graph [1, p. 72] and in [3–5] that conditions 1 and 2 of Definition 1 are not necessarily consistent.
In addition, a nonsingular change of coordinates does not change the components of the vector r,
but a nonsingular change of the outputs can change them and, in a number of cases, permits one
to pass from the triple {A,B,C} to a triple {A,B, C̃}, where C̃ = TC, T ∈ Rl×l, and |T | ̸= 0,
for which the conditions of Definition 1 are true. However, there exist systems (see [3, 6]) for which
there is no output transformation providing the validity of conditions of Definition 1.

The validity of conditions of Definition 1 is important for the solution of various control problems,
because this is (precisely) the case in which system (1) can be reduced to a form in which the zero
dynamics is singled out (see [1, p. 91]). Moreover, in this case, the dimension of the zero dynamics
is equal to degβ(s) = n− |r|, where |r| = r1 + · · ·+ rl.

We encounter the problem on conditions providing the existence of an output transformation
that reduces a system to a form with consistent definition 1 (below, a system with relative degree).
A complete solution of this problem was obtained in [6], where a generalization of relative degree was
obtained, more precisely, the notions of incomplete relative degree and leading incomplete relative
degree were introduced. The aim of the present paper is to study further properties of leading
incomplete relative degree and analyze the problem on the reduction of system (1) to a special
form for the case in which the leading incomplete relative degree is not a relative degree.

2. GENERALIZATION OF THE NOTION OF RELATIVE DEGREE

Following [6], consider the following generalization of relative degree: since conditions 1 and 2
of Definition 1 may be incompatible, we only retain condition 1. Let a vector r = (r1, . . . , rl) ∈ Nl

satisfy condition 1 of Definition 1. Note that the outputs can always be numbered in nondecreasing
order of components of the vector r. Such an ordered vector satisfying condition 1 of Definition 1
is called an incomplete relative degree vector.

In this case, the components of the vector r split into “sections,”

r = (r
(1)
1 , r

(1)
2 , . . . , r(1)n1

, r
(2)
1 , . . . , r

(k)
1 , . . . , r(k)nk

),

where1 r
(p)
i = r

(p)
j , i, j ∈ {1, 2, . . . , np}, and r

(p)
i < r

(q)
j for p < q, i ∈ {1, 2, . . . , np}, and j ∈

{1, 2, . . . , nq}. Thus, for the elements of a vector r we use two forms of numbering, the ordinary

1 From now on, (i) in f (i) stands for the superscript i; the ith derivative of a function f(t) is denoted by dif(t)/dti.
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GENERALIZATION OF THE NOTION OF RELATIVE DEGREE AND ITS PROPERTIES 1063

(successive) and the “double” numbering for which each element is specified by the index of a section
(the superscript) and the “position” in it (the subscript). The double numbering can be used for

the rows of the matrix H as well (if an element r
(i)
j has index k for the ordinary numbering, then

H
(i)
j = Hk), which permits one to operate with sections of rows of that matrix. A constructive

algorithm generating output transformations was suggested in [6]; it ensures the linear independence

of the rows {H(p)
j }np

j=1 for all p = 1, . . . , k for the transformed system. (In this case, obviously,

the values r
(p)
j themselves can change under the transformations.) As a result, the rows in each

section are linearly independent, but all rows of the matrix H(r) can be linearly dependent.

The above-mentioned vector r arranged in nondecreasing order (for the linear independence of
rows of the matrix H(r) in each pth section) is called the leading incomplete relative degree vector.
The formal definition of leading incomplete relative degree can be stated, for example, as follows.

Definition 2. A vector r = (r1, . . . , rl) ∈ Nl is called a leading incomplete relative degree vector
if the following conditions are satisfied.

1. CiB = 0, CiAB = 0, . . . , CiA
ri−2B = 0, CiA

ri−1B ̸= 0.

2. ri ≤ ri+1, i = 1, . . . , l − 1.

3. For any set of pairwise distinct indices i1, . . . , iq ∈ {1, 2, . . . , l} such that ri1 = ri2 = · · · = riq ,
the rows Hi1 , . . . , Hiq are linearly independent.

It was shown in [6] that this notion is invariant under nonsingular transformations of the outputs
(if the leading incomplete relative degree vector is understood as the leading incomplete relative de-
gree vector of the reduced system, that is, a system reduced by linear nonsingular transformations of
the outputs to a form satisfying the conditions of Definition 2). In addition, if for a leading incom-
plete relative degree all rows of the matrix H(r) are linearly independent, then a leading incomplete
relative degree is a relative degree; otherwise, there is no transformation of outputs reducing the
system to a form with a relative degree.

In what follows, we study the properties of leading incomplete relative degree and the possibility
to reduce a system to a special form.

3. PROPERTIES OF LEADING INCOMPLETE RELATIVE DEGREE

Consider system (1). As was mentioned above, if the system has a relative degree vector r, then
the dimension of the zero dynamics is n− |r|. The results obtained in [7] permit one to show that
this relation holds only in the case of the existence of a relative degree of the system.

Assertion 1. Let β(s) ̸≡ 0, and let r be the leading incomplete relative degree vector of sys-
tem (1). Then the vector r is a relative degree vector of system (1) if and only if degβ(s) = n−|r|.

Proof. Necessity. The necessity was proved in [1, p. 92].

Sufficiency. Let degβ(s) = n − |r|, and let r be not a relative degree vector in the sense of

Definition 1. Then |H(r)| = 0. Consider the system S̃ = {A,B, C̃}, where

C̃ =

C1A
r1−1

. . .

ClA
rl−1

.

By the corollary of Lemma 4 in [7], this matrix has full rank; i.e., the system S̃ satisfies the original

assumptions (the input and output matrices have full rank). Note that C̃B = H(r) = H̃(r̃); i.e.,

the incomplete relative degree vector of the system S̃ is equal to r̃ = (1, 1, . . . , 1). At the same

time, by Lemma 4 in [7], the characteristic polynomial of the zero dynamics β̃(s) of the system S̃

satisfies the relation β̃(s) = s|r|−lβ(s).
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1064 FOMICHEV et al.

Since H̃(r̃) is a singular matrix and |r̃| = l, it follows that there exists a nonsingular matrix

T such that the system Ŝ = {A,B, Ĉ = TC̃} has the leading incomplete relative degree vector r̂;
moreover, |r̂| > l. Since |r̂| > l, it follows that one can consider the system Š = {A,B, Č} (it differs

from S̃), where

Č =

 Ĉ1A
r̂1−1

. . .

ĈlA
r̂l−1

.

The characteristic polynomial of the zero dynamics of this system satisfies the relation

β̌(s) = s|r̂|−lβ̂(s) = s|r̂|−l|T |β̃(s) = s|r̂|−l|T |s|r|−lβ(s) = |T |s|r|+|r̂|−2lβ(s). (2)

The polynomial on the right-hand side in relation (2) has the degree

degβ(s) + |r| − l + |r̂| − l = n− |r|+ |r| − l + |r̂| − l = n− l + |r̂| − l > n− l,

because |r̂| > l. The obtained contradiction completes the proof.

Assertion 2. Let β(s) ̸≡ 0, and let r be an incomplete relative degree vector of system (1).
Then

degβ(s) ≤ n− |r|.

Proof. Suppose that degβ(s) > n− |r|. Consider the system

S̃ = {A,B, C̃},

where

C̃ =

C1A
r1−1

. . .

ClA
rl−1

.

Then deg β̃(s) = deg(s|r|−lβ(s)) > n− l. The obtained contradiction justifies the desired assertion.

Remark 1. It follows from Assertions 1 and 2 that if r is a relative degree vector, then
degβ(s) = n − |r|; but if r is a vector leading incomplete relative degree that is not a relative
degree vector, then degβ(s) < n− |r|.

Assertion 3. Let β(s) ̸≡ 0 for system (1), and let

degβ(s) ≥ n− l − 1.

Then there exists a nonsingular matrix T such that the system {A,B, C̃ = TC} has a relative degree
(in the sense of Definition 1).

Proof. By [6, 7], if β(s) ̸≡ 0, then there exists a nonsingular matrix T such that the system

{A,B, C̃ = TC} has a leading incomplete relative degree vector r. Let us show that this vector is a
also relative degree vector. By assumption, degβ(s) ≥ n− l− 1. At the same time, by Assertion 2,
degβ(s) ≤ n−|r|; consequently, |r| ≤ l+1. If |r| = l, then the system has a relative degree. (In this
case, r1 = · · · = rl = 1; therefore, by the definition of leading incomplete relative degree, all rows
of the matrix H are linearly independent.) Let |r| = l+1, and let r be not a relative degree vector.
Then, by Remark 1, degβ(s) < n − |r| = n − l − 1, which contradicts the assumption. The proof
of the assertion is complete.

Corollary 1. If β(s) ̸≡ 0 and l = n− 1, then there exists a nonsingular matrix T such that the

system {A,B, C̃ = TC} has relative degree.
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Proof. Since β(s) ̸≡ 0, we have degβ(s) ≥ 0 = n− l− 1 = n− (n− 1)− 1; i.e., the assumptions
of Assertion 3 are satisfied. The proof of the Corollary is complete.

Therefore, if β(s) ̸≡ 0, then the dimension of the zero dynamics can be estimated with the use
of the leading incomplete relative degree vector.

CANONICAL FORM OF SYSTEMS OF GENERAL FORM

To estimate the dimension of the zero dynamics for the case in which β(s) ≡ 0 for system (1), one
needs a different approach. (Such systems exist; examples can be found in the monograph [1, p. 79]
and in the papers [4, 5].) Let us show that each system can be reduced to a form that permits one
to estimate the dimension of the zero dynamics.

In this section, we consider less restrictive constraints on the output matrix C of system (1);
more precisely, we assume that C ̸= 0. (In this case, the rank of this matrix is not necessarily l.)
The other assumptions for system (1) remain the same.

Definition 3. The vector ϱ = (ϱ1, ϱ2, . . . , ϱl) ∈ (N ∪ {0})l whose components are defined as

ϱi = 0 if CiA
q−1B = 0, q ∈ N,

ϱi = q if CiA
q−1B ̸= 0 and CiA

j−1B = 0 for arbitrary j, j < q, j ∈ N,

is called the degenerate relative degree vector. Just as above, here Ci is the ith row of the matrix C.

Obviously, the degenerate relative degree vector is well defined for any system of the form (1).
Along with the degenerate relative degree vector, by analogy with Definition 1, consider the matrix

H(ϱ) =

H1

. . .

Hl

,

where Hi = 0 if ϱi = 0 and Hi = CiA
ϱi−1B if ϱi ̸= 0.

Let ϱ ̸= 0. (that is, there exists an i such that ϱi ̸= 0) and rankH = d. (We assume that d < l,
because if d = l, then the system satisfies the conditions of the definition of relative degree.) Let
us show that in this case, by using a transformation of state coordinates (and, possible, inputs and
outputs), one can reduce the system to a form that permits estimating the dimension of the zero
dynamics. Set I = {1, 2, . . . , l} and consider the following functional defined on the set Id :

σ(j1, j2, . . . , jd) =

d∑
k=1

ϱjk , jk ∈ I.

In other words, σ(j1, j2, . . . , jd) is the sum of components of the degenerate relative degree vector
with indices j1, j2, . . . , jd. Among all sets of d linearly independent rows of the matrix H, we choose
the set with the maximum value of the functional σ for the indices of those rows (i.e., the sum
of the corresponding components of the degenerate relative degree vector is maximal),

max
j1,j2,...,jd:

Hj1 ,...,Hjd
lin.indep.

σ(j1, j2, . . . , jd) = σ(̄i1, ī2, . . . , īd) = σ0. (3)

Note that if jk = jq in the set (j1, j2, . . . , jd) ∈ Id, then the rows {Hjs}ds=1 are necessarily linearly
dependent, because two of them coincide. It follows that it suffices to look for the maximum in
relation (3) on sets in Id, which do not contain coinciding elements.

Without loss of generality, one can assume that the maximum in relation (3) is attained on the
set (1, 2, . . . , d) ∈ Id; i.e., the rows {Hīj}dj=1 occurring in (3) are the first d rows of the matrix H.

DIFFERENTIAL EQUATIONS Vol. 52 No. 8 2016
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(This can always be achieved by an appropriate renumbering of the system outputs.) We make the
change of inputs u(t) = T1ũ(t), T1 ∈ Rl×l, |T1| ̸= 0, where

T1 = (H∗T

(H∗H∗T

)−1;Z).

Here H∗ = (HT
1 , . . . ,HT

d )
T is the matrix consisting of the first d rows of the matrix H (as was

mentioned above, it has full rank), and Z is a matrix, whose columns form a basis of the kernel

of the matrix H∗. Under this transformation, the matrix B is transformed as follows: B̃ = BT1;
consequently, vectors of the form CiA

pB are multiplied on the right by the nonsingular matrix T1;
i.e., zero rows of the above-mentioned form become zero ones, and nonzero rows remain nonzero.
It follows that the degenerate relative degree vector of the system does not change. The matrix H
is transformed as follows: H̃ = HT1. By taking into account the form of the matrix T1, we obtain

H̃ =



1 0 . . . 0 0 . . . 0

0 1 . . . 0 0 . . . 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 . . . 1 0 . . . 0

h̃d+1,1 h̃d+1,2 . . . h̃d+1,d 0 . . . 0

· · · · · · · · · · · · · · · · · · · · ·
h̃l1 h̃l2 . . . h̃ld 0 . . . 0


. (4)

For convenience of the subsequent exposition, for the system thus transformed we use the notation
of the original one. [In other words, we assume that the system {A,B,C} has a matrix H of the
form (4).]

One can readily show that if H1,H2, . . . ,Hd are linearly independent rows, then the rows

C1, C1A, . . . , C1A
ϱ1−1,

C2, C2A, . . . , C2A
ϱ2−1, . . . ,

Cd, CdA, . . . , CdA
ϱd−1

(5)

are linearly independent as well. Indeed, consider the linear combination of the above-mentioned
rows equal to zero,

d∑
i=1

ϱi∑
j=1

αijCiA
j−1 = 0. (6)

We multiply this relation by the matrix B on the right with regard to the relation CiA
j−1B = 0

for j < ϱi,
d∑

i=1

αiϱi
CiA

ϱi−1B =

d∑
i=1

αiϱi
Hi = 0.

This, together with the linear independence of the rows Hi, implies that αiϱi
= 0, i = 1, . . . , d.

In a similar way, by multiplying relation (6) by AB,A2B, . . . , Amaxiϱi−1B, we obtain αij = 0,
i = 1, . . . , d, j = 1, . . . , ϱi. Note that the set of rows (5) contains exactly σ0 rows.

Take n− σ0 rows V1, V2, . . . , Vn−σ0
such that the vector system

{{CiA
j}ϱi−1

j=0 }di=1 ∪ {Vk}n−σ0

k=1

is linearly independent, and

VkBj = 0, j = 1, . . . , d, k = 1, . . . , n− σ0,

DIFFERENTIAL EQUATIONS Vol. 52 No. 8 2016
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where Bj is the jth column of the matrix B. In other words, we require that the columns V T
k belong

to the kernel of the matrix B∗T

= (B1, B2, . . . , Bd)
T . This is possible, because, of the vectors (5),

only σ0−d vectors belong to the kernel of the matrix B∗T

(because CiA
ϱi−1B ̸= 0 and CiA

j−1B = 0,
j < ϱi, i = 1, . . . , d, by virtue of the definition of the degenerate relative degree), and the dimension
of its kernel is equal to n − d [because it is a matrix of full rank in accordance with the original
assumptions about system (1)].

is considered the following transformation of coordinates:

z
(i)
j (t) = CiA

j−1x(t), i = 1, . . . , d, j = 1, . . . , ϱi,

z
(0)
j (t) = Vjx(t), j = 1, . . . , n− σ0,

or z = Mx, where

M = (CT
1 , . . . , (C1A

ϱ1−1)T , . . . , CT
d , . . . , (CdA

ϱd−1)T , V T
1 , . . . , V T

n−σ0
)T ,

z = (z
(1)
1 , z

(1)
2 , . . . , z(1)ϱ1

, . . . , z
(d)
1 , z

(d)
2 , . . . , z(d)ϱd

, z
(0)
1 , z

(0)
2 , . . . , z

(0)
n−σ0

)T ;

in addition,

ż
(i)
j (t) = CiA

j−1ẋ(t) = CiA
jx(t) = z

(i)
j+1(t), i = 1, . . . , d, j = 1, . . . , ϱi − 1.

Therefore, the transformed matrix Â = MAM−1 acquires the form

Â =


Â11 Â12 . . . Â1d Â1

Â21 Â22 . . . Â2d Â2

· · · · · · · · · · · · · · ·
Âd1 Âd2 . . . Âdd Âd

ˆ̄A1
ˆ̄A2 . . . ˆ̄Ad

ˆ̄A

,

where

Âii =



0 1 0 . . . 0

0 0 1 . . . 0

· · · · · · · · · · · · · · ·
0 0 0 . . . 1

a
(ii)
1 a

(ii)
2 a

(ii)
3 . . . a(ii)

ϱi


∈ Rϱi×ϱi , Âij =


0 . . . 0

· · · · · · · · ·
0 . . . 0

a
(ij)
1 . . . a(ij)

ϱj

 ∈ Rϱi×ϱj (j ̸= i),

Âj =


0 . . . 0

· · · · · · · · ·
0 . . . 0

a
(j)
1 . . . a

(j)
n−σ0

 ∈ Rϱj×(n−σ0), ˆ̄Aj ∈ R(n−σ0)×ϱj , ˆ̄A ∈ R(n−σ0)×(n−σ0), i, j = 1, . . . , l.
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Under this change of variables, the matrix B acquires the form

B̂ = MB =



C1

. . .

C1A
ϱ1−1

. . .

Cl

. . .

ClA
ϱl−1

V1

. . .

Vn−σ0



B =


B̂11 B̂12 . . . B̂1l

B̂21 B̂22 . . . B̂2l

· · · · · · · · · · · ·
B̂d1 B̂d2 . . . B̂dl

ˆ̄B1
ˆ̄B2 . . . ˆ̄Bl

,

where
B̂ii = (0, 0, . . . , 0, 1)T ∈ Rϱi , i = 1, . . . , d, B̂ij = 0 ∈ Rϱi , i ̸= j,

ˆ̄Bi ∈ Rn−σ0 , ˆ̄Bi = 0 for i ≤ d,

because CiA
q−1B = 0, q < ϱi, CiA

ϱi−1B = Hi, and VkBj = 0, k = 1, . . . , n− σ0, j = 1, . . . , d. Note

that if d < l, then n−σ0 > 0. (Otherwise, the last l− d columns of the matrix B̂ are zero, which is

impossible, because rankB = l.) The matrix B̂T has the form (the block structure is defined in it)

B̂T =



0 . . . 0 1 . . . 0 . . . 0 0 0 . . . 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 . . . 0 0 . . . 0 . . . 0 1 0 . . . 0

0 . . . 0 0 . . . 0 . . . 0 0 ∗ . . . ∗
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 . . . 0 0 . . . 0 . . . 0 0 ∗ . . . ∗


.

Since the outputs yi(t) of the original system are equal to yi(t) = Cix(t), it follows from the

relation z
(i)
1 (t) = Cix(t) that the output matrix of the transformed system has the form

Ĉ =



1 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 . . . 0 . . . 1 0 . . . 0 0 . . . 0

∗ ∗ . . . ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

∗ ∗ . . . ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗



=



Ĉ11 Ĉ12 . . . Ĉ1d
ˆ̄C1

· · · · · · · · · · · · · · ·
Ĉd1 Ĉd2 . . . Ĉdd

ˆ̄Cd

Ĉd+1,1 Ĉd+1,2 . . . Ĉd+1,d
ˆ̄Cd+1

· · · · · · · · · · · · · · ·
Ĉl1 Ĉl2 . . . Ĉld

ˆ̄C l


.
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The sizes of blocks of this matrix are the same as in the matrix B̂T .

Thus, any system that has a nonzero degenerate relative degree vector can be reduced (by changes
of inputs, outputs, and state variables) to the form

ż(0)(t) =

d∑
j=1

ˆ̄Ajz
(j)(t) + ˆ̄Az(0)(t) + ˆ̄Bū(t),

ż
(i)
j (t) = z

(i)
j+1(t), i = 1, . . . , d, j = 1, . . . , ϱi − 1,

ż(i)ϱi
(t) =

d∑
j=1

ϱj∑
k=1

a
(ij)
k z

(j)
k (t) +

n−σ0∑
k=1

a
(i)
k z

(0)
k (t) + ũi(t), i = 1, . . . , d,

ỹi(t) = z
(i)
1 (t), i = 1, . . . , d, ȳ(t) =

d∑
j=1

Ĉ(j)z(j)(t) + ˆ̄Cz(0)(t).

(7)

Here we have used the notation

ũ(t) = (u1, . . . , ud)
T , ū(t) = (ud+1, . . . , ul)

T , ỹ(t) = (y1, . . . , yd)
T , ȳ(t) = (yd+1, . . . , yl)

T ,

ˆ̄C =

 ˆ̄Cd+1

. . .
ˆ̄C l

, Ĉ(i) =

 Ĉd+1,i

. . .

Ĉli

,

z(0) = (z
(0)
1 , . . . , z

(0)
n−σ0

)T , z(i) = (z
(i)
1 , . . . , z(i)ϱi

), i = 1, . . . , d, ˆ̄B = ( ˆ̄Bd+1,
ˆ̄Bd+2, . . . ,

ˆ̄Bl).

We have thereby proved the following assertion.

Theorem 1. Any system (1) that has a nonzero degenerate relative degree vector can be re-
duced by nonsingular transformations of inputs, outputs, and state coordinates to the form (7).
In addition, if d = rankH < l, then n0 > 0, where n0 is the dimension of the vector z(0).

From system (7), one can obtain an estimate for the dimension of the zero dynamics of the

system. Indeed, if ỹ(t) ≡ 0, then z
(i)
j (t) ≡ 0, i = 1, . . . , d, j = 1, . . . , ϱi, since z

(i)
j (t) =

dj−1ỹi(t)

dtj−1
,

j = 1, . . . , ϱi. Therefore, if the trajectory z(t) belongs to the zero dynamics, then only components
z(0)(t) of the state vector can be nonzero.

From the condition ȳ(t) ≡ 0, we find that z(0)(t) satisfies the equation ˆ̄Cz(0)(t) = 0 for arbitrary t.
Therefore, the trajectories z(t) that belong to the zero dynamics of the system (and only these
trajectories) satisfy the system of equations

z
(i)
j (t) = 0, i = 1, . . . , d, j = 1, . . . , ϱi, ż(0)(t) = ˆ̄Az(0)(t) + ˆ̄Bū(t), ˆ̄Cz(0)(t) = 0, (8)

which implies that the dimension of the zero dynamics does not exceed the dimension of the

matrix ˆ̄A , i.e., n− σ0.

Example 1. Consider the system {A,B,C} with the matrices:

A =



1 1 0 −2 0 −3

1 1 4 −6 4 −1

−1 −1 −3 7 −3 2

0 −1 −3 6 −4 1

1 0 0 1 −2 0

1 1 3 −5 3 −1


, B =



−1 0 0

0 0 1

1 1 −1

0 1 −1

0 1 0

0 0 1


, C =

1 0 1 −1 0 0

0 0 0 1 −1 1

1 0 0 0 0 0

.

DIFFERENTIAL EQUATIONS Vol. 52 No. 8 2016



1070 FOMICHEV et al.

One can readily see that β(s) ≡ 0 for this system. We find its degenerate relative degree vector

C1B = 0, C2B = 0, C3B = (−1, 0, 0),

C1AB = 0, C2AB = (0, 1, 0), C1A
2B = (1, 0, 0),

(9)

whence it follows that ϱ = (3, 2, 1). Note that in this case the vector ϱ is also a leading incom-
plete relative degree vector (arranged in decreasing order). Obviously, the matrix H(ϱ) corre-
sponding to this vector is singular (this implies that the system has relative degree); moreover,
d = rankH(ϱ) = 2.

It follows from system (9) that

max
j1,j2:

Hj1 ,Hj2 rmlin.indep.

σ(j1, j2) = 5;

i.e., σ0 = 5, a moreover, the maximum is attained for j1 = 1 and j2 = 2. (In this case, ϱ1 = 3 and
ϱ2 = 2.) Therefore, the dimension of the zero dynamics of the system does not exceed n− σ0 = 1.

Consider the rows

C1 = (1, 0, 1,−1, 0, 0), C2 = (0, 0, 0, 1,−1, 1),

C1A = (0, 1, 0,−1, 1,−2), C2A = (0, 0, 0, 0, 1, 0), C1A
2 = (0, 0, 1,−1, 0, 0).

In accordance with above-performed argument, these rows are linearly independent. Note that if
this system of rows is supplemented with the row V1 = (0, 0, 0, 0, 0, 1) such that V1B1 = 0 and
V1B2 = 0, then the row system remains linearly independent.

Let us use the change of coordinates z = Mx, where

M =



C1

C1A

C1A
2

C2

C2A

V1


=



1 0 1 −1 0 0

0 1 0 −1 1 −2

0 0 1 −1 0 0

0 0 0 1 −1 1

0 0 0 0 1 0

0 0 0 0 0 1


.

After the transformation, the matrices of the system acquire the form (the block structure is singled
out in them)

Â = MAM−1



0 1 0 0 0 0

0 0 1 0 0 0

− 1 0 1 1 2 0

0 0 0 0 1 0

1 0 −1 1 −1 −1

1 1 2 −1 1 2


, B̂ = MB =



0 0 0

0 0 0

1 0 0

0 0 0

0 1 0

0 0 1


,

Ĉ = CM−1 =

 1 0 0 0 0 0

0 0 0 1 0 0

1 0 −1 0 0 0

;
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i.e.,

ż
(1)
1 (t) = z

(1)
2 (t), ż

(1)
2 (t) = z

(1)
3 (t),

ż
(1)
3 (t) = −z

(1)
1 (t) + z

(1)
3 (t) + z

(2)
1 (t) + 2z

(2)
2 (t) + ũ1(t),

ż
(2)
1 (t) = z

(2)
2 (t), ż

(2)
2 (t) = z

(1)
1 (t)− z

(1)
3 (t) + z

(2)
1 (t)− z

(2)
2 (t)− z

(0)
1 (t) + ũ2(t),

ż
(0)
1 (t) = z

(1)
1 (t) + z

(1)
2 (t) + 2z

(1)
3 (t)− z

(2)
1 (t) + z

(2)
2 (t) + 2z

(0)
1 (t) + ū1(t),

ỹ1(t) = z
(1)
1 (t), ỹ2(t) = z

(2)
1 (t), ȳ1(t) = z

(1)
1 (t)− z

(1)
3 (t).

(10)

If y(t) = (y1(t), y2(t), y3(t)) ≡ 0, then from system (10), we obtain z
(i)
j (t) ≡ 0, i = 1, 2, j = 1, . . . , ϱi.

It follows that if a trajectory z(t) belongs to the zero dynamics, then the first five components of
the vector z(t) are zero for any t, and the latter satisfies the condition

z
(0)
1 (t) = 2z

(0)
1 (t) + ū1(t).

Hence it follows that the dimension of the zero dynamics of the system is equal to unity, which
corresponds to the estimate. In this case the zero dynamics is controllable by the output ū1(t); i.e.,
the spectrum can be assigned arbitrarily. This corresponds to the case in which β(s) = 0, s ∈ C.

ACKNOWLEDGMENTS

The research was supported by the Russian Foundation for Basic Research (projects nos. 15-07-
07579, 14-07-00795, and 15-07-08198).

REFERENCES

1. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Metody robastnogo obrashcheniya dinamicheskikh sistem
(Method of Robust Inversion of Dynamical Systems), Moscow, 2009.

2. Isidori, A., Nonlinear Control Systems, London, 1995.

3. Kraev, A.V., On an Analogue of Relative Degree for Linear Dynamic MIMO Systems, Dokl. Akad.
Nauk Teor. Upravl., 2014, vol. 454, no. 2, pp. 152–157.

4. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., On the Equations and Properties of the Zero Dynamics
of Linear Controlled Time-Independent Systems, Differ. Uravn., 2006, vol. 42, no. 12, pp. 1626–1636.

5. Korovin, S.K., Il’in, A.V., and Fomichev, V.V., Zero Dynamics for Linear Vector Time-Invariant Sys-
tems, Dokl. Akad. Nauk Teor. Upravl., 2007, vol. 414, no. 5, pp. 598–604.

6. Kraev, A.V., Fomichev, V.V., and Rogovskii, A.I., On a Generalization of Relative Degree, Differ.
Uravn., 2014, vol. 50, no. 8, pp. 1128–1132.

7. Kraev, A.V., Fomichev, V.V., and Rogovskii, A.I., Reducing a MIMO control System to a Form with
a Relative Degree, Vestn. Moskov. Univ. Ser. XV Vychisl. Mat. Kibern., 2015, no. 3, pp. 20–26.

DIFFERENTIAL EQUATIONS Vol. 52 No. 8 2016


