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Abstract
Sustainable agriculture calls forminimal use of agrochemicals in order to protect the environment. It
has caused an increase in the rate of nanoparticles use, in particular silver nanoparticles (AgNPs) due
to their safety formammals, unique biological activity and a broad spectrumof action against fungal
and bacterial pathogens. Until now the use of AgNPs dispersions in the agricultural sector has been
essentially limited due tomany factors decreased their stability (mixingwith other pesticides, presence
of electrolytes).We present a versatile synthesis of polyampholyte surfactant (tallow amphopolycar-
boxyglycinate) stabilized AgNPs.We took a close look at unique aggregation behavior (via dynamic
light scattering andUV–vis spectroscopy) and biocidal activity of obtained silver colloids. AgNPs are
characterized by exclusively high aggregative stability in the presence of coagulating agentsNaNO3

andNaSO4 (up to 1M), during drying/redispergation, and frost/defrost cycles. The dispersion of
AgNPs shows high biocidal activity (EC50 is ten times lower than commercial species ones)with
respect toPhytophthora infestans and phytopathogenic fungi. This points to the possibility of
successful application of silver preparations within agriculturewith the goal of partial reduction of the
use of toxic and expensive synthetic antibiotics and pesticides.

1. Introduction

Silver nanoparticles (AgNPs) and their antibacterial and antifungal action are quickly gaining relevance in
humanmedicine, veterinarymedicine and agriculture due to being less toxic to people, animals and plants than
cations of silver [1]. The explosive growth in the number of pathogenicmicroorganisms resistant to the action of
antibiotics and pesticides also draws attention toAgNPs; as it stands, the resistance to silver de novo is difficult to
acquire [2]. Furthermore, silver compounds have immunomodulating effect [3] and stimulate growth and
development of plants [4].

Wide use of AgNPs colloids against pathogenicmicroorganisms is essentially limited by the inclination of
silver sols to coagulate during dilution, action of electrolytes andmany other factors [5]. For instance the critical
electrolyte concentrations needed for AgNPs to coagulate were∼10 mmol l−1 formonovalent ions and
∼1 mmol l−1 for divalent ions [6–8].

Themodification of AgNPs surface by various surfactants is a direct way to increase their stability towards
aggregation [5, 9, 10]. There are three known types of stabilization: electrostatic stabilization by a small
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molecular weight chelating agent, like citrate and carbonate [11–14]; steric stabilization by polymers like
polyvinylpyrrolidone (PVP), dextran [15–19] or non-ionic surfactants like Tween 80 [20, 21]; and electrosteric
stabilization by polymers with charged groups (i.e., polyelectrolytes), like branched-polyethyleneimine
[11, 20, 22–27]. Of these compounds polyelectrolytes are often used to stabilize nanoparticle dispersions.

An important approach to stabilizing AgNPs is to embed them in a polyelectrolyte multilayers
(PEMUs). For example, Zan et al reported in situ preparation of AgNPs in PEMUs and showed that they
exhibited lasting antimicrobial activity [28, 29]. Wei et al further studied the stability of AgNPs in the
PEMU matrixes [30].

Macromolecules of polyelectrolyte surfactantsmay be positively or negatively charged (and called
polycations and polyanions respectively)which is dictated by how their functional groups are charged. AgNPs
covered by positive or negative polyelectrolytes both have a clear inhibitory effect on bacterial growth [31], but
they have a small pH range of stability [32].

Recently a new class of polymer surfactants for noblemetal nanoparticles—polyampholytes—have
appeared [33, 34]. The polyampholytes are chargedmacromolecules carrying both acidic and basic repeat
groups at high charge asymmetry (far above or far below the isoelectric pH); these polymers demonstrate
polyelectrolyte-like behavior [35, 36]. Themetal nanoparticles stabilizedwith polyelectrolytes can potentially be
applied in catalysis, electronic devices, drug delivery devices, etc [34]. It was shown [37–39] that both
hydrophobicallymodified polyampholytes and polyampholyte-modifiedmicroemulsions can act
simultaneously as reducing and stabilizing agents with respect to formation of gold nanoparticles. The stabilized
Aunanoparticles are notable for high catalytic activity and recyclability [40].

Despite the existence of a great number of scientific articles dedicated to surfactant-stabilized AgNPs the
potential use of silver-contained preparations inmedicine and agriculture was limited due to their low stability.
During ourwide ranged study of aqua sols of surfactants stabilized AgNPs [41, 42]wehave discovered that the
use of polyampholyte alkyl-polycarboxy-amine surfactants allows to obtain extremely stable dispersions of
AgNPs. The process of synthesis as well as the properties of themost stable colloidal systems obtained are
presented in this brief report.

2.Methods

2.1. Synthesis of AgNPs dispersion stabilizedwith sodium tallow amphopolycarboxyglycinate
Colloidal solution of AgNPs containing 3 g l−1 of silver and 48 g l−1 of sodium tallow
amphopolycarboxyglycinate

was obtained during a general procedure [42] of silver nitrate (99.9+%, Sigma-Aldrich) reduction by sodium
borohydride (98+%,Lancaster) in the presence of sodium tallow amphopolycarboxyglycinate (30%aqueous
solution of sodium tallow amphopolycarboxyglycinate, additionally containing up to 10%NaCl, AkzoNobel) as
a stabilizer. Aqueous solution of silver nitrate (10 ml of 11.76 mM)was added drop-wise to the solution of
sodium tallow amphopolycarboxyglycinate (100 ml of 0.23 mM) being vigorously stirred. Then the obtained
mixturewas stirred for 15 min, after that the 90 ml of aqueous solution of sodiumborohydride (2.61 mM) and
sodium tallow amphopolycarboxyglycinate (0.25 mM)were added drop-wise during vigorous stirring. After the
entire amount of the reducing agent has been added, themixturewas stirred for an hour. Concentrations of the
solutionswere calculated based on the adjusted content ofmetal and the content of the stabilizer infinal
dispersion, the ratio Ag:NaBH4was stoichiometric and corresponded to the following equation:

+ +  + + +2AgNO 4NaBH 7H O 2Ag Na B O 2NaNO 15H . 13 4 2 2 4 7 3 2 ( )

2.2. Characterization
To register absorption spectra in the visible region a spectrophotometer JENWAY6310 (Jenway, Great Britain)
was used.

Zeta potential of anAgNPs sol was carried out on a ZetasizerNanoZS analyzer with an integrated 4 mWHe–
Ne laser,λ=633 nm (Malvern Instruments Ltd, Great Britain). Zeta potentials weremeasured by applying an
electric field across the dispersion of silverNPs using the technique of laserDoppler anemometry. Size
distribution of silver AgNPs sol was carried out on a Photocor Complex light scattering unit with an integrated
25 mWdiode laser,λ=650 nm (Photocor Instruments Russia).
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Micrographs of specimens of silverNPsweremade on a transmission electronmicroscope LEO912AB
OMEGA (Carl Zeiss, Germany) operating at 100 kV. The specimens were prepared by placing of 1–2 μl of
dispersion on a formvar-coated copper gridwhich thenwas dried in the air.

2.3. Study of prepared colloids’ stability
In order to investigate the stability of the AgNPs dispersions and their agglomeration behavior at different ionic
strengths, cations and anions, liquid solutions of KCl, NaNO3,Na2SO4, Ca(CH3COO)2, SrCl2, Ba(NO3)2 were
added to aliquots of silverNPs, containing 0.03 g l−1 of silver and 0.48 g l−1 of sodium tallow
amphopolycarboxyglycinate, adjustingmolar concentrations of 1, 5, 10, and 100, 200 and 400 mmol l−1. Then
the absorption light-spectra of preparedmixtures were recorded. The critical concentration of electrolytes was
recordedwhen the intensity decreased below 90%of the initial value.

2.4. Study of aggregation kinetics of the prepared colloids
For the purpose of Ag colloids’ aggregation kinetics investigation time-resolvedDLSmeasurements of
aggregating AgNP suspensions were performed using a light scattering unit Photocor Complex (Photocor,
Russian Federation). In all tests, the AgNP suspensions used forDLSmeasurements had a total volume of 2 ml
and aAgNP concentration of 15 mg l−1. All DLSmeasurements were conducted at a scattering angle of 90°.
Each autocorrelation functionwas accumulated over 15 s and the intensity-weighted hydrodynamic diameter
was then derived using second-order cumulant analysis (Dynals software). Time-resolvedDLSmeasurements
were performed during 1–10 000 s in order to achieve a large enough increase in the hydrodynamic diameter
(more than 30%) for accurate derivation of aggregation kinetics.

The early stage aggregation kinetics of AgNPs can be calculated from the initial rate of change of
hydrodynamic diameter,Dh, with time, t, asmeasured by time-resolvedDLS [43]. During the early aggregation
stage, the initial aggregation rate constant, k, is proportional to the initial rate of increase ofDh and inversely
proportional to the initial primary AgNP concentration in the suspension,C0 [44]:
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A linear least-squares regression analysis of the initial increase ofDhwas conducted to obtain (dDh(t)/dt)t→0.
The attachment efficiency,α, is used to quantify the aggregation kinetics of AgNPs. It is calculated by

normalizing the aggregation rate constant obtained in the solution of interest to the aggregation rate constants
under diffusion-limited conditions, kfast [44]:
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Electrolyte (NaNO3, Ca(NO3)2, Sr(NO3)2, andMg(NO3)2) solutions were prepared andfilteredwith the help
of 0.22 μmMillexmembrane syringe filters (MerckMillipore Ltd) before use. All experiments and
measurements were performed at pH7.2±0.2 (bufferedwith 0.15 mMNaHCO3).

2.5. Study of biocidal activity of sodium tallow amphopolycarboxyglycinate stabilized dispersion ofAgNPs
with respectwith respect to phytopathogenic fungi and oomycetePhytophthora infestans
In this research isolates ofPhytophthora infestans (Mont.) de Bary and various fungi (table 1) isolated by the
authors from affected potato plants were used. An estimation of biocidal properties was carried out on agar pea
mediumwith the addition of test preparation. In order to compare it to traditional preparations with biocidal
properties, used for plant protection, fungicide fludioxonil (4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-
3-carbonitrile 25 g l−1), insectofungicidemixture of imidacloprid ((E)-1-(6-chloro-3-pyridylmethyl)-N-
nitroimidazolidin-2-ylideneamine, 140 g l−1), pencycuron (1-(4-chlorobenzyl)-1-cyclopentyl-3-phenylurea,
150 g l−1) and azoxystrobin (methyl (2E)-2-(2-{[6-(2-cyanophenoxy)pyrimidin-4-yl]oxy}phenyl)-3-
methoxyacrylate, 250 g l−1)were studied under similar conditions. Agar blockwithmycelium 5mm in diameter
was placed in the center of a Petri dish, whichwas then sealedwith Parafilm®. The dishes were incubated at
23 °C–25 °C (P. infestans—at 18 °C) and in daylight.Measurements of the colonies’ diameters were carried out
at themomentwhen the diameter of the colony of the control sample—in the agarmedium—was around 0.75
of the Petri dish diameter. An estimation of radial growthwas carried out in three surfaces. Using averaged
values of colonies’ diameters, the ratio of the size of colonies on themediumwith the preparation to the colony
size on the control sample was calculated and then the effective inhibitory concentration EC50—the amount of a
preparation in themediumneeded to reduce the radial growth of a colony by half—was determined.
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3. Results and discussion

3.1. Synthesis of silver nanoparticles
During thefirst step of synthesis the sol of AgCl is formed after the addition of a silver nitrate solution to the
solution of sodium tallow amphopolycarboxyglycinate, additionally containingNaCl. After that the particles of
AgCl are reduced using sodiumborohydride followed by formation of dispersions ofmetal AgNPs.

Silver colloidal solution obtained according to TEM images of dried samples (figure 1(a)) and dynamic light
scattering data (see figure s1, ESI) is a dispersion of crystalline AgNPsmainly of a spherical shape, an average
diameter of particles being 31±7 nm (figure 1(b)). Sols have the russet color, on aUV–visible absorbance
spectrum there is an intensive plasmon resonance region of AgNPswith a peak at 405 nm (figure 1(c)).

Dispersion particles are negatively charged, the zeta potential determined by dynamic light scattering equals
−54±1 mV. The dispersion of AgNPs is stable with respect to aggregation during, at least, 4months after the
synthesis, which agrees with the sufficiently high value of the zeta potential.

Sodium tallow amphopolycarboxyglycinate stabilized silver sol shows extreme aggregative stability. First,
this dispersion is stable evenwith a high content of silver—3 g l−1 (see table s1, ESI), which is not achievable for
dispersions stabilizedwith surfactants and polymers used before. For comparison an average concentration of
silver in a typical synthesized sol is 10–100 mg l−1 [32]. Besides that, the sodium tallow
amphopolycarboxyglycinate stabilized colloidal silver solutionmaintains aggregative stability in the presence of
monovalentmetal salts up to a concentration of 0.4 mol l−1 for KCl, NaNO3,Na2SO4 (seefigure 2). Other
polyelectrolytes-stabilized colloidal silver solutions have lower stability amid high ionic strength (up to
0.1 mol l−1) [32, 45, 46]. Increasing the charge of anions ofNa2SO4 compared toNaNO3 (seefigure 2) does not
have a significant effect on aggregative stability of the colloidal silver solution.

In the presence of tri- and divalentmetal salts the sodium tallow amphopolycarboxyglycinate stabilized
colloidal silver solution has shown the same low stability (see table s2, ESI) as the other stabilized colloidal silver
solution [32, 44, 47, 48]. In particular 5 mmol l−1 Ca2+ causes instantaneous coagulation of AgNPs that was
verified by the change in their absorption light-spectra (see figure 2).

Table 1.Biocidal activity of sodium tallow amphopolycarboxyglycinate stabilized dispersion of silverNPs and com-
mercially available fungicides.

EC50,mg l−1

Plant pathogenic fungi SilverNPs Fludioxonil Pencycuron Azoxystrobin

Phytophthora infestans (Mont.) de Bary 3.1±0.3 145±5 >500 0.05±0.01
Sclerotinia sclerotiorum (Lib.) de Bary 3.9±0.3 —

a
—

a
—

a

Alternaria solani Sorauer 7.7±0.5 1.2±0.1 5±1 562±1
Alternaria alternata (Fr.) Keissl. 28±1 1.2±0.1 140±1 970±1
Fusarium solani (Mart.) Sacc. 8.3±0.5 >100 >100 >100

Colletotrichum coccodes (Wallr.) SHughes 6.6±0.3 —
a >100 0.05±0.01

Helminthosporium solaniDurieu&Mont. 10±0.7 >100 >100 —
a

Rhizoctonia solani J GKühn 0.4±0.1 0.1±0.05 0.1±0.05 >100

a A studywas not carried out.

Figure 1.TEM image of particles (а); hydrodynamic radius distribution histogram (b); UV–visible absorbance spectrum (c) of sodium
tallow amphopolycarboxyglycinate stabilized silver sol.
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The coated tallow amphopolycarboxyglycinate AgNPs can redisperse in an aqueousmedium even after
complete drying andwithout ultrasonic treatment. Up until this redispersion of AgNPs have been reported only
in nonpolar solvents [49]. Also the sodium tallow amphopolycarboxyglycinate stabilized colloidal silver solution
stands formore than 20 frost/defrost cycles, whilemajor dispersions of AgNPs stabilized by other surfactants
can only stand for 2–3 frost/defrost cycles without stability loss [50].Moreover the preparedAgNPs colloids are
stable amid awide range of pH (4–9, see figure 2(b)), unlike polyelectrolyte stabilized AgNPs—for example,
branched polyethyleneimine [32].

3.2. Study of aggregation kinetics of prepared colloids
Time-dependences of the AgNPs hydrodynamic diameter in the presence of different concentrations of calcium
nitrate are presented infigure 3(a).With the increase of the concentration the slope of the initial stage (<30 nm)
Dh dependence also increases. But beyond the respective critical coagulation concentrations (CCCs) this
dependence reaches its limit. According to [44, 51], such behavior corresponds with the classicDLVO theory. At
low electrolyte concentrations, reaction limited (slow) aggregation occurs due to the antagonism between the
negatively charged tallow amphopolycarboxyglycinate-coated AgNPs. At electrolyte concentrations above the
respective CCCs, diffusion-limited (fast) aggregation takes place as the surface charge on theAgNPs is
sufficiently screened to eliminate the energy barrier for aggregation.

Above described aggregationmodel well illustrated atfigure 3(b). ForMg(NO3)2 andCa(NO3)2 electrolytes
the CCCs are 48 and 18 mMrespectively; beyond these concentrations the attachment efficiency reaches 1.
These values are several times higher thanwhat other polymer-stabilised silver nanoparticles like PVP [44] or
bare silver nanoparticles show [6].

Figure 2.Dependence of AgNPs peak absorbance relative intensity on (a) the concentration of electrolytes (NaNO3,Na2SO4 and
Ca(CH3COO)2) and (b) pH.

Figure 3. (a)Time-dependences of the AgNPs hydrodynamic diameter in the presence of various Ca(NO3)2 concentrations; (b)
attachment efficiency of AgNPs in the presence of various electrolyte concentrations (Mg(NO3)2, Ca(NO3)2, and Sr(NO3)2).
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Exposed toNaNO3 the hydrodynamic diameter of AgNPs (concentration up to 1M)has not changed in an
hour. This observation can be explained using theDLVO theory, according towhich the ratio of CCCs of singly
and doubly charged ions is 1:64 (Schulze-Hardy rule) [52]. In our case this concentration exceeds 1M
(18*64 mM). It should be noted that theDLVO theory can only be applied to diluted solutions; steric repulsion
may also cause such highAgNPs colloids’ stability compared to electrostatic interactions.

3.3. Biocidal activity of pesticides and the sodium tallow amphopolycarboxyglycinate stabilized dispersion
ofAgNPswith respect to plant pathogenic bacteria
The results of studies of biocidal activity of the obtained silver sol compared to commercially available fungicides
used for pre-plant treatment of tubers and plant treatment during vegetationwith respect toP. infestans are
given in table 1 andfigure 4. In [53–55]we can find the EC50 values of dispersions of AgNPs stabilizedwith
polymers containing polyvinylpyrrolidone units, with respect toR. solani—6 mg l−1 [53], fungi of Fusarium

Figure 4.Direct antifungal activity of tallow amphopolycarboxyglycinate cappedAgNPswith various concentration (1–100 mg l−1)
on different fungi on Petri dishes.
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genus—from9 to 55 mg l−1 [54] and fungi ofColletotrichum genus—from8 to 100 mg l−1 depending on species
[55]—are given. It should be noted that such polymers do not have their own apparent fungicidal activity.

It appears that the biocidal activity of sodium tallow amphopolycarboxyglycinate stabilized nanosilver with
respect tomost serious potato pathogen P. infestans (late blight disease of the potato agent) and plant pathogenic
fungi (with the exception ofR. solani), exceeds the activity of wide spread traditional synthetic pesticides and
already knowndispersions of AgNPs. The amount of the dispersion stabilizer sodium tallow
amphopolycarboxyglycinate in a sol, with the silver content diluted in order to correspondwith the EC50 values
obtained, does not have an apparent fungicidal effect with respect to tested phytopathogens.

High aggregative stability of dispersion allows it to show antimicrobial activity evenwhen added to the solid
agarmediumwhich causesmomentary coagulationwith the loss of activity ofmany other silver colloidal
solutions. As compared to commercially tested available fungicides the sodium tallow
amphopolycarboxyglycinate stabilized dispersion of AgNPs is amore versatile substance—it shows the
comparable efficiencywhen used againstR. solani and ismuchmore effective against other sufficiently
aggressive potato pathogens.

4. Conclusions

The dispersion of silver AgNPs stabilizedwith tallow amphopolycarboxyglycinate obtained for thefirst time by
the authors shows extremely high aggregative stability with respect to the action of singly charged coagulating
agents (up to 1M in the presence ofNaNO3). In the presence of doubly charged coagulating agents (Mg(NO3)2
andCa(NO3)2) the aggregation behavior has been confirmed to be in accordance with the classic DLVO theory
andCCCs have been calculated (48 and 18 mMcorrespondingly). Compared to the tested commercially
available fungicides the sodium tallow amphopolycarboxyglycinate stabilized dispersion of AgNPs is amore
versatile substance—it has the comparable efficiencywhen used againstR. solani (EC50∼0.4 mg l−1 versus
0.1 mg l−1), but ismuchmore effective against other sufficiently aggressive potato pathogens
(EC50∼10 mg l−1 versus 100 mg l−1). This points to the possibility of successful application of silver
preparations in agriculture with the goal of reduction of the use of toxic and expensive synthetic antibiotics and
pesticides.
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