
Minimization of the Weighted Total
Sparsity of Cosmonaut Training Courses

Alexander Lazarev1,2,3, Nail Khusnullin1, Elena Musatova1(B),
Denis Yadrentsev4, Maxim Kharlamov4, and Konstantin Ponomarev4

1 V.A. Trapeznikov Institute of Control Science of Russian Academy of Sciences,
Moscow, Russia

jobmath@mail.ru, nhusnullin@gmail.com, nekolyap@mail.ru
2 Lomonosov Moscow State University, Moscow, Russia

3 International Laboratory of Decision Choice and Analysis,
National Research University Higher School of Economics, Moscow, Russia

4 Yu.A. Gagarin Research & Test Cosmonaut Training Center, Star City, Russia
{d.yadrentsev,m.kharlamov,k.ponomarev}@gctc.ru

Abstract. The paper is devoted to a cosmonaut training planning prob-
lem, which is some kind of resource-constrained project scheduling prob-
lem (RCPSP) with a new goal function. Training of each cosmonaut
is divided into special courses. To avoid too sparse courses, we intro-
duce a special objective function—the weighted total sparsity of training
courses. This non-regular objective function requires the development of
new methods that differ from methods for solving the thoroughly stud-
ied RCPSP with the makespan criterion. New heuristic algorithms for
solving this problem are proposed. Their efficiency is verified on real-life
data. In a reasonable time, the algorithms let us find a solution that is
better than the solution found with the help of the solver CPLEX CP
Optimizer.

Keywords: Resource-constrained project scheduling problem
Heuristic algorithms · Planning · Priority rule

1 Introduction

Cosmonauts training is a long process of preparing cosmonauts for their space
missions. This process includes physical training, medical tests, extra-vehicular
activity training, procedure training, as well as training on experiments they will
perform during their stay on the space station. For the training process in the
Yu.A. Gagarin Research & Test Cosmonaut Training Center (GCTC), high-tech
training facilities are used. These include integrated simulators for space crafts
and space stations; a water tank for spacewalking training; centrifuges for sim-
ulating g-loads during launch and so on. Because of their high cost, the number

This work was supported by the Russian Science Foundation (grant 17-19-01665).

c© Springer Nature Switzerland AG 2019
Y. Evtushenko et al. (Eds.): OPTIMA 2018, CCIS 974, pp. 202–215, 2019.
https://doi.org/10.1007/978-3-030-10934-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10934-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-10934-9_15

Minimization of the Weighted Total Sparsity of Cosmonaut Training Courses 203

of these facilities is limited. As several crews are trained at the same time, it is
important to share the equipment among cosmonauts so that each of them has
enough time to complete the training plan before launching. In this paper, we
consider the final stage of cosmonaut training—training of approved crews for
a specific space flight on a manned spacecraft. Simultaneously there are several
crews training in the GCTC, but this article presents results for the major crew,
i.e. the crew whose flight is planned for the nearest future. This crew has priority
in the use of simulators and other equipment. Each member of the crew has his
own training plan which should be performed with respect to resources and time
constraints. Training of each cosmonaut is divided into thematic courses. Each
training course is a set of special tasks. A cosmonaut can study several courses
simultaneously. The study of the courses should take place in accordance with a
curriculum which specifies precedence relations for courses. Resource constraints
and precedence relations are supplemented by some constraints that take into
account the specifics of training of cosmonauts. In other words, the cosmonauts
training problem has the same constraints as the resource-constrained project
scheduling problem (RCPSP) has, but it also has some additional restrictions.
Note that RCPSP is NP-hard in the strong sense [1]. Different heuristic meth-
ods are proposed for solving RCPSP: priority-rule based scheduling methods
truncated branch-and-bound, integer programming based heuristics, disjunctive
arc concepts, local constraint-based analysis, sampling techniques, evolutionary
algorithms and local search techniques (see, for example, [3,4,6,8,11]). In [8] a
large number of modern heuristics that have been proposed for RCPSP solving
are summarized and categorized. Note that most of these solving methods are
designed for objective functions that are different from the one given in this
article. As a rule, the objective function in such problems is the project duration
(makespan). Another popular criteria are the maximum lateness, the total tar-
diness, the total flow time [3]. Most of them are regular, i.e. nondecreasing with
respect to all finishing times of tasks. In our problem, we use unusual and non-
regular objective function. To increase the efficiency of training, it is necessary to
establish the correct duration of each course. Duration of a course is a length of
a time period between the start of the first task of this course and the end of the
last task of this course. If the duration of a course is either too large or too short,
then the efficiency of training is reduced. Too fast study of a course is avoided by
imposing constraints on the number of tasks of this course per week. To avoid
too long duration of a course, we introduce a special objective function—the
total weighted sparsity of training courses. It requires the development of new
methods that differ from methods for solving the thoroughly studied RCPSP
with the makespan criterion.

Since the problem has a high dimension, the use of exact methods does not
allow to find an optimal solution in an acceptable time. Previously, for finding
a feasible solution of this problem an approach based on methods of integer
linear programming was proposed [10]. However, this approach turned out to be
ineffective for high-dimensional problems. In [9] comparison of two approaches for
finding a feasible solution to this problem for a medium dimension was presented.

204 A. Lazarev et al.

The first approach was based on integer linear programming and the second one
was on the basis of constraint programming (CP) [5]. A significant advantage of
CP has been shown in that paper. Therefore in this paper, we use a mathematical
model in terms of CP and run real-life test problems on the solver CPLEX
CP Optimizer [12]. The article has the following structure. Sections 2 and 3
presents a description and mathematical formulation of the problem in terms
of CP. Results of computational experiments based on CP Optimizer are given.
In Sect. 4 we present a heuristic algorithm, its modifications, and comparison of
different approaches on some test problems.

2 Problem Description

A crew consists of three cosmonauts. Each of them has his own individual train-
ing plan: a set of courses and a set of tasks in each course. Training schedule for
cosmonauts of the crew is subject to the following constraints:

(c1) All tasks must be completed before launching. There exist special time
boundaries for some tasks. These boundaries can be both precise and rather
extended. In the first case a task has an exact date of its execution and in
the second case—some period of time (for example, a winter forest landing
training has to be in winter). We will call the tasks with time boundaries
by fixed tasks.

(c2) There are precedence relations between some courses. A cosmonaut can-
not start some course before finishing the previous course. There are also
precedence relations between tasks into each course. For some tasks, there
are strict precedence relations, i.e. strict time intervals between tasks. The
peculiarity of this problem lies in the fact that fixed tasks are not included
in the precedence relations graph.

(c3) At each moment of time the resources must be sufficient to execute all
current tasks.

(c4) For some sets of tasks there are constraints on the total volume of tasks
per day, or per week for one cosmonaut.

(c5) Each task has to be completed before the end of a working day. Some tasks
can be executed only during a definite part of a day.

(c6) Some tasks must be performed by all crew members or by two of them
simultaneously.

As it was mentioned in the Introduction, we describe an unusual objective
function. Each course into a schedule has two characteristics: a volume and a
duration (see Fig. 1). The volume of a course is a sum of durations of all tasks in
this course. This value does not depend on a schedule and is known in advance.
The duration of a course in some schedule is its volume plus all time intervals
between tasks of this course. The volume of a course is a lower bound of its
duration. Due to constraints (c4) this bound is not achievable. We define sparsity
of a course as a ratio of its duration to its volume. Our goal is to minimize the
total weighted sparsity which is a weighted sum of sparsities of all courses.

Minimization of the Weighted Total Sparsity of Cosmonaut Training Courses 205

Fig. 1. Characteristics of a course.

To formalize the objective function, input the following notations. Let I =
{1, 2, 3} be the set of cosmonauts, and Bi be the set of courses of cosmonaut
i ∈ I. Each course b has a weight (significance) wb, which can take one of two
values ω1 or ω2 (ω1 < ω2) established by an expert. Denote as Ji,b the set of
tasks of cosmonaut i ∈ I from course b ∈ Bi. Each task j ∈ Ji,b has duration pj .
Sfirst
i,b (π) and Clast

i,b (π) are the start time of the first task and the finish time of
the last task of course b ∈ Bi for cosmonaut i ∈ I respectively in a schedule π. If
for some course an order of tasks is not defined or several tasks can be the first
(last) then we input dummy start and end tasks. Then the objective function
has the following form:

F (π) =
∑

i∈I

∑

b∈Bi

wb

Clast
i,b (π) − Sfirst

i,b (π)
∑

j∈Ji,b

pj
. (1)

It is worth noting that such objective function can arise in other areas of plan-
ning. For example, instead of an educational process, the following production
planning can be considered. There is a set of complex jobs. Each job consists of
a number of operations that require the use of different resources (machines). It
is necessary to minimize the stay of each job in the production process. Such an
objective function can be explained by additional storage costs or other expenses.

Since in the considered problem there is a constraint on makespan (all tasks
must be completed before launching), the proof of NP-hardness can be obtained
trivially by reduction from the classical RCPSP. The decision version of RCPSP
can be transformed into the decision version of the considered problem with zero
number of courses, the sparsity of which must be minimized.

3 Problem Statement in Terms of Constraint
Programming

The first stage of our investigation of the problem is using an exact method. As
previously we have demonstrated the advantage of constraint programming over

206 A. Lazarev et al.

integer linear programming for the search of a feasible solution [9], now we try
to use CP for minimization of (1). So, formalization of constraints (c1)–(c6) is
made in terms of CP and with using of Optimization Programming Language
(OPL) [13]. Integer linear programming formulation can be found in [9].

In CP formulation of an optimization problem constraints are not necessarily
linear. In addition, the concept of global variables is widely used in CP. This
concept allows us to reformulate the group of constraints into “global” one and
treat the values of variables as a single entity on the whole planning horizon
(or on its part). Another powerful tool of CP modeling is cumulative functions.
They allow us to define the “behavior” of variables with help of piecewise linear
functions. Due to the fact that IBM ILOG Optimizer and OPL were used for
implementation of the model and for solving the problem, we use in the article
names of built-in functions and the syntax of OPL.

We will assume that the planning of the cosmonaut training takes place at
a certain given time interval, which specifies a planning horizon. We take as a
unit of time a half-hour interval. Denote as W a set of all weeks and as D a set
of all days on the planning horizon. Set H is a set of all half-hour intervals in a
day. Possible moments of the beginning of a task are in a set T = {0, 1, . . . , T },
where T is the number of half-hour intervals in the planning horizon. Let J be a
set of all tasks. For each task j ∈ J input interval variable sj with duration pj :

interval sj ∈ [tj1..t
j
2] size pj , (2)

where [tj1..t
j
2] is a subset of T which is defined by some preliminary estimations

or by constraints (c1).
We also need auxiliary integer variables dayj ∈ {1, 2, . . . , |W | · |D|} and

weekj ∈ {1, 2, . . . , |W |}, j ∈ J , which are the numbers of the day and of the
week respectively on the planning horizon for task j. The relations of variables
in terms of CP can be written as follows:

dayj == element(days, startOf(sj)),

weekj == element(weeks, startOf(sj)),

where days = (d1, d2, . . . , dT) and weeks = (w1, w2, . . . , wT) are vectors whose
components are associated with the numbers of days (weeks), corresponding
to the respective time intervals from T = {0, 1, . . . , T }. Function element(a, i)
returns i-th element of vector a and function startOf(sj) is used to access the
start time of interval variable sj .

Let Gi = (Ji, Γi) be a graph of precedence relations between tasks of cos-
monaut i ∈ I. If (j1, j2) ∈ Γi, then the task j1 has to be completed before the
beginning of the task j2. Then constraint (c2) can be written with help of built-in
function endBeforeStart as

endBeforeStart(sj1 , sj2), ∀(j1, j2) ∈ Γi, ∀i ∈ I. (3)

Constraints on resource usage over time can be modeled with constraints
on cumulative function expressions. A cumulative function expression is a step

Minimization of the Weighted Total Sparsity of Cosmonaut Training Courses 207

Fig. 2. Cumulative resource usage function.

function that can be incremented or decremented in relation to a fixed time or
an interval. It is convenient to use cumulative function expression pulse(a, b),
which represents the contribution b to the cumulative function of an individual
interval variable or fixed interval a. Figure 2 illustrates cumulative resource usage
function for two intervals of length p1 and p2.

Let R be a set of renewable resources (instructors, simulators, classrooms,
special equipment). Each cosmonaut is also a resource, available in a quantity
of 1 during a working day. Denote by rart the amount of resource r ∈ R which
is available at time t ∈ T , and by rcjr—the amount of resource r ∈ R required
for the task j ∈ J . Let JRr be the set of tasks which use resource r ∈ R. Using
step function for constraint (c3) we get

∑

j∈JRr

pulse(sj , rcjr) ≤ rart, ∀r ∈ R. (4)

For realization of constraints (c4) we use built-in function count(a, b). This
function counts how many of the elements in the array given as a are equal to
the value given as b. Then, if the number of tasks from some set JA

i of cosmonaut
i should be no more then ai per week,

∑

j∈JA
i

count(weekj , w) ≤ ai,∀i ∈ I,∀w ∈ W, (5)

and, if number of tasks from some set JC
i of cosmonaut i should be no more

then ci per day,
∑

j∈JC
i

count(dayj , d) ≤ ci,∀i ∈ I,∀d ∈ D. (6)

In order to take into account constraints of kind (c5), we use OPL expression
forbidStart(sj , f), which constrains an interval variable sj to not start where

208 A. Lazarev et al.

the associated step function f has a zero value:

forbidStart(sj , f), ∀j ∈ J. (7)

Similar constraints can be written not only for the set of all tasks J , but also
for arbitrary subsets of it.

The constraint synchronize makes interval variables start and end together:

synchronize(sj1 , sj2 , sj3), ∀(j1, j2, j3) ∈ J123. (8)

or
synchronize(sj1 , sj2), ∀(j1, j2) ∈ J12, (9)

where J123 and J12 are sets of tasks which cosmonauts have to execute together
(constraints (c6)).

So, constraints (c1)–(c6) can be formulated with help of (2)–(9). Goal func-
tion (1) can be rewritten using functions StartOf and EndOf . We used for the
computational experiment 5 problems with real-life data provided by the GCTC.
Characteristics of the problems (the number of courses, the total number of tasks
and the planning horizon in weeks) are presented in Table 1.

Table 1. Characteristics of test problems.

N Courses Tasks Planning horizon, weeks

1 10 202 5

2 18 383 15

3 37 838 40

4 48 1214 60

5 11 193 6

The graphs of precedence relations between all possible courses for test prob-
lems are presented on Fig. 3. Each cosmonaut has a set of courses which is a
subset of all possible courses. Each graph Gi is obtained from the graph of
precedence relations between courses and from graphs of precedence relations
between tasks in the courses.

As we use the exact method, its runtime can be too much for a high-dimension
problem. Therefore the runtime was restricted by some value. In Table 2 numer-
ical results for solving problem (1)–(9) with help of ILOG CP Optimizer are
presented.

We use the following notations: t is a time restriction (the solver stopped its
work after this time), F is the found value of the objective function, Solutions
is a number of solutions which the solver found out for time t, Branches is
a number of branches, Av.Sparsity is an average sparsity of courses, which is
defined as

Φ(π) =
1∑

i∈I

|Bi|
∑

i∈I

(∑

b∈Bi

Clast
i,b (π) − Sfirst

i,b (π)
∑

j∈Ji,b

pj

)
,

Minimization of the Weighted Total Sparsity of Cosmonaut Training Courses 209

Fig. 3. Graphs of precedence relations between courses for test problems.

where |Bi| is the number of courses of cosmonaut i. The average sparsity is a
handy characteristic of a solution, which shows how many times the average
length of the course is greater than its minimum possible length (volume). The
calculations were performed on a workstation with an Intel Xeon processor E5-
2673, 2.4 GHz, and 15 Gb of RAM, solver IBM ILOG CPLEX CP 12.6.2 was
used. In these problems we have ω1 = 1 and ω2 = 5.

The solver could not find an optimal solution for 3 h. In the problem of the
highest dimension (problem 4) the value of the objective function is not improved
after 30 min. It is worth noting that problem 5, despite its low dimension, has
also proved to be very difficult: the average sparsity is very high and the value
of the objective function almost is not improved. This can be explained by the
structure of the precedence relations graph (see Fig. 3).

In the next section heuristics algorithms will be presented for solving the
problem.

4 Heuristic Algorithms

Despite a wide variety of heuristic methods for solving RCPSP, the priority rule-
based scheduling is still one of the most important solution techniques. This can
be explained by the simplicity of its implementation, its speed, and efficiency.
A priority rule-based scheduling heuristic is made up of two parts, a schedule

210 A. Lazarev et al.

Table 2. Testing the CP model.

N t F Solutions Branches Av.Sparsity

1 1 min 58.89 1 21 205 2.05

5 min 57.51 5 78 030 2.03

15 min 54.36 7 202 587 2.03

30 min 53.99 10 389 910 2.01

1 h 53.27 13 465 358 1.99

3 h 51.27 17 533 425 1.87

2 1 min 106.98 2 36 579 2.41

5 min 106.92 4 95 403 2.41

15 min 97.97 8 155 712 2.22

30 min 97.97 9 258 495 2.22

1 h 96.87 13 507 082 2.03

3 h 96.71 14 653 121 2.01

3 1 min 488.86 2 14 785 4.88

5 min 487.86 4 45 673 4.76

15 min 487.74 5 130 437 4.75

30 min 487.21 7 243 897 4.7

1 h 482.26 13 612 342 4.34

3 h 302.21 23 756 934 3.09

4 1 min 692.95 1 13 635 5.07

5 min 691.29 3 43 801 5.06

15 min 690.60 7 66 075 5.01

30 min 690.07 8 93 085 5.01

1 h 690.07 8 142 191 5.01

3 h 690.07 8 304 989 5.01

5 1 min 197.51 3 25 011 4.99

5 min 197.25 16 105 672 4.98

15 min 196.41 24 238 235 4.98

30 min 195.87 25 439 793 4.93

1 h 195.83 32 828 890 4.91

3 h 195.83 39 1 906 453 4.91

generation scheme and a priority rule. Two best known and the oldest schedule
generation and the parallel scheduling schemes (see [7]). These schemes generate
a feasible schedule by extending a partial schedule step by step. In each step, a
generation scheme defines the decision set, i.e. set of all schedulable tasks. Then
a used to choose one (or more in parallel case) task from the decision set is
scheduled.

Minimization of the Weighted Total Sparsity of Cosmonaut Training Courses 211

In this article, some kind of scheduling heuristics with a serial generation
scheme is presented. Firstly we define a priority rule which takes into account
objective function (1). Then a schedule generation scheme is presented.

4.1 The Priority Rule

Each task j ∈ Ji,b has a weight wb ∈ {ω1, ω2} which is defined by the weight
of the course b ∈ Bi. Let A = {1, 2, 3} be a set of possible priorities of a task.
Assume that we already have a partial schedule, i.e. a schedule where only a task
has been assigned a finish time. This subset of tasks will be called a scheduled
set. We say that a task j ∈ Ji,b from a decision set has priority αj = 1, if there
are no any tasks from course b in the scheduled set. In other words, αj = 1, if
j is the first task of a course. Otherwise task j has priority αj = 2 in case of
wb = ω1 and αj = 3 in case of wb = ω2. Thus, the main priority is given to tasks
from the already started courses with the high weight. So, for each task j ∈ Ji,b,
b ∈ Bi, i ∈ I, we have

αj =

⎧
⎨

⎩

1, if j is the first task of course b,
2, if j is not the first task of course b and wb = ω1,
3, otherwise.

(10)

4.2 Schedule Generation Scheme

To present the proposed algorithm, define the following functions:

– GetTask(w, d, i, start) returns a schedulable task of the maximal possible
priority and its start moment for cosmonaut i. The depth-first search is used.
This function checks whether it is possible to schedule a task in the day d of
the week w at moment start within the constraints (c1)–(c5). If there are no
any schedulable tasks for this moment, the function returns the next possible
time moment of this day or the empty set (if there are no any schedulable tasks
in this day). As constraint (c6) is connected with several cosmonauts, this
function does not check, whether the respective synchronous task of another
cosmonaut can be scheduled at the same time.

– task.IsShared returns TRUE, if the task must be performed simultaneously
with some task of another cosmonaut.

– Release(start, task) adds the task to a partial schedule at time moment start.
– DealContract(task.SharedTasks, start, w, d) is a function, which defines

the nearest possible common moment in day d of week w (starting from
moment start) for the task and for all its synchronous tasks from the set
task.SharedTasks.

Let enumerate cosmonauts of the crew in the decreasing order of their training
loads. We take the first unplanned time moment from the planning horizon and
try to schedule for cosmonaut 1 a task of the highest possible priority. Then we
turn to schedule for cosmonaut 2 and so on. For details see Algorithm 1.

212 A. Lazarev et al.

Algorithm 1.
1: for w in W , d in D do
2: repeat
3: for i in I do
4: (start, task) = GetTask(w, d, i, start)
5: if task == null then
6: continue
7: end if
8: if not task.IsShared then
9: Release(start, task)

10: continue
11: end if
12: DealContract(task.SharedTasks, start, w, d)
13: end for
14: until not isAnyoneP lanned()
15: end for

We used two variants of function DealContract for Algorithm 1. In the first
variant, this function only checks whether it is possible to establish all tasks
from task.SharedTasks at a given time moment start. If it is possible, it adds
all shared tasks to a partial schedule. In the second variant, the function tries
to find out the possible time moment if the shared tasks cannot be performed
at a time moment start (see Algorithm 2). In both variants of DealContract
and in GetTask a function TryToDeal(task, w, d, start) is used, which check
whether it is possible to schedule the task in day d of week w at time moment
start within the constraints (c1)–(c5). So, this function is the main brick of the
algorithm and in the future we will measure the complexity of the algorithm as
the number of calls to this function.

4.3 Computational Results

At the first stage of the computational experiment, we solved 5 practical pre-
viously declared problems. Results of using Algorithm 1 with two variants of
function DealContract described above are presented in Table 3. The following
notations were used: F is the value of the objective function, Av.Sparsity is
the average sparsity of courses, TryToDeal count is the number of calls to the
function TryToDeal.

It is easy to see that for small problems 1 and 2 the heuristic algorithm
with both variants of the function DealContract received identical results. The
problem of the highest dimension is the only problem in which the second variant
of the algorithm turned out to be better than the first one. For all problems
using the heuristic algorithms significantly improved the value of the objective
function in comparison with the value obtained with the help of the CP solver
(see Table 2).

At the second stage of the experiment, we generated a series of 500 different
problems for each graph of precedence relations between courses from Fig. 3.

Minimization of the Weighted Total Sparsity of Cosmonaut Training Courses 213

Algorithm 2. DealContract(task.SharedTasks, start, w, d)
1: for task in SharedTasks do
2: if not task.AllParents.IsSchedulled then
3: return
4: end if
5: end for
6: repeat
7: for task in SharedTasks do
8: (isDealed, start) = TryToDeal(task, w, d, start)
9: if not isDealed then

10: return
11: end if
12: task.Start = start
13: end for
14: until SharedTasks.AllStartsAreEqual()
15: for task in SharedTasks do
16: Release(start, task)
17: end for

Table 3. Testing the heuristic algorithms on real-life problems.

N The first variant The second variant

F Av.Sparsity TryToDeal count F Av.Sparsity TryToDeal count

1 36.204 1.248 466 36.204 1.248 466

2 79.225 1.650 1048 79.225 1.650 1048

3 251.394 2.646 2353 254.020 2.673 2241

4 346.805 2.774 3629 270.258 2.162 3766

5 77.475 2.671 534 83.612 2.883 567

Duration pj for each task of a problem was chosen as an arbitrary integer from
the interval [1; 8]. Results of this experiment are presented in Table 4. Here N
is a number of graph from Fig. 3, which is used for generation of a series of
problems; F1 < F2 (F1 > F2) is a number of problems from a series, in which
the function value is strictly better for variant 1 (variant 2) of the algorithm;
T1 < T2 (T1 > T2) is a number of problems, in which the makespan is strictly
better for variant 1 (variant 2) of the algorithm; Avg, Max and Min are the
average, the minimal and the maximal sparsities respectively for a series of
problems.

The experiment shows that for the first two series of problems two approaches
give the same results. For the problems of high dimensions (series 3 and 4) almost
in half of the cases, the best results were given by one approach, in half - by
another. The second variant of the function DealContract has a slight advantage
in the number of problems with the best value of the objective function for large-
scale problems. So, both variants can be used for such problems together. The
runtime of algorithms did not exceed 2 min. If to say about the makespan, the

214 A. Lazarev et al.

Table 4. Testing the heuristic algorithms on series of test problems.

N F1 < F2 F1 > F2 T1 < T2 T1 > T2 The first variant The second variant

Avg Max Min Avg Max Min

1 3 1 4 0 1.51 1.87 1.30 1.51 1.87 1.30

2 0 3 0 3 2.07 3.20 1.67 2.07 3.20 1.67

3 230 264 227 267 2.72 3.88 1.97 2.72 4.53 1.97

4 245 253 272 226 2.74 4.45 1.96 2.74 5.06 1.92

5 350 149 384 115 2.92 4.38 2.18 2.92 4.65 2.02

trend is the same, but in some cases, the better value of the objective function
is achieved due to the worse value of the makespan. This is clearly seen from
Table 5, which contains summary data for all series of problems. This tendency
is a distinctive feature of this problem. Indeed, if we did not have a constraint on
the planning horizon and other constraints, the optimal value of the objective
function would be achieved in the schedule where courses pass one after another
without intersections. Therefore, it is necessary to maintain a balance between
the value of the objective function and the makespan.

Table 5. The relations between the values of the objective function and the planning
horizons in the series of problems.

T1 < T2 T1 > T2 T1 = T2

F1 < F2 761 67 0

F1 > F2 126 544 0

F1 = F2 0 0 1002

5 Conclusion

A new real-life problem statement for cosmonaut training planning with an
unusual objective function (the weighted total sparsity) is presented. A heuristic
algorithm with two variants of realization is proposed for solving this problem.
Comparison of the algorithm with an exact method is carried out. Numerical
testing of algorithms on real data, provided by the GCTC, demonstrated the effi-
ciency of the approach. For all problems, the heuristic algorithm found schedules
in which the value of the objective function is significantly better than the value
obtained with a help of the CPLEX CP Optimizer in 3 h. Comparison of the
two variants of the heuristic algorithm showed that it is sensible to apply both
variants to high-dimensional problems since they give different solutions. In this
case, the best solution can be obtained by both the first and the second variant.

Minimization of the Weighted Total Sparsity of Cosmonaut Training Courses 215

The directions of further research may include obtaining more flexible priority
rules, lower bounds for the given objective function and developing approximate
algorithms.

References

1. Artigues, C., Demassey, S., Neron, E. (eds.): Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. Wiley-ISTE,
Hoboken-London (2008)

2. Bartusch, M., Mohring, R.H., Radermache, F.J.: Scheduling project networks with
resource constraints and time windows. Ann. Oper. Res. 16, 201–240 (1988)

3. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: notation, classification, models, and methods. Eur. J. Oper.
Res. 112, 3–41 (1999)

4. Debels, D., Vanhoucke, M.: A decomposition-based genetic algorithm for the
resource-constrained project-scheduling problem. Oper. Res. 55(3), 457–469 (2007)

5. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco
(2003)

6. Homberger, J.: A multi-agent system for the decentralized resource-constrained
multi-project scheduling problem. Int. Trans. Oper. Res. 14, 565–589 (2007)

7. Kolisch, R.: Serial and project scheduling methods revisited: theory and computa-
tion. Eur. J. Oper. Res. 90, 320–333 (1996)

8. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: an update. Eur. J. Oper. Res. 174(1), 23–37 (2006)

9. Lazarev, A.A., et al.: Mathematical modeling of the astronaut training scheduling.
UBS 63, 129–154 (2016)

10. Musatova, E., Lazarev, A., Ponomarev, K., Yadrentsev, D., Bronnikov, S., Khus-
nullin, N.: A mathematical model for the astronaut training scheduling problem.
IFAC PapersOnLine 49(12), 221–225 (2016)

11. Valls, V., Quintanilla, M.S., Ballestin, F.: Resource-constrained project scheduling:
a critical activity reordering heuristic. Eur. J. Oper. Res. 149(2), 282–301 (2003)

12. IBM Homepage. https://www.ibm.com/analytics/data-science/prescriptive-
analytics/cplex-cp-optimizer. Accessed 1 July 2018

13. IBM Homepage. https://www.ibm.com/analytics/data-science/prescriptive-
analytics/optimization-modeling. Accessed 1 July 2018

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-cp-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-cp-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/optimization-modeling
https://www.ibm.com/analytics/data-science/prescriptive-analytics/optimization-modeling

	Minimization of the Weighted Total Sparsity of Cosmonaut Training Courses
	1 Introduction
	2 Problem Description
	3 Problem Statement in Terms of Constraint Programming
	4 Heuristic Algorithms
	4.1 The Priority Rule
	4.2 Schedule Generation Scheme
	4.3 Computational Results

	5 Conclusion
	References

