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ABSTRACT. A simple method of axiomatizing every finite intermediate proposi-
tional logic by a finite set of axioms with the minimal number of variables is proposed.
The method is based on Jankov’s characteristic formulas.

It is well-known that every finite intermediate propositional logic (i.e. the
logic of a finite Heyting algebra or, equivalently, of a finite Kripke frame A)
is finitely axiomatizable. This was first proved by De Jongh (unpublished; an-
nounced in [7]). Later several different procedures of axiomatizing finite logics
were suggested (e.g. in [3, 6, 8]). However, all these axiomatizing techniques
were rather non-optimal. Bellissima [2, §2] described the minimal number of
variables d{A) sufficient for axiomatizing the finite logic Th(A) of a frame A.
His method is based on the construction of free Kripke models representing
finitely generated free Heyting algebras [1]. Here we give another simple proof
of Bellissima’s result and present another axiomatics of finite logics Th(A) (in
d(A) variables), based on Jankov’s characteristic formulas [4, 5]. The author
was always sure that this method almost immediately follows from Jankov’s
consrtuctions, i.e. it essentially belongs to Jankov, and must be well-known!.
Nevertheless, it was never published, so we present it here.

To make the paper self-contained, first we recall basic notions and results

related to Jankov’s formulas.

1 Intermediate logics and Kripke frames

Propositional formulas are built from variables P = {p, : @ € w} and constants
T, L using connectives A,V,— (as usual, 7p = (¢ =L1) and (¢ & ¥) = (¢ —
Y) A (¥ = ¢) ). An a-formula is a formula in variables P, = {pg : 8 < «a}
(for a € w). An intermediate (propositional) logic L is called a-aziomatizable if
L = (Int+T) for a set of a-formulas ' (where Int is intuitionistic propositional
calculus).

1'This turns out to be wrong: V.A.Jankov has told me recently that he did not know this
way of axiomatizing finite logics and never thought about this problem.
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A Kripke frame A is a non-empty partially ordered set. A cone (s.g. in [2])
is(zt) ={ye€ A :z <y} Asubset a C A is called increasing if a = U(x?t
: & € a). All increasing subsets of A constitute a Heyting algebra O(A). A
Kripke model is a pair U = (A, p) where p is a valuation of variables in the
Heyting algebra O(A). Then Th(z,U) = {¢ : z € p(p)} (for x € A) and
Thid) = N(Th(x,U) : 2 € A). Finally, Th(A) = N(Th(A,p) : p)) is the logic
of a frame A (i.e. of its Heyting algebra O(A)). The corresponding sets of
a-formulas (for o € w) are denoted Tho(z,U), Tho(ld), The(A) respectively.
A model U = (A, p) is called a-distinuishable if

Ve,y€ Al(z #y) = (Thalz,U) # Tha(y,U))).

An intermediate logic L is called finite if L = Th(C) for a finite frame C.

Let mp =L and maq41 = pa V (Po = 7o) for @ € w (hence 7, is an -
formula). It is well-known that m, € Th(A) iff h(A) < a, where h(A) is
the height of a frame A, i.e. the greatest length of chains in A (recall that
h{(A) = sup(l + A(z) : z € A) in terminology from [1]}). Let F be the set of
all finite cones, i.e. finite frames D with the least element Op. In other words,
D € F iff O(D) is a finite strongly compact Heyting algebra (1.e. it contains
the greatest element 7 = (D\{Op}) ). Let (D) (for D € F) be the least o such
that there exists an a-distinguishable model # = (D, p) (or, equivalently, such
that the Heyting algebra O(D) is generated by an a-element set). Obviously,
§(D) < card(D) (since {(z1) : ¢ # Op} generates O(D), cf. Lemma 2.0 in [2])
and §(D) = « for the (o + 1)-element chain D.

A p-morphism is a function F from a frame A onto a frame B such that:

() 2<ay=> F(z)<B F(); (2) F(z) <p z = Jy € @N)(F(y) = 2).

Then F~! is an embedding of O(B) into O(A). The following lemma seems
to be well-known:

Lemma 1. Let A be a cone (possibly infinite) and D € F. Then every
embedding f of O(D) into O(A) can be represented as F~! for a p-morphism
F:A - D.

Proof: F(z) (for £ € A) is defined as the greatest element y of D such
that z € f(y1). (]

Let X be a class of frames, then IX and QX are the classes of isomorphic
copies and of p-morphic images for frames from X (respectively) and SX =
U(O(A) : A € X) (here B € O(A) is a frame with an ordering restricted
from A). Obviously, Th(A) C Th(B) if B € QS{A}, and F N QS{C} is the
class of all p-morphic images of cones in C (for a finite frame C). Recall that
SQX = @QSX (cf. Remark 1.4 in [2]).

2 Jankov’s formulas
The Jankouv’s characteristic formula of a frame D € F is:

Xp = (/\A(D) = pr)
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where A(D) is the following set of formulas (in variables p, : a € O(D)) :

AD) = {(ps &Ll)}u
U{(p(ans) ¢ (Pa Aps)) : a,b€ O(D)}U
U{(P(aub) A4 (Pa Vpb)) s a,be O )}U
U{(p(a=>b) & (pa = ) : a,b€ O(D)}

(here N,U, = are the operations of the Heyting algebra O(D), @ is its least
element, and 7 = (D\{0p}) )

Let x/, be a §(D)-formula in variables pp : b € G, where ¢ is a §(D)-
element set generating O(D): namely, we replace every p, (for a € O(D) )
by a representation of a through G (thus x/, is a substitution instance of \ ).
Obviously, xp, ¢ Th(D) (and x), & Th(D) too). Jankov [4, 5] proved the
following properties of characteristic formulas.

Lemma 2. (1) (Int +¢) F xp iff ¢ € Th(D), for a formula ¢.

(2) L C Th(D) iff xp ¢ L, for an intermediate logic L.

Proof: if p(ay,...,a,) < 7in O(D) then A(D) & [¢(pa,,---,Pan) = Pr)-
L]

Corollary. (Int + xp) = (Int + x73).

Remark. (Int + 7o) = (Int + xc,4,), Where Coyq is the (o + 1)-element
chain.

Lemma 3. x, ¢ Th(A) iff D € @QS{A}, for an arbitrary frame A.

Proof: if there exist a model Y = (A,p) and z € A such that 2 = A(D)
and z [£ p, then f(a) = {y > z : po € Th(y,U)} is an embedding of O(D) into

O(=1). .

Jankov [4] defined the following relations on F :

(C<D) iff (CeQS{D)) iff (xe ¢ Th(D))
iff (Th(D)CTh(C)) iff ((Int+xc)F xo);

(C<D) iff (C<D)&-(D<C) iff (Th(D)C Th(C)).
It is clear that (cf., e.g., [4]):
(i) < is a pre-ordering on F (i.e. it is reflexive and transitive);
(ii) (C < D)&(D < C)iff (C € I{D});

(iii) (C < D) = (card(C) < card(D)},
(C < D) = (card(C) < card(D));

(iv) {C € F:C < D} is finite, for any D € F.
3 An axiomatization of finite logics
Let A be a finite frame, and let
(F\QS{A}) ={D € F: xp € Th(A)} = {D € F : Th(A) € Th(D)};
{Dez*(A): (QS{DN\I{D}) € QS{A}}

(the set of all <-minimal elements of Z*(A) );
maz{é(D):D € Z(A)}.

Z*(A)
Z(A)

11|

d(A)
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The set Z(A) is finite, since VD € Z(A)[card(D) < (1 + card(A))]
(cf. the proof of Lemma 2.0 in [2]: namely, by Theorem 1.3 in [2],
vYD3C € Q{D}(card(C) = card(D) — 1) ). Hence d(A) < card(A). Note also
that d(A) > h(A) (since the (h(A) + 1)- element chain Cpy(a)41 belongs to
Z(A)). Bellissima proved the following result (Theorem 2.2 in [2]), using free
Kripke models with a finite number of variables [1].

Theorem. Let L = Th(A) be a finite logic. Then L is a-axiomatizable iff
a > d(A) (moreover, there exists a finite d(A)-axiomatization of L).

Here we give another proof of this theorem basing on Jankov’s formulas.

(=). Suppose that a < d(A). Take a frame D € Z(A) such that §(D) > a.
Then xp, € Th(A). On the other hand, the following Lemma shows that
xp & (Int + The(A)) (and hence, (Int + Thy(A)) # Th(A) ).

Lemma 4. Th,(A) C Th(D) if (Q{D}\I{D}) C @S{A} and a < §(D).

Proof. Let v be an a-formula, v ¢ Th(U) for some modelif = (D, p). Then
{p(p) : B < a} generates a proper subalgebra in O(D), and hence ¢ ¢ Th(C)
for some C € (Q{D}\/{D}) C QS{A}. Thus ¢ ¢ Th(A). ]

(<)

Lemma 5. Th(A) = (Int + ') where ' = {x}, : D € Z(A)} is a set of
d(A)-formulas.

Proof. Note that L = (Int +T) D I’ = {xc : C € Z*(A}} (since VC €
Z*(A)AD € Z(A)(D < C) ). Also mpa) € L since Cpa)p1 € Z(A) (cf.
Remark after Lemma 2). It is known that every extension of (Int + m,) (for
o < w) has the finite model property (since all its finitely generated Heyting
algebras are finite). Now, if L I/ ¢ then ¢ ¢ Th(C) for some finite frame C
(from F) validating L. Then C € QS{A} (since I C Th(C) ), Th(A) C
Th(C) and ¢ ¢ Th(A). [

We did not compare which axiomatics is simpler: the axiomatics from our
Lemma 5, or that given by Theorem 2.2 in [2]. Note however, that one can
get our axioms almost immediately from the calculation of & = d(A) : namely,
one has to construct all frames D from Z(A) and to find minimal generating
subsets of their algebras O(D). On the other hand, to obtain axioms from [2]
you have besides to construct h(A) slices of the free model in « variables and
to find formulas ¢, for its points w (see Theorem 2.7 from [1]).

4 Concluding remarks

Now we will compare our constructions with Bellissima’s [2]; some terminology
and notations from [2] will be used without additional explanations.

Note that Theorem 2.2 from [2] is stated in a slightly different form. Namely,
the following set of frames is considered (for a finite frame A):

X(A)={DeZ"(A): (Q{DN/{D}) C QS{A} }.
Obviously, Z(A) C X(A) C Z*(A) (and X(A) is finite, as well as Z(A):

see Lemma 2.0 in [2]). Here the first inclusion can be proper.
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Example (see Fig.1):
D € (X(A)\Z(A)) since (Q{DN\I{D}) = Q{D;} U Q{D:} C Q{A} (use
Theorem 1.3 from [2]) and (z1) € (S{D}\QS{A}).

VAR

Figure 1

Now, Theorem 2.2 in [2] is stated with d'(A) = maxz{é(D) : D € X(A)}
instead of our d(A) (clearly, d(A) < d'(A) ). The proof of only if part in
[2, p-409] seems to contain a minor gap and guarantees only that o > d(A) (but
not a > d’(A) ) for an a-axiomatization of Th(A) (namely, M, (A} = M,(C)
follows from Lemma 2.1 in {2] only if (SQ{B}\/{B}) C @S{A} ). On the other
hand, our Lemma 4 guarantees that a > d’(A). Therefore we can conclude
that d'(A) = d(A), and the formulation of Theorem 2.2 from [2] is equivalent
to ours.

Note also that methods from [2] allow us to prove that d'(A) = d(A) di-
rectly. Namely, it is easily seen that:

if D € X(A) then (z1) € Z(A) for some & € D such that every
degenerate or duplicate pair {u,v} in D belongs to (21)

(for the definitions of degenerate and duplicate pairs see 2, §1, p.407]). Now,
§(D) = é(xt) for such z, since any a-distinguishable model ¢ = (x1, p) gives
rise to an a-distinguishable model &’ = (D, p’) (use Remark 0.1(iii) from
[2, p.404)).
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