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Abstract

Sustainable agriculture calls for minimal use of agrochemicals in order to protect the environment. It
has caused an increase in the rate of nanoparticles use, in particular silver nanoparticles (AgNPs) due
to their safety for mammals, unique biological activity and a broad spectrum of action against fungal
and bacterial pathogens. Until now the use of AgNPs dispersions in the agricultural sector has been
essentially limited due to many factors decreased their stability (mixing with other pesticides, presence
of electrolytes). We present a versatile synthesis of polyampholyte surfactant (tallow amphopolycar-
boxyglycinate) stabilized AgNPs. We took a close look at unique aggregation behavior (via dynamic
light scattering and UV—vis spectroscopy) and biocidal activity of obtained silver colloids. AgNPs are
characterized by exclusively high aggregative stability in the presence of coagulating agents NaNO;
and NaSO, (up to 1 M), during drying/redispergation, and frost/defrost cycles. The dispersion of
AgNPs shows high biocidal activity (ECs is ten times lower than commercial species ones) with
respect to Phytophthora infestans and phytopathogenic fungi. This points to the possibility of
successful application of silver preparations within agriculture with the goal of partial reduction of the
use of toxic and expensive synthetic antibiotics and pesticides.

1. Introduction

Silver nanoparticles (AgNPs) and their antibacterial and antifungal action are quickly gaining relevance in
human medicine, veterinary medicine and agriculture due to being less toxic to people, animals and plants than
cations of silver [1]. The explosive growth in the number of pathogenic microorganisms resistant to the action of
antibiotics and pesticides also draws attention to AgNPs; as it stands, the resistance to silver de novo is difficult to
acquire [2]. Furthermore, silver compounds have immunomodulating effect 3] and stimulate growth and
development of plants [4].

Wide use of AgNPs colloids against pathogenic microorganisms is essentially limited by the inclination of
silver sols to coagulate during dilution, action of electrolytes and many other factors [5]. For instance the critical
electrolyte concentrations needed for AgNPs to coagulate were ~10 mmol 1! for monovalent ions and
~1 mmol 17! for divalent ions [6-8].

The modification of AgNPs surface by various surfactants is a direct way to increase their stability towards
aggregation [5, 9, 10]. There are three known types of stabilization: electrostatic stabilization by a small
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molecular weight chelating agent, like citrate and carbonate [11-14]; steric stabilization by polymers like
polyvinylpyrrolidone (PVP), dextran [15-19] or non-ionic surfactants like Tween 80 [20, 21]; and electrosteric
stabilization by polymers with charged groups (i.e., polyelectrolytes), like branched-polyethyleneimine
[11,20,22-27]. Of these compounds polyelectrolytes are often used to stabilize nanoparticle dispersions.

An important approach to stabilizing AgNPs is to embed them in a polyelectrolyte multilayers
(PEMUs). For example, Zan et al reported in situ preparation of AgNPs in PEMUs and showed that they
exhibited lasting antimicrobial activity [28, 29]. Wei et al further studied the stability of AgNPs in the
PEMU matrixes [30].

Macromolecules of polyelectrolyte surfactants may be positively or negatively charged (and called
polycations and polyanions respectively) which is dictated by how their functional groups are charged. AgNPs
covered by positive or negative polyelectrolytes both have a clear inhibitory effect on bacterial growth [31], but
they have a small pH range of stability [32].

Recently a new class of polymer surfactants for noble metal nanoparticles—polyampholytes—have
appeared [33, 34]. The polyampholytes are charged macromolecules carrying both acidic and basic repeat
groups at high charge asymmetry (far above or far below the isoelectric pH); these polymers demonstrate
polyelectrolyte-like behavior [35, 36]. The metal nanoparticles stabilized with polyelectrolytes can potentially be
applied in catalysis, electronic devices, drug delivery devices, etc [34]. It was shown [37-39] that both
hydrophobically modified polyampholytes and polyampholyte-modified microemulsions can act
simultaneously as reducing and stabilizing agents with respect to formation of gold nanoparticles. The stabilized
Au nanoparticles are notable for high catalytic activity and recyclability [40].

Despite the existence of a great number of scientific articles dedicated to surfactant-stabilized AgNPs the
potential use of silver-contained preparations in medicine and agriculture was limited due to their low stability.
During our wide ranged study of aqua sols of surfactants stabilized AgNPs [41, 42] we have discovered that the
use of polyampholyte alkyl-polycarboxy-amine surfactants allows to obtain extremely stable dispersions of
AgNPs. The process of synthesis as well as the properties of the most stable colloidal systems obtained are
presented in this briefreport.

2. Methods

2.1. Synthesis of AgNPs dispersion stabilized with sodium tallow amphopolycarboxyglycinate
Colloidal solution of AgNPs containing 3 g1~ " of silver and 48 g1 " of sodium tallow
amphopolycarboxyglycinate

?HZCOONa ClHZCOONa
C,H N N n=8-22,
n 2n+l{ \/\]’m\CHZCOONa =34

was obtained during a general procedure [42] of silver nitrate (99.9+%, Sigma-Aldrich) reduction by sodium
borohydride (98+4%, Lancaster) in the presence of sodium tallow amphopolycarboxyglycinate (30% aqueous
solution of sodium tallow amphopolycarboxyglycinate, additionally containing up to 10% NaCl, Akzo Nobel) as
astabilizer. Aqueous solution of silver nitrate (10 ml of 11.76 mM) was added drop-wise to the solution of
sodium tallow amphopolycarboxyglycinate (100 ml of 0.23 mM) being vigorously stirred. Then the obtained
mixture was stirred for 15 min, after that the 90 ml of aqueous solution of sodium borohydride (2.61 mM) and
sodium tallow amphopolycarboxyglycinate (0.25 mM) were added drop-wise during vigorous stirring. After the
entire amount of the reducing agent has been added, the mixture was stirred for an hour. Concentrations of the
solutions were calculated based on the adjusted content of metal and the content of the stabilizer in final
dispersion, the ratio Ag:NaBH, was stoichiometric and corresponded to the following equation:

2AgNO, + 4NaBH, + 7H;O — 2Ag + Na;B4O; + 2NaNO; + 15H,. (1)

2.2. Characterization
To register absorption spectra in the visible region a spectrophotometer JENWAY 6310 (Jenway, Great Britain)
was used.

Zeta potential of an AgNPs sol was carried out on a Zetasizer Nano ZS analyzer with an integrated 4 mW He—
Nelaser, A\ = 633 nm (Malvern Instruments Ltd, Great Britain). Zeta potentials were measured by applying an
electric field across the dispersion of silver NPs using the technique of laser Doppler anemometry. Size
distribution of silver AgNPs sol was carried out on a Photocor Complex light scattering unit with an integrated
25 mW diodelaser, A = 650 nm (Photocor Instruments Russia).
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Micrographs of specimens of silver NPs were made on a transmission electron microscope LEO 912 AB
OMEGA (Carl Zeiss, Germany) operating at 100 kV. The specimens were prepared by placing of 1-2 pl of
dispersion on a formvar-coated copper grid which then was dried in the air.

2.3. Study of prepared colloids’ stability

In order to investigate the stability of the AgNPs dispersions and their agglomeration behavior at different ionic
strengths, cations and anions, liquid solutions of KCI, NaNO3, Na,SO,4, Ca(CH3COO),, SrCl,, Ba(NO3), were
added to aliquots of silver NPs, containing 0.03 g 1~ " of silver and 0.48 g 1! of sodium tallow
amphopolycarboxyglycinate, adjusting molar concentrations of 1, 5, 10, and 100, 200 and 400 mmol 1. Then
the absorption light-spectra of prepared mixtures were recorded. The critical concentration of electrolytes was
recorded when the intensity decreased below 90% of the initial value.

2.4. Study of aggregation kinetics of the prepared colloids

For the purpose of Ag colloids’ aggregation kinetics investigation time-resolved DLS measurements of
aggregating AgNP suspensions were performed using a light scattering unit Photocor Complex (Photocor,
Russian Federation). In all tests, the AgNP suspensions used for DLS measurements had a total volume of 2 ml
and a AgNP concentration of 15 mg 1~'. All DLS measurements were conducted at a scattering angle of 90°.
Each autocorrelation function was accumulated over 15 s and the intensity-weighted hydrodynamic diameter
was then derived using second-order cumulant analysis (Dynals software). Time-resolved DLS measurements
were performed during 1-10 000 s in order to achieve a large enough increase in the hydrodynamic diameter
(more than 30%) for accurate derivation of aggregation kinetics.

The early stage aggregation kinetics of AgNPs can be calculated from the initial rate of change of
hydrodynamic diameter, Dy,, with time, ¢, as measured by time-resolved DLS [43]. During the early aggregation
stage, the initial aggregation rate constant, k, is proportional to the initial rate of increase of Dy, and inversely
proportional to the initial primary AgNP concentration in the suspension, C, [44]:

kmi(dD“(”) , @
CO dt t—0

Alinear least-squares regression analysis of the initial increase of D}, was conducted to obtain (dDy,(£)/df), 0.

The attachment efficiency, o, is used to quantify the aggregation kinetics of AgNPs. It is calculated by
normalizing the aggregation rate constant obtained in the solution of interest to the aggregation rate constants
under diffusion-limited conditions, kg, [44]:

L( dDy, (1) )
o= k _ Co dt )i ‘ 3)
kfast 1 (dDh(t))
(CO)fast dt t—0, fast

Electrolyte (NaNOj3, Ca(NO3),, Sr(NO3),, and Mg(NO3),) solutions were prepared and filtered with the help
0f0.22 pym Millex membrane syringe filters (Merck Millipore Ltd) before use. All experiments and
measurements were performed at pH 7.2 £ 0.2 (buffered with 0.15 mM NaHCO5).

2.5. Study of biocidal activity of sodium tallow amphopolycarboxyglycinate stabilized dispersion of AgNPs
with respect with respect to phytopathogenic fungi and oomycete Phytophthora infestans

In this research isolates of Phytophthora infestans (Mont.) de Bary and various fungi (table 1) isolated by the
authors from affected potato plants were used. An estimation of biocidal properties was carried out on agar pea
medium with the addition of test preparation. In order to compare it to traditional preparations with biocidal
properties, used for plant protection, fungicide fludioxonil (4-(2,2-difluoro-1,3-benzodioxol-4-yl)- 1H-pyrrole-
3-carbonitrile 25 g1 "), insectofungicide mixture of imidacloprid ((E)-1-(6-chloro-3-pyridylmethyl)-N-
nitroimidazolidin-2-ylideneamine, 140 g1~ "), pencycuron (1-(4-chlorobenzyl)- 1-cyclopentyl-3-phenylurea,
150 g1~ ") and azoxystrobin (methyl (2E)-2-(2- {[6-(2-cyanophenoxy)pyrimidin-4-ylJoxy } phenyl)-3-
methoxyacrylate, 250 g1~ ') were studied under similar conditions. Agar block with mycelium 5 mm in diameter
was placed in the center of a Petri dish, which was then sealed with Parafilm®. The dishes were incubated at

23 °C-25 °C(P. infestans—at 18 °C) and in daylight. Measurements of the colonies’ diameters were carried out
at the moment when the diameter of the colony of the control sample—in the agar medium—was around 0.75
of the Petri dish diameter. An estimation of radial growth was carried out in three surfaces. Using averaged
values of colonies’ diameters, the ratio of the size of colonies on the medium with the preparation to the colony
size on the control sample was calculated and then the effective inhibitory concentration ECsp—the amount of a
preparation in the medium needed to reduce the radial growth of a colony by half—was determined.
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Table 1. Biocidal activity of sodium tallow amphopolycarboxyglycinate stabilized dispersion of silver NPs and com-
mercially available fungicides.

ECsp,mg 1!
Plant pathogenic fungi Silver NPs Fludioxonil Pencycuron Azoxystrobin
Phytophthora infestans (Mont.) de Bary 3.1+03 145+ 5 >500 0.05 £ 0.01
Sclerotinia sclerotiorum (Lib.) de Bary 39+03 — — —
Alternaria solani Sorauer 7.7 £ 0.5 1.2+ 0.1 541 562 £ 1
Alternaria alternata (Fr.) Keissl. 28 +1 1.2 £ 0.1 140 £ 1 970 £ 1
Fusarium solani (Mart.) Sacc. 83+ 0.5 >100 >100 >100
Colletotrichum coccodes (Wallr.) S Hughes 6.6 0.3 — >100 0.05 £ 0.01
Helminthosporium solani Durieu & Mont. 10 £ 0.7 >100 >100 —
Rhizoctonia solani ] G Kithn 0.4 £ 0.1 0.1 £ 0.05 0.1 £ 0.05 >100

* A study was not carried out.

T30 40 350 400 450 500 550
Particles size, nm Wavelength, nm

Figure 1. TEM image of particles (a); hydrodynamic radius distribution histogram (b); UV-visible absorbance spectrum (c) of sodium
tallow amphopolycarboxyglycinate stabilized silver sol.

3. Results and discussion

3.1. Synthesis of silver nanoparticles

During the first step of synthesis the sol of AgCl is formed after the addition of a silver nitrate solution to the
solution of sodium tallow amphopolycarboxyglycinate, additionally containing NaCl. After that the particles of
AgClare reduced using sodium borohydride followed by formation of dispersions of metal AgNPs.

Silver colloidal solution obtained according to TEM images of dried samples (figure 1(a)) and dynamic light
scattering data (see figure s1, ESI) is a dispersion of crystalline AgNPs mainly of a spherical shape, an average
diameter of particles being 31 £ 7 nm (figure 1(b)). Sols have the russet color, on a UV-visible absorbance
spectrum there is an intensive plasmon resonance region of AgNPs with a peak at 405 nm (figure 1(c)).

Dispersion particles are negatively charged, the zeta potential determined by dynamic light scattering equals
—54 + 1 mV. The dispersion of AgNPs is stable with respect to aggregation during, at least, 4 months after the
synthesis, which agrees with the sufficiently high value of the zeta potential.

Sodium tallow amphopolycarboxyglycinate stabilized silver sol shows extreme aggregative stability. First,
this dispersion is stable even with a high content of silver—3 g 1~ ! (see table s1, ESI), which is not achievable for
dispersions stabilized with surfactants and polymers used before. For comparison an average concentration of
silver in a typical synthesized sol is 10~100 mg 1~ [32]. Besides that, the sodium tallow
amphopolycarboxyglycinate stabilized colloidal silver solution maintains aggregative stability in the presence of
monovalent metal salts up to a concentration of 0.4 mol 17! for KCl, NaNO3, Na,SO, (see figure 2). Other
polyelectrolytes-stabilized colloidal silver solutions have lower stability amid high ionic strength (up to
0.1 mol 17H[32, 45, 46]. Increasing the charge of anions of Na,SO, compared to NaNOj (see figure 2) does not
have a significant effect on aggregative stability of the colloidal silver solution.

In the presence of tri- and divalent metal salts the sodium tallow amphopolycarboxyglycinate stabilized
colloidal silver solution has shown the same low stability (see table s2, ESI) as the other stabilized colloidal silver
solution [32, 44, 47, 48]. In particular 5 mmol 17! Ca*" causes instantaneous coagulation of AgNPs that was
verified by the change in their absorption light-spectra (see figure 2).
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Figure 2. Dependence of AgNPs peak absorbance relative intensity on (a) the concentration of electrolytes (NaNO3, Na,SO, and
Ca(CH;3COO),) and (b) pH.
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Figure 3. (a) Time-dependences of the AgNPs hydrodynamic diameter in the presence of various Ca(NOs3), concentrations; (b)
attachment efficiency of AgNPs in the presence of various electrolyte concentrations (Mg(NO3),, Ca(NO3),, and Sr(NO3),).

The coated tallow amphopolycarboxyglycinate AgNPs can redisperse in an aqueous medium even after
complete drying and without ultrasonic treatment. Up until this redispersion of AgNPs have been reported only
in nonpolar solvents [49]. Also the sodium tallow amphopolycarboxyglycinate stabilized colloidal silver solution
stands for more than 20 frost/defrost cycles, while major dispersions of AgNPs stabilized by other surfactants
can only stand for 2-3 frost/defrost cycles without stability loss [50]. Moreover the prepared AgNPs colloids are

stable amid a wide range of pH (4-9, see figure 2(b)), unlike polyelectrolyte stabilized AgNPs—for example,
branched polyethyleneimine [32].

3.2. Study of aggregation kinetics of prepared colloids
Time-dependences of the AgNPs hydrodynamic diameter in the presence of different concentrations of calcium
nitrate are presented in figure 3(a). With the increase of the concentration the slope of the initial stage (<30 nm)
Dy, dependence also increases. But beyond the respective critical coagulation concentrations (CCCs) this
dependence reaches its limit. According to [44, 51], such behavior corresponds with the classic DLVO theory. At
low electrolyte concentrations, reaction limited (slow) aggregation occurs due to the antagonism between the
negatively charged tallow amphopolycarboxyglycinate-coated AgNPs. At electrolyte concentrations above the
respective CCCs, diffusion-limited (fast) aggregation takes place as the surface charge on the AgNPs is
sufficiently screened to eliminate the energy barrier for aggregation.

Above described aggregation model well illustrated at figure 3(b). For Mg(NO3), and Ca(NOs3), electrolytes
the CCCs are 48 and 18 mM respectively; beyond these concentrations the attachment efficiency reaches 1.

These values are several times higher than what other polymer-stabilised silver nanoparticles like PVP [44] or
bare silver nanoparticles show [6].
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Figure 4. Direct antifungal activity of tallow amphopolycarboxyglycinate capped AgNPs with various concentration (1-100 mg 1)
on different fungi on Petri dishes.

Exposed to NaNOj; the hydrodynamic diameter of AgNPs (concentration up to 1 M) has not changed in an
hour. This observation can be explained using the DLVO theory, according to which the ratio of CCCs of singly
and doubly charged ions is 1:64 (Schulze-Hardy rule) [52]. In our case this concentration exceeds 1 M
(18 * 64 mM). It should be noted that the DLVO theory can only be applied to diluted solutions; steric repulsion
may also cause such high AgNPs colloids’ stability compared to electrostatic interactions.

3.3. Biocidal activity of pesticides and the sodium tallow amphopolycarboxyglycinate stabilized dispersion
of AgNPs with respect to plant pathogenic bacteria

The results of studies of biocidal activity of the obtained silver sol compared to commercially available fungicides
used for pre-plant treatment of tubers and plant treatment during vegetation with respect to P. infestans are
given in table 1 and figure 4. In [53—55] we can find the ECs, values of dispersions of AgNPs stabilized with
polymers containing polyvinylpyrrolidone units, with respect to R. solani—6 mg 1~ [53], fungi of Fusarium
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genus—from 9 to 55 mg 1~ [54] and fungi of Colletotrichum genus—from 8 to 100 mg1~" depending on species
[55]—are given. It should be noted that such polymers do not have their own apparent fungicidal activity.

It appears that the biocidal activity of sodium tallow amphopolycarboxyglycinate stabilized nanosilver with
respect to most serious potato pathogen P. infestans (late blight disease of the potato agent) and plant pathogenic
fungi (with the exception of R. solani), exceeds the activity of wide spread traditional synthetic pesticides and
already known dispersions of AgNPs. The amount of the dispersion stabilizer sodium tallow
amphopolycarboxyglycinate in a sol, with the silver content diluted in order to correspond with the ECs, values
obtained, does not have an apparent fungicidal effect with respect to tested phytopathogens.

High aggregative stability of dispersion allows it to show antimicrobial activity even when added to the solid
agar medium which causes momentary coagulation with the loss of activity of many other silver colloidal
solutions. As compared to commercially tested available fungicides the sodium tallow
amphopolycarboxyglycinate stabilized dispersion of AgNPs is a more versatile substance—it shows the
comparable efficiency when used against R. solani and is much more effective against other sufficiently
aggressive potato pathogens.

4. Conclusions

The dispersion of silver AgNPs stabilized with tallow amphopolycarboxyglycinate obtained for the first time by
the authors shows extremely high aggregative stability with respect to the action of singly charged coagulating
agents (up to 1 M in the presence of NaNO3). In the presence of doubly charged coagulating agents (Mg(NO3),
and Ca(NO3),) the aggregation behavior has been confirmed to be in accordance with the classic DLVO theory
and CCCs have been calculated (48 and 18 mM correspondingly). Compared to the tested commercially
available fungicides the sodium tallow amphopolycarboxyglycinate stabilized dispersion of AgNPs is a more
versatile substance—it has the comparable efficiency when used against R. solani (ECsy ~ 0.4 mg 1~ versus
0.1 mg 171, but is much more effective against other sufficiently aggressive potato pathogens

(ECso ~ 10 mg1~ " versus 100 mg 17"). This points to the possibility of successful application of silver
preparations in agriculture with the goal of reduction of the use of toxic and expensive synthetic antibiotics and
pesticides.
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