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Abstract—Motivated by the problem of magnetic reconnection in turbulent astrophysical plasmas with
a strong magnetic field, in particular, in solar flares, we have calculated the probability of occurrence of
various topological structures of three-dimensional reconnection at the null point of a random magnetic
field. We have established that the peculiar nonaxisymmetric structure with six asymptotic directions, the
six-tailed structure, also called the improper radial null, plays a dominant role. All the remaining structures,
in particular, the axisymmetric ones (the proper radial nulls), occur with a much lower probability. The
fundamental feature of the six-tailed structure is that at large distances it is approximately reduced to the
classical two-dimensional X-type structure.
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INTRODUCTION

The redistribution of magnetic fluxes (magnetic
reconnection), which changes the topological con-
nectivity of magnetic field lines (see, e.g., Priest and
Forbes 2005; Somov 2013; and references therein),
is currently believed to be responsible for the dy-
namical character of various astrophysical objects,
from the planetary magnetospheres to the intergalac-
tic medium. Magnetic reconnection plays a key role
in the laboratory and numerical simulations of flare-
type phenomena in astrophysical plasmas (Gonzalez
and Parker 2016; Frank et al. 2011).

Magnetic fields often form complex systems con-
taining many places (points or lines) where reconnec-
tion can occur. According to Parker (1988), the solar
corona is heated as a result of multiple reconnection
events in a system that consists of a large number of
densely packed magnetic flux tubes. Reconnecting
current layers are formed in the places of interaction
between these flux tubes; “nanoflares” occur that
heat the solar corona. A similar example of complex
magnetic systems is the “spaghetti” model of solar
flares suggested by de Jager (1986). Subsequently,
the model was renamed the “avalanche” model of
flares, because it implies that the release of energy in
a flare can be understood as a magnetohydrodynamic
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(MHD) turbulent cascade (Lu and Hamilton 1991).
Turbulence in plasmas with strong magnetic fields
(Iroshnikov 1964; Kraichnan 1965) is peculiar to the
applications we consider. Studying the peculiarities
of reconnection in complex magnetic systems is a
topical problem in modern astrophysics, especially
in the physics of turbulent space plasmas (Lazarian
2014; Fleishman and Toptygin 2013).

The electric currents in plasmas are always pinched,
i.e., they tend to more concentrated states. The
pinched current layers are such states in laminar plas-
mas with strong magnetic fields (Syrovatskii 1981).
This property of currents is especially conspicuous in
MHD turbulent plasmas. The current configurations
are self-organized and structured; they dissipate
and regenerate, thereby determining the dissipative
and transport properties of turbulent plasmas. In a
turbulent plasma with a strong magnetic field the
multiple filaments (and layers) with concentrated
currents are separated by strong magnetic fields,
which can have numerous null points because of
their complexity. To understand the dynamical and
dissipative properties of such plasmas, it is important
to know the topological properties of the magnetic
field or, more specifically, the presence of nulls of
various types and the probability of occurrence of a
particular type.

Recall that the classical approach to studying the
magnetic reconnection effect suggests its develop-
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ment from the null point where all components of
the magnetic field vector B disappear, thereby violat-
ing the condition of field “freezing” into the plasma.
Historically, the studies of reconnection began with
the simplest two-dimensional (2D) models, where
the null points form a straight line and the magnetic
field has an X-type structure. However, beginning
from the 1980s (Gorbachev et al. 1988; Gorbachev
and Somov 1989), the interest in three-dimensional
(3D) reconnection, where more diverse topological
structures are admissible, has increased rapidly (see
the reviews by Pontin (2011) and Somov (2008)).

If the magnetic field is strong (see, e.g., So-
mov 2013, Ch. 2), then, to a first approximation,
it may be considered outside the field sources, i.e.,
the currents, as a potential magnetic field. Varying
in time in accordance with the boundary conditions,
the magnetic field reconnects at the null points, i.e.,
a redistribution of magnetic fluxes occurs, which
changes the topological connectivity of the field lines.
The structure of the potential field in the vicinity of a
3D null point plays a crucial role and can be pictorially
presented as the “collision” of two oppositely directed
magnetic fluxes followed by their spreading in the
“equatorial’ plane. Such spreading (“fan”) can be
both axisymmetric (which is called “the proper radial
null” in the terminology of Parnell et al. (1996)) and
nonaxisymmetric (which is called accordingly “the
improper radial null”).

It was implicitly assumed in most of the previ-
ously published works that the axisymmetric fan-type
structure (proper radial null) was the most typical
case of a 3D null point and it could serve as a good ini-
tial approximation in 3D reconnection problems. On
the other hand, numerical simulations of magnetic
fields whose initial structures were significantly non-
axisymmetric (improper radial nulls) were undertaken
in several papers devoted to the discussion of “typi-
cal” 3D reconnection (Al-Hachami and Pontin 2010;
Galsgaard and Pontin 2011; Pontin et al. 2011). Un-
fortunately, it remained unclear how important such
structures are from a statistical point of view, in other
words, how often they appear in a random magnetic
field. The goal of this paper is to carefully calculate the
corresponding probabilities. Thus, it will be possible
to formulate well-founded criteria for choosing the
initial magnetic field structures in the studies of 3D
reconnection.

FORMULATION OF THE PROBLEM
AND ITS SOLUTION

Previous Studies

A universally accepted method of analyzing the
structure of the magnetic field B in the vicinity of
a null point is its Taylor expansion in a Cartesian

coordinate system x = (x1, x2, x3) with the origin at
the null point:

Bi =
3∑

j=1

Mijxj + . . . ,

where Mij =
∂Bi

∂xj

∣∣∣∣
x=0

(1)

(Gorbachev et al. 1988; Parnell et al. 1996; Somov
2008). Since the magnetic field satisfies the Maxwell
equations, the elements of the matrix M are not in-
dependent. Generally (in the presence of electric cur-
rents), this matrix can be reduced to four independent
parameters (see Eq. (14) in Parnell et al. (1996)).

It is quite obvious that the greater the number of
employed (free) parameters and the domain of their
admissible values, the higher the probability of oc-
currence of the corresponding field structures. How-
ever, it is very difficult to prove this assumption using
Eq. (1), because the elements of the matrix M are
related to one another and it is not clear how their
joint probability distributions should be chosen in
parameterizing a random magnetic field.

One way to circumvent this difficulty is to use
an explicit solution (for example, in terms of spheri-
cal functions), because the corresponding expansion
coefficients can be chosen as independent random
variables. Here, this procedure will be implemented
for a potential magnetic field (without electric cur-
rents within the neighborhood of the null point under
consideration). A similar analysis for a nonpoten-
tial magnetic field involves much more cumbersome
mathematics and is beyond the scope of this paper.

Initial Equations

We will consider the random realizations of a
potential magnetic field

B = −gradψ, (2)

where the potential ψ satisfies the Laplace equation

Δψ = 0. (3)

Assuming that the null point is located at the origin
of a spherical coordinate system (r, θ, ϕ), the solution
of Eq. (3) can be written in a standard way as

ψ(r, θ, ϕ) =
∞∑

j=0

j∑

m=0

rjψjm(θ, ϕ), (4)

where

ψjm(θ, ϕ)

= Pm
j (cos θ)

[
ajm cos(mϕ) + bjm sin(mϕ)

]
(5)
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are the spherical functions, and Pm
j are the adjoint

Legendre polynomials. The terms with negative pow-
ers of r are not written out here, because we are
interested in the solutions that do not become infinite
at zero. In addition, to avoid considering infinite
sums, we will assume that Eq. (4) is cut off at some
sufficiently large value of j, i.e., it contains only a finite
number of terms N . In other words, N is the dimen-
sionality of the space of coefficients ajm and bjm.

If the above coefficients are specified by random
numbers, then we get some random realization of the
magnetic field B. The question of how to choose
the adequate probability distributions for each coeffi-
cient requires a separate consideration. However, we
will emphasize that most of our conclusions will be
based only on the dimensionality of various subsets
of coefficients ajm and bjm related to various types of
reconnection. Thus, the corresponding results must
be valid for any nonsingular probability distribution.

Let us analyze the terms of potential (4) with vari-
ous powers of r. At j = 0 we have

ψ(0) = a00 = const, (6)

which obviously does not affect any physical results.
Next, at j = 1 the potential is

ψ(1) = r
{
a10 cos θ

− (1 − cos2θ)1/2[a11 cos ϕ + b11 sin ϕ]
}

, (7)

and its substitution into (2) leads to

B(1)
r = −

{
a10 cos θ

− (1 − cos2θ)1/2[a11 cos ϕ + b11 sin ϕ]
}

. (8)

Since r = 0 is a null point (i.e., all magnetic field
components, including Br, disappear), we arrive at
the condition

a10 = a11 = b11 = 0. (9)

In view of these three constraints, a null point of any
type is realized in the subspace of random coefficients
ajm and bjm with dimensionality N − 3 or less.

At j = 2 the potential is written as

ψ(2) = r2

{
1
2
(3cos2θ − 1)a20

− 3 sin θ cos θ
[
a21 cos ϕ + b21 sin ϕ

]

+ 3sin2θ
[
a22 cos 2ϕ + b22 sin 2ϕ

]}
. (10)

Since we are interested in the structure of the mag-
netic field lines and not in its absolute values, it is con-
venient to introduce normalized coefficients denoted
by a single subscript:

am = a2m/a20, bm = b2m/a20, m = 1, 2. (11)

The field components will then be

B(2)
r = −2a20r

{
1
2
(3cos2θ − 1)

− 3
2

sin 2θ
[
a1 cos ϕ + b1 sinϕ

]

+ 3sin2θ
[
a2 cos 2ϕ + b2 sin 2ϕ

]}
, (12a)

B
(2)
θ = −3a20r

{
sin 2θ

[
− 1

2
+ a2 cos 2ϕ

+ b2 sin 2ϕ
]

− cos 2θ
[
a1 cos ϕ + b1 sinϕ

]}
, (12b)

B(2)
ϕ = −3a20r

{
2 sin θ

[
− a2 sin 2ϕ

+ b2 cos 2ϕ
]

+ cos θ
[
a1 sin ϕ − b1 cos ϕ

]}
. (12c)

Asymptotic Directions

Following the standard technique, we will write
the equation for a magnetic field line as

dr

Br/(a20r)
=

rdθ

Bθ/(a20r)
=

r sin θdϕ

Bϕ/(a20r)
. (13)

Since the quantities B
(2)
r /(a20r), B

(2)
θ /(a20r), and

B
(2)
ϕ /(a20r) do not depend on r, passing to the limit

r → 0 we obtain the conditions specifying the field
lines that pass directly through the null point:

B
(2)
θ /(a20r) = 0, B(2)

ϕ /(a20r) = 0. (14)

Substituting (12b) and (12c) into (14) gives the
following system of algebraic equations:

sin 2θ∗
[
−1

2
+ a2 cos 2ϕ∗ + b2 sin 2ϕ∗

]

− cos 2θ∗
[
a1 cos ϕ∗ + b1 sin ϕ∗] = 0, (15a)

2 sin θ∗
[
− a2 sin 2ϕ∗ + b2 cos 2ϕ∗]

+ cos θ∗
[
a1 sin ϕ∗ − b1 cos ϕ∗] = 0, (15b)

where θ∗ and ϕ∗ are the angles at which the corre-
sponding field lines enter or leave the null point.

It is easy to check that the system of equa-
tions (15a) and (15b) is invariant with respect to the
transformation: θ∗ → π − θ∗, ϕ∗ → ϕ∗ + π. Conse-
quently, the magnetic field lines passing through the
null point always appear as sets of oppositely directed
pairs. Thus, the geometric structures with an odd
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Fig. 1. Scheme of several hypothetical null points, including both the axisymmetric fan structure (left) and the structures with
a finite number of asymptotic directions n (right).

number of tails (for example, n = 5 or 7 in Fig. 1)
cannot exist at all.

Let us analyze some particular solutions of
Eqs. (15a) and (15b). The simplest case obviously
takes place at a1 = b1 = a2 = b2 = 0 or, in the origi-
nal notation,

a2m = 0, b2m = 0, where m = 1, 2. (16)

Our equations are then reduced to the simple condi-
tion

sin 2θ∗ = 0, (17)

which has a solution of two types:

θ∗ = 0, π, (18a)

θ∗ = π/2 at any ϕ∗. (18b)

This solution is a combination of the polar axis and
disk in the equatorial plane, i.e., precisely the axisym-
metric fan structure depicted in the left part of Fig. 1.
It was called the “proper radial null” by Parnell et al.
(1996), and this term was subsequently used by other
authors.

In view of the four additional constraints (16), at
first glance it seems that such a structure will be
realized in the subspace of coefficients ajm and bjm

with dimensionality N − 3 − 4 = N − 7. However,
recall that these constraints were formulated for the
peculiar situation where the fan axis was oriented
along the polar axis of the spherical coordinate sys-
tem. In general, this structure can be rotated in space
through two Euler angles, which actually removes
two constraints. Thus, the dimensionality of the
corresponding subset of coefficients must be N − 7 +
2 = N − 5.

Returning to the general case of arbitrary coeffi-
cients a1, b1, a2, and b2, it is natural to expect that the
system of two algebraic equations (15a) and (15b) for
the two unknown variables θ∗ and ϕ∗ must have some

finite number of solutions, i.e., the number of asymp-
totic tails in Fig. 1 must be finite. Moreover, as follows
from a more careful analysis, this number is always
equal to six, if some special subset of coefficients ai

and bi with lower dimensionality is disregarded.
To prove this assertion, it is convenient to reduce

the system of equations (15a) and (15b) to one equa-
tion for the azimuthal angle ϕ∗:

F (η(ϕ∗), ζ(ϕ∗)) = 0, (19)

where η = cos ϕ∗, ζ = sin ϕ∗, and

F (η, ζ) = 4
[
2a2ηζ − b2(η2 − ζ2)

]
(a1ζ − b1η)

×
[
− 1

2
+ a2(η2 − ζ2) + 2b2ηζ

]

−
{

4
[
2a2ηζ − b2(η2 − ζ2)

]2 − (a1ζ − b1η)2
}

× (a1η + b1ζ). (20)

Once the roots ϕ∗ have been found, the corresponding
values of the polar angle θ∗ can be easily restored from
one of Eqs. (15a) or (15b).

Since Eq. (20) is a very complex polynomial ex-
pression, the simplest method of solving our problem
is to perform statistical simulations, i.e., to generate a
sufficiently large sequence of random coefficients a1,
a2, b1, and b2 (for example, in the form of a Gaussian
distribution with zero mean) and then to analyze the
behavior of the function F (η(ϕ∗), ζ(ϕ∗)) graphically
(Fig. 2). As a result, quite an unexpected property
is established: the plot of F always intersects the
horizontal axis exactly at three points in the interval
ϕ∗ ∈ [0, π] (and, consequently, at six points in the
interval ϕ∗ ∈ [0, 2π]). A subsequent more careful
analysis allowed us to obtain a rigorous mathematical
proof of this fact. However, in view of the cumbersome
formulas, we prefer not to discuss it here but to ap-
peal just to the results of our statistical simulations.
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Fig. 2. Examples of the function F (η(ϕ∗), ζ(ϕ∗)) in the interval ϕ∗ ∈ [0, π] at random values of the coefficients a1, a2, b1,
and b2.

Furthermore, it can be shown that six solutions of
Eqs. (15a) and (15b) geometrically correspond to six
tails mutually orthogonal to one another.

Thus, we established that the generic 3D null
point in the potential field approximation has a six-
tailed structure, i.e., it possesses six asymptotic di-
rections of the magnetic field. Such a null point is
typical, because it is realized in the subset of coef-
ficients of a random field with dimensionality N −
3, i.e., almost everywhere where the null point can
emerge according to the constraints (9). All the
remaining structures (in particular, the axisymmetric
fan as well as more exotic structures mentioned by
Zhugzhda (1966)) must emerge with much lower
probabilities, because they are realized in the subsets
of coefficients with lower dimensionality. We will
emphasize that all these conclusions are based only
on the reasoning about the dimensionality of the cor-
responding subspaces and, therefore, they are valid
for any nonsingular probability distribution of the
random-field coefficients. The specific distribution
that we used in our simulations presented in Fig. 2
does not affect the final result.

The Structure of Magnetic Field Lines

Consider the overall pattern of magnetic field lines
in the vicinity of the “typical” null point found above.
The simplest (but without any loss of generality) case
of a1 = b1 = b2 = 0 and a2 �= 0 corresponds to a six-
tailed structure oriented along the axes of the Carte-
sian coordinate system. In this case, Eqs. (15a) and

(15b) for the asymptotic directions take a simple form:

sin 2θ∗
[
− 1

2
+ a2 cos 2ϕ∗

]
= 0, (21a)

a2 sin θ∗ sin 2ϕ∗ = 0, (21b)

and their solutions are θ∗ = 0, π, and π/2, ϕ∗ =
0, π/2, π, and 3π/2, corresponding to six semiaxes
of the coordinate system.

Omitting the nonessential common factor a20 in
Eqs. (12a)–(12c), we obtain the following expres-
sions for the field components:

Br = −2r
[
1
2
(3cos2θ − 1)

+ 3a2sin2θ cos 2ϕ
]
, (22a)

Bθ = −3r sin 2θ
[
− 1

2
+ a2 cos 2ϕ

]
, (22b)

Bϕ = 6a2r sin θ sin 2ϕ. (22c)

As would be expected, Bθ and Bϕ are equal to zero on
the coordinate axes, while Br has opposite signs on
different sides from the center.

After the substitution of (22a)–(22c) into Eq. (13)
and integration, we obtain the expressions for mag-
netic field lines in three coordinate planes. For exam-
ple, in the xy plane (i.e., θ = π/2) the final result is

r = C
(∣∣ sin ϕ

∣∣1−1/(6a2)∣∣ cos ϕ
∣∣1+1/(6a2)

)−1/2
, (23)
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Fig. 3. Scheme of magnetic field lines in the vicinity of a six-tailed structure. The solid and dashed curves indicate the field
lines in the horizontal xy and vertical yz planes, respectively. The field lines in the vertical xz plane, perpendicular to the plane
of the figure, are not shown here; they have the same hyperbolic structure as that in the yz-plane.

where C is an arbitrary constant. The behavior of
this function has three qualitatively different regimes,
depending on the coefficient a2:

(a) If a2 < −1/6 or a2 > 1/6, then r → ∞ both
for ϕ → 0 and for ϕ → π/2. This corresponds to a
hyperbolic magnetic field line.

(b) If −1/6 < a2 < 0, then r → ∞ for ϕ → 0 and
r → 0 for ϕ → π/2. This corresponds to a parabolic
field line with the parabola axis oriented in the x di-
rection.

(c) If 0 < a2 < 1/6, then r → 0 for ϕ → 0 and r →
∞ for ϕ → π/2. This is also a parabolic field line but
with the parabola axis oriented in the y direction.

As regards the magnetic field lines in the two other
coordinate planes, they have a hyperbolic structure in
cases (b) and (c).

The situation for case (c) is illustrated in Fig. 3. It
can be shown that the patterns of magnetic field lines
for all the remaining cases can be obtained just by the
permutation of coordinate axes. Using the terminol-
ogy adopted in the theory of differential equations, it
can be said that the field lines have a node structure
in one of the coordinate planes and a saddle structure
in the two other planes.

We will emphasize that the pattern of field lines in
the vicinity of a 3D null point in the form of a structure
with six asymptotic directions is not new per se: it
is known from earlier works (see, for example, Fig. 1
in Gorbachev et al. (1988) or Fig. 5 in Parnell et al.
(1996)), where such a structure was called the “im-
proper radial null.” However, strangely enough, it
has not been realized until now that precisely this

structure plays a dominant role in 3D magnetic re-
connection.

In addition, as follows from an analysis of the
literature, many observers were misled by the fact that
the term “improper” used by theoreticians actually
referred to the situation that is most typical, i.e., it oc-
curs with an overwhelming probability. Therefore, we
deemed necessary to introduce a new term for it that
reflects its topological nature, a six-tailed structure.

Of course, the purely geometrical properties of this
structure can also be studied in Cartesian coordinates
using the Taylor expansion (1) (see, for example,
Sec. III in Parnell et al. (1996)). The null points
of a potential magnetic field were also considered in
Cartesian coordinates in connection with the topo-
logical trigger effect (see Fig. 9 in Somov (2008)).
Meanwhile, our approach based on the expansion in
terms of spherical functions provides an additional
opportunity, namely, to perform an accurate statisti-
cal parametrization of a random magnetic field and,
thus, to calculate the corresponding probabilities of
occurrence of various topological structures of 3D
reconnection at the null point of the random field.

Pictorial Explanation and Discussion of Our Results

In fact, even from simple considerations it is easy
to understand qualitatively why the probability of oc-
currence of the axisymmetric fan (on the left in Fig. 1)
must be strongly suppressed compared to the six-
tailed structure. Consider the behavior of the mag-
netic field lines in the xy plane (Fig. 3). Suppose that
the parameter a2 initially corresponded to case (c), as

ASTRONOMY LETTERS Vol. 42 No. 11 2016
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Fig. 4. The axisymmetric fan as an intermediate case between the two six-tailed structures. Only the field lines in the xy plane
are displayed here; the field lines in the xz and yz planes always remain of the same saddle type.

shown in the left part of Fig. 4. Next, let a2 gradually
decrease and become negative, which corresponds
to case (b). Geometrically, this means a gradual
decrease in the curvature of the field lines such that
at some instant they become straight and then bent
in a different direction, i.e., the entire pattern remains
parabolic but turns abruptly through π/2 (Fig. 4, on
the right). The boundary between these two cases
at a2 = 0 precisely corresponds to the axisymmetric
fan-type structure shown at the center of the figure.

In other words, there exist infinitely many six-
tailed structures of types (b) and (c) but only one
intermediate fan-type configuration. That is why the
probability of its realization must be extremely low.
Note that a similar consideration for a magnetic field
parameterized by a different method in Cartesian co-
ordinates was presented in Fig. 2 in Priest and Titov
(1996).

Returning to Fig. 3, we will note that the six
asymptotic directions of the magnetic field differ
greatly from one another in their properties. More
specifically, four of them (y, −y, z, and −z) may be
called “dominant,” because most of the field lines tend
to approach one of these directions as one recedes
from the null point. At the same time, the two other
asymptotic directions (x and −x) should be called
“recessive,” because most of the field lines recede
from them. Thus, the recessive directions will be
“lost” when observed from a great distance, and the
entire pattern will look like a classical 2D X-point.
This fact can explain why the 2D magnetic recon-
nection models work quite well in many cases. For
example, Masson et al. (2009) numerically simulated
the solar flare that was presumably triggered by only
one null point in the corona and established that the
corresponding 3D reconnection actually occurs in
quasi-2D slabs.

To avoid misunderstanding, note that the presence
of a 3D null point is not always a sufficient condition
for the development of reconnection, because this also
depends on the efficiency of the accompanying MHD
processes or, more precisely, on the presence of an
electric field at this point (see Ch. 1 in the book by

Somov (2013)). For example, situations where no
appreciable energy release in any form was detected
in the solar corona in the presence of a well-defined
null point were observed (Filippov 1999). Barnes
(2007) comprehensively investigated the relationship
between solar eruptive events and the presence of a
magnetic null point in the corona using more than
1800 vector magnetograms. Each of them was sub-
jected to a detailed topological analysis based on
the method of “magnetic charges” (Gorbachev et al.
1988). It turned out that most events occurred in ac-
tive regions for which no coronal null points (CNPs)
of the magnetic field were found. However, in ac-
tive regions with CNPs eruptive events occur much
more frequently than in active regions where CNPs
were absent or not found. More specifically, 73% of
all eruptive flares took place in active regions with
CNPs. This conclusion is consistent with the results
of Ugarte-Urra et al. (2007). The 2D reconnection
models often work quite well for explaining the obser-
vations, laboratory and numerical simulations of solar
flares (see, e.g., Gonzalez and Parker 2016; Frank
et al. 2011).

CONCLUSIONS

Bearing in mind the applications to astrophysical
turbulent plasmas with strong magnetic fields, in
particular, to magnetic reconnection in solar flares,
we calculated the probability of occurrence of various
types of 3D null points in a random magnetic field and
studied the structure of the field lines in their vicinity.
As a result, we established the following:

(1) The most probable case of the 3D null point
responsible for triggering magnetic reconnection is
the six-tailed magnetic field structure, called the im-
proper radial null in the terminology of Parnell et al.
(1996). All the remaining types of 3D null points, in
particular, the axisymmetric fan (or the proper radial
null) are realized with much lower probabilities, as
schematically summarized in Fig. 1.

(2) At sufficiently large distances a typical six-
tailed structure is reduced to a quasi-2D structure of
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the well-known X-type. This explains why the 2D
models often are a good approximation for the de-
scription of magnetic reconnection in complex mag-
netic field configurations. Large-scale manifestations
of reconnection in powerful solar flares can be com-
prehensively studied using modern instruments with
a moderate spatial resolution onboard satellites and
spacecraft. The 2D reconnection models satisfacto-
rily explain the observations, laboratory and numeri-
cal simulations of solar flares.

(3) Based on our results, we can assume that
the peculiar 3D magnetic reconnection effects must
manifest themselves primarily on sufficiently small
scales (for example, in solar micro- and nanoflares),
whose observation requires instruments with a very
high spatial resolution.
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