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Abstract. Several well-known mathematical models of concentration fields in the soil (both at
the single aggregate and the profile scales) are considered. It is shown that the respective
boundary value problems for steady-state profiles belong to the class of ill-posed problems,
since their solution does not exist. It occurs because a certain set of processes (for example,
diffusion transport + first-order kinetic of the consumption) restricts possible boundary
conditions, which, therefore, can no longer be arbitrary. Ill-posed inverse problems are also
briefly described as well as one ill-conditioned inverse problem of parameters identification for
mathematical model of the soil organic matter concentration profile. Exact solution for this
model is the sum of two exponents. For a certain input data it was shown that this problem
belongs to the class of ill-conditioned, since a small bias in the input data causes a significantly
larger error in the solution (i.e. in calculated parameters).

1. Introduction

Methods of mathematical processing of the experimental results and mathematical modeling in
ecology and soil science are currently used very widely and continue to develop [1-4]. In addition, the
basic mathematical tasks in soil science are similar (or even identical) to the tasks of mathematical
physics.

It is well known that the problems of mathematical physics can be divided into forward and
inverse. Tasks which start with the causes and then calculate the effects represent the forward tasks.
The inverse problems start from observed effects and then calculate causes not yet known [5]. For
example, the soil properties and the intensity of organic matter input are the causes for the formation
of soil organic matter (hereinafter — SOM) concentration profile. Here calculation of such a profile
based on known soil properties and litter input represents a forward problem, whereas a calculation of
soil properties or litter input, based on the profile of organic matter represents an inverse problem
(hereinafter — IP). Besides the concept of forward and IP, classification of problems as well-posed and
ill-posed has been introduced.
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If sets of valid input data F' and possible solutions V are given, the computational problem of
determining v € V according to f € F from the equation Av =f (where A — a continuous operator
acting from the solution space to the input data space) is considered as well-posed if: (i) its solution v
exists; (ii) for each f there is a unique v; (iii) solution continuously depends on f'i.e. solution is stable
(small changes in input data f correspond to small variations of the resulting v). In this case, instability
means that the solution is not a continuous function of data, i.e. a small perturbation of the data
corresponds to a large perturbation of the solution [5].

A problem is ill-posed (hereinafter — IPoP), if one of the above conditions (i)-(iii) is not satisfied
[5]. However, IPoP should not be considered as something wrong, as a manifestation of mathematical
unprofessionalism. This is just a term for a special class of problems. Moreover, the ill-posed
formulation of the problem makes it often possible to realize some important properties of the object
under study. IPoP can arise among both forward and inverse problems. In addition, there is a large
class of ill-conditioned problems (hereinafter — ICoP), which, although theoretically are well-posed, in
fact, do not differ from IPoP (from the point of view of practical calculations).

Let us assume that the problem is correct (its solution exists, the solution is unique and stable to the
uncertainty in the input data). Theoretically, a problem has stability if a sufficiently small error in
input data induces a small error in the solution. However, in practice, the errors of the input data
cannot be made arbitrarily small: their accuracy is limited. The sensitivity of solution to small errors in
the input data is called the conditionality of a computational problem. A problem is called ill-
conditioned if small input errors (8f) cause strong changes in the solution (dv). The value a in the
inequality dv < a-0f is called condition number (here 6v and Jf are relative errors). For ICoP a >> 1.
However, an exact answer to the question about the value a, at which a problem should be considered
as ICoP, essentially depends on the solution accuracy requirements and on the level of the accuracy
provided for the source data [6]. In addition, for non-linear models, we should expect a # const,
therefore, the problem can be well-conditioned with some values of df, but become ICoP with others
(usually high) df. Note that the problem that is ill-posed due to instability, is an extreme case of ICoP
(with a = o). However, in practice, there is no difference between such ill-posed problem and an
ICoP, which is formally well-posed, but having so high a # oo that (for a given Jf) dv turns out to be
completely unsatisfactory. The minimum possible values of &f are limited both by the accuracy of
measurements (available at a given level of technological development) and by the minimum error of
the model (available at a given level of the scientific progress).

In this paper, we consider some examples of both ICoP and IPoP that arose in soil science practice.

2. Failed condition for the solution existence
Apparently, in literature more attention was paid to inverse IPoP — see, for example, [5-9], but in soil
science forward IPoP also occurs. In this section, some examples of both types are considered.

2.1. Steady-state profile of SOM

2.1.1. Diffusion-biodestruction steady-state profile. First of all we give the example of IPoP when
condition of the solution existence is not satisfied: a model of the SOM concentration profile. In [10],
a following stationary model, based only on the assumption of the diffusion mechanism of organic
matter distribution combined with first-order kinetics biodestruction, is presented among others:

&f
D5 =K, Q)

where x is a vertical coordinate (m); f is SOM concentration (kg m?); D is the phenomenological
coefficient of SOM diffusion (m? year!); k is a reaction rate constant (year'). Boundary conditions
(hereinafter — BoC) were chosen as follows: firstly, a flux of SOM in the form of humified litter (L,
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kg m? year') on the soil surface; and, secondly, constant concentration semi-infinite condition (when
X — 0):

_D%Xo —L,  f(»)=C, )

(another condition — f{h) = C, with a large but finite 4 — is also mentioned in [10]; however, since the
original solution is given only for equations (2), we will consider the boundary value problem with
these BoC). The “solution” to this problem is suggested in the form

f= C(x) _Coa
where
L
C,=C + exp(—x\/k/D |,
(x) (kD) ( / )
So

= exp (D)

However, it is obvious that such function is not a solution, because

L
k.

f(oo): exp(—oo):O,

g

whereas according to equations (2) f{o) = C,.

2.1.2. Non-existence of problem (1)-(2) solution. One can assume that the mistake in the solution
mentioned above could be easily fixed. However, the origin of the mistake is much deeper: the
solution of problem (1)-(2) does not exist (so this problem belongs to the class IPoP). It could be
shown as follows. One could write well established (see, for example, [11]) general solution of
equation (1) in this form:

f(x)=C,(exp(x2)+exp(-x4))+C, (exp(x1)—exp(-x4)), 3)
where
A=4/(k/D),

Ci, C, — arbitrary constants. This solution can be rewritten as:

F(x)=(C,+C,)exp(x2)+(C,—C, )exp(—x4),
s0 a bounded solution for x—w exists only when C; = -C. Consequently,

f(x)=-2C, exp(-x4),

but if x—>o0 f(x) cannot have arbitrary value C,, and inevitably must be zero:

f(x) =-2C, exp(—oo . /1) =0



Soil Physics IOP Publishing
IOP Conf. Series: Earth and Environmental Science 368 (2019) 012011  doi:10.1088/1755-1315/368/1/012011

2.1.3. Steady-state profile of SOM with a root-associated carbon source. Example described above is
not unique. In soil science calculation of spatial concentration profiles is often an IPoP. Let us give
another example, which will be considered in general form. Smagin [10] developed the model (1)
assuming that root systems can serve as the source of SOM:

d’f
D o = kf—Rexp(—bx), 4
where the exponential term describes the intensity of the organic matter input from roots (distributed
vertically in accordance with the exponential law). BoC (2) were chosen again. This problem also
belongs to the IPoP class, since its solution does not exist. Indeed, according to [12], a general solution
of inhomogeneous linear equation (4) can be presented as the sum of its particular solution and its
general solution of the corresponding homogeneous equation. In this case equation (1) will be a
homogeneous equation needed and its general solution is equation (3). It is easy to check that function

u (x) = (R/(k - Db’ ))exp(—bx) ,

is a particular solution for equation (4). Therefore, its general solution is:
1 (%)= C (exp(x2) + exp(—x2)) + C, (exp(x2) — exp(—x2)) +(R/(k — Db ) Jexp(~-bx)

This again shows that when x—co the only possible boundary condition for function f(x) (i.e.
solution) is zero and equations (2) could not been satisfied with arbitrary value C,. It also means that
the solution of the problem (2), (4) for C, # 0 does not exist.

2.2. Oxygen concentration profile in a soil aggregate.
At the end of this section, we briefly mention the model of biogenic O, consumption inside a moist
spherical soil aggregate considered in [13]:

Bzi(rz d—Cjsz , 5)
r-dr dr

where C is O, concentration; r is distance from the center of the aggregate (0 < r <r,; r, corresponds
to the surface of the aggregate); complete formulation of the problem in [13] includes equation (5) and
the following BoC:

C(0)=0; C(rm):C , ©)
where C, > 0 is treated as the concentration of O, at the surface of the aggregate (and depends on the
depth of its location in the soil). The "solution" of the boundary value problem (5)-(6) is given by the
author in the form

C= %(exp(r/l) - exp(—ri))/(exp(rm/i) - exp(—rm/i))

r

But this function could not be a solution, since after applying L'Hopital’s rule it is easy to show that
C(0)= 2C0rmi/(exp(rmﬂ,) —exp(-7,4)) >0,

while according to equations (6) C(0) should be 0. In general, it can be proved that the solution of the
problem (5)-(6) does not exist: for equation (5) and BoC C(r.) = C, the value of C(0) is always
positive. Therefore, it is impossible to satisfy BoC C(0) =0 and the problem of solving equation (5)
with conditions (6) is [PoP. But, as mentioned above, this fact should not be considered as negative.
IPoP arises when the author relies on a set of assumptions and experimental facts: (a) inside the
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aggregate only diffusion transport occurs; (b) consumption of O, satisfies the first-order kinetics; (c)
in the center of aggregate the oxygen sensor reported zero concentration of O;... Occurrence of [PoP
(considering forward problem) indicates the need to carry out comprehensive analysis of all
assumptions and “facts” to find those that most likely contain uncertainties (they are not real). For
example, from the above items (a) - (c) the most reliable is (a). But the fact that the kinetics could
differ from the first order seems to be quite probable, and here it is necessary to investigate how the
change in the kinetics type (within acceptable limits) will affect the problem. Further, the fact that the
concentration of O in the center of the aggregate will be small (outside the sensitivity of the sensor),
but, nevertheless, not zero, in general seems very likely. Fortunately, a similar model was built by
Gontchar-Zaykin et al. [14]. They showed that a slight modification gives a well-posed problem:
instead of zero boundary condition, it is enough to claim the limitations: 0 < C(0) < C,. Thus, the
analysis of ill-posed problem leads to the possibility of a reasonable choice of further ways to study
the object by experiment: using more accurate sensors could show whether the O, concentration in the
center of the aggregate will differ from zero.

3. Failed condition of the solution uniqueness

Completely different reasons can lead to multiple (non-unique) solutions of a certain problem. In a
short manuscript we are not able to cover this topic comprehensively and just give a few typical
examples.

3.1. Cluster analysis

3.1.1. The multiple options of distance selection in classification of objects. In soil science in general
and in soil physics specifically cluster analysis is widely used for the classification of any objects [15,
16, 17, 18]. The cluster analysis is designed to classify observations (objects) into more or less
homogeneous groups. Its governing idea is to calculate a certain measure of similarity or dissimilarity
(for example, some distance) between each pair of objects. Low value of this distance indicates that
objects are similar or close to each other, while a large value indicates a lack of similarity. But
similarity estimates could be different [19]. Moreover, other approaches are based on a non-distance
concept. Specifically, an approach associated with fundamental concepts of the graph theory can be
used [20]. For example, let us consider only MATLAB environment which is not designed namely for
cluster analysis and operated only with the most common distances. Even in this case there are 10
different distance options (Chebychev distance, City Block metric, Hamming distance, Mahalanobis
distance, Minkowski metric, Euclidean and Standardized Euclidean distances efc.). Moreover, for
example, in the Minkowski metric parameter of the exponent (fixed number) must be set by user since
there is an indefinite number of possible exponents. Therefore, there is an indefinite number of options
for cluster analysis even if we use Minkowski metric only.

3.1.2. The multiple options of object grouping algorithms. The next problem is to obtain a hierarchical
grouping of objects, where the objects with the highest similarity coefficients are placed together.
Then the groups of objects are bound to form new groups (they are most closely connected too), and
this process continues until a complete classification of the objects is obtained. Unfortunately, at this
stage there are many methods for analyzing groups as well [19]. Moreover, along with the approach of
binding single objects into clusters, it is possible to divide the entire set of objects into clusters. The
difference in procedures may be caused by other reasons, for example, by choosing initial points of
clustering. This can be a random selection of one or several points as well as not random "typical"
point [20]. Considering only MATLAB environment again, there are 7 available algorithms (“nearest
neighbor”, “furthest neighbor”, “average linkage” efc.). It may seem that this situation is not unusual
because it is typical for almost any problems. For example, in the classic numerical analysis we have
many algorithms for integrating of differential equations (see, for example, [6, 12, 21, 22]). However,
this difference is fundamental. Various algorithms of the differential equations numerical integration
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give solutions with error less than a small value € comparing with the exact solution of a differential
equation. Therefore, all the algorithms give the same solution with an error that can be considered
arbitrarily small (within reasonable limits) while various algorithms of grouping in cluster analysis can
give completely different solutions.

3.1.3. Multi-optional choice of the classes’ number. Finally, one of the most important issues in
solving a cluster problem is the choice of the required number of clusters [23]. In the literature
hundreds (!) cluster analysis methods are described. Their diversity origins from the fact that the
identification of clusters in many ways is “art”. Many of researchers who use the techniques of this
analysis create a new method themselves [20]. For example, in MATLAB there are two fundamentally
different possibilities for this choice: "Finding the Natural Divisions in the Data Set" and "Specifying
Arbitrary Clusters". Each of them generates a set of variants of the clusters number (in the latter case
this number is just defined by user). Thus, at each stage of cluster analysis there is a variety of criteria
and/or algorithms, that results in the non-uniqueness of the solution of the whole classification task.

3.2. Non-uniqueness of the model parameter identification problem.

When one identifies parameters of mathematical models, some distance between model prediction and
experimental data is calculated [5, 19, 22, 24]. Since this distance is a function of the model
parameters, it is possible to solve the minimization problem: to find parameters for which the distance
reaches minimal value. With these values of parameters the model fits the experimental data in the
best way. Therefore, these values are considered as a solution of the parameters identifying problem.
Obviously, non-uniqueness arises here from one of the reasons that we have already mentioned
discussing non-uniqueness of cluster analysis. Indeed, in practice various distances are used: sum of
squared deviations between model predictions and experimental data [5] (it corresponds to the sum of
the absolute error squares); sum of weighted squared deviations [6, 22, 25]; sum of relative error
squares [26]; some other types of distances are also used [19, 27, 28]. However, in practice non-
uniqueness of solutions does not always lead to catastrophic consequences, which are usually
associated with IPoP. Although we get formally different solutions (different sets of numerical values
of parameters), but the values of the same parameter, (i) will not greatly differ from each other and (ii)
assuming the adequacy of the model, will be close to the true values for models supplied with
comprehensive set of experimental information. Therefore, in our opinion, the ill-posedness associated
with the solution instability is much more dangerous, as well as the poor conditionality of the formally
well-posed problem. Both occur when the model of the chosen level of complexity is not provided
with adequate experimental data (for example if the complexity of the model exceeds the experimental
data resolution).

4. Ill-conditionality of one inverse problem of the parameter identification
In soil science as well as in chemistry, biology, physics [20, 22, 29, 30] a problem of representing
experimental data as a sum of exponential functions (where coefficients have an important physical
meaning) [10, 31, 32] is common.

Many models of SOM decomposition use only two exponential functions (one for labile
components and one for recalcitrant):

£ (x)=C, exp(—kx)+C, exp(—k,x), (7)
where fis substrate (in % of the initial amount of substrate) at time x; C, and C; are initial amounts of
substrates (%, therefore Ci + C, = 100%) which are decomposed, respectively, with rate constants k;
and k, [33]. If one needs to determine C,, C», ki and k» from the residual substrate temporal dynamics,

the solution of the problem can be presented (using the designation introduced in section
"Introduction") as a vector

v =(C,,Cy,k,ky)
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The formula (7) is also a solution of the boundary value problem (2), (4) at C, = 0. In this case, the
coefficients in equation (7) depend on physical parameters D, k, L, R, b:

C =L/(kD)-bC,/k,, k=\k/D, C,=R/(k-Db), k=b (8

Shape of the SOM depth profile represents SOM accumulation, decomposition and mass transfer
processes rates. Therefore, it seems that it is theoretically possible to assess the intensity of these
processes from the data on the SOM profile distribution [10]. But can it be used in practice?

So let us consider the problem of the SOM profile distribution model parameters identifying, i.e.
we need to find the parameters Ci, ki, C, and k, based on known SOM concentrations at various depths
— fi{(x;) — and then calculate the values D, k, b and R:

D=L/(kC +kC,), k=Dkl, b=k, R=(k-Dk)C, 9)

As mentioned above, the problem of parameters identification is well studied and can be solved, for
example, using the least squares method. However, we face the most difficult problem: how to find
out that the correct results are obtained [34]. Apparently, the simplest solution is to test the properties
of IP and its solution algorithm by following method: (i) set some values D, k, b, R and L; (ii) then
calculate values fi(x;) by equation (7) for the depths x; where data on measured SOM concentration are
available; (iii) then slightly “bias” the calculated values by adding random noise Af; simulating the
uncertainty of experimental data; and finally (iv) solve IP with "biased" values (fi(x;) + Af;). The
solution is the set of parameters that we denote D*, k*, R* and b* (since their values are slightly
different from the original). Because we know the output values D, k, b and R exactly, the described
algorithm gives an estimate of the error which arises from a certain IP solution method at given level
of noise (if we perform the described algorithm N times). Therefore, it is possible to estimate the
influence of the uncertainty in the “experimental” data on the error of the result, i.e. assess the
conditionality of the problem or, in other words, its sensitivity to the source data uncertainty.
According to [35]

N=(N,+1)N,,

where N, — number of model parameters, N, — number of experimental points.

The idea underlying this sensitivity test is very simple and has a general character: to solve a
problem with several datasets and to check how sensitive the solution is to a variation in input data
[34]. Let us give a particular example. For calculations, we use values given in [10] for typical
chernozem: D = 0.000251 m? year', R = 0.227523 kg year' m~, k =0.00278 year', b =2.558 m"' and
L =0.008 kg year' m?. The values f; (given in table 1) were calculated according to the formula (7)
with coefficients calculated by equations (8).

Table 1. Dataset for equation (7) parameter’s identification.

SOM Depth (xim)
concen-
tration 0.04 0.07 0.11 0.18 022 033 040 0.51 0.62 0.84 1.02 1.21 1.43 161 1.79 2 25 3

fi 5451 5287 5100 4684 4464 38 3367 277 226 145 979 652 395 258 1.67 1.0 030 0.09
Ist(f+Af) 5535 5481 5254 4796 4158 397 31.68 25.1 232 129 929 634 360 235 168 1.0 030 0.10
20d (f4+Af) 5697 5255 5250 5058 4441 407 31.08 273 230 143 999 580 390 2.71 148 10 031 0.09

90n(fi+Af) 56.88 5194 5355 4545 4083 37.8 3375 276 21.1 146 937 696 396 258 1.71 10 031 0.09

These values (but with Gaussian noise Af;) were used as "pseudo-experimental data" (further —
PED). Several sets of PED for coefficient of variation CV = 5% are presented in table 1. For each
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level of CV, N=(4 + 1)-18 =90 sets of PED were generated; then 90 sets of Ci, ki, C, and k, were
calculated with help of MATLAB-function Isqcurvefit. Finally, 90 values of D, 90 values of k etc.
were obtained using equations (9) and CVs for these parameters were evaluated (see MATLAB-code
in Appendix).

The results are presented on a figure 1. Obviously, the identification problem is well-conditioned
for parameter b because its value of CV approximately corresponds to CV of source data f. But for all
other parameters we have typical ICoP. For example, if CV input data is 10% than CV for D will be
27.763-10'* = 636%, for R and k — about 1000% (k and R have almost identical curves of “CV — noise
level” dependence, so on a figure 1 they are overlapping). In other words, if the experimental
measurements (f) were obtained with an uncertainty of =10%, then the coefficients R and k obtained
by solution of IP for model (7)-(9) could differ from the real ones by a factor of 10.

10000 -

60 -
—_ CV(k) = 32.483x14%01 — C1=-92.276, k) =3.583793, C2=148.1194, ky=2.444
9 7=094 =7 CV(R)=34.76x"4606 50 | o €)= -144.148, k= 3.328017, Cp=199.9999, ky=2.558
~ 7 rr=0.94
= 1000 - A
> 27 —
3 Z~CV(D)=27.763x"% =40 -
g =091 £
= (e
2 £ 30 -
© 5
CV(b)=0.8351x1.0572 o 20 4
rr=0.97
10 A
1 : , 0 : ; : : '
7 10 100 0 05 1 15 2 25
CV of input data (%) Depth (m)
0.1
Figure 1. Conditionality for the parameter Figure 2. Ambiguity of  data
identification IP for the equation (7). approximation by equation (7).

The reason of ill-conditional character of parameter identification is briefly illustrated on figure 2.
As we see, the formula (7) with completely different values of the parameters (cf. C; = -92.276 and
C1 =-144.148) gives almost identical curves. Application of the method described here (conditional
analysis through perturbation sensitivity) for other tasks in biology and soil science see, for example,
in [36-38].

5. Basic principles of ill-posed problems solution
The question of the IP solution existence consists of two aspects. One is the physical existence of the
set of parameters generating the observed data; the second is the existence of a mathematical solution
of operator equation Av =f (see “Introduction”). A formal mathematical solution may not exist. To
understand it better, we note that the measured data f. always have some uncertainty (Af): f. = f+Af.
The question is whether it is possible to find a set of parameters v., that strictly generates a dataset f::
f. = Av.. The answer is that sometimes we cannot find such parameters, and it is easy to understand
why. Indeed, f. — are dataset f spoiled by noise. But this noise is not related to model parameters
because it could be produced by phenomena that were described by concentration field equations
given above. This is a reason why noise could not be predicted using the same operator equation, as
for idealized dataset. It means that we should not expect that we always can find physically realistic
model that exactly corresponds to observed dataset [5]. If a model fitted data perfectly, the following
equality would have place: llAv. - £l = 0.

But does it make sense to find such a model? It does not give meaningful results for noisy data
(data are always noisy). So we should think about certain approximate approach to inversion, based on
the search for a model that would fit observations within the given accuracy. Therefore, we are
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looking for the pseudosolution of inverse problem, i.e. about such a solution from the certain class of
models that fits the observed data in the best way. Pseudosolution of IP exists if there is such v. that

A
Av, - f[<A, (10)

where |I'll means a certain measurement of discrepancy between observed and predicted noisy data [5].
Different formulations of this measurement for variable types of v. and f. — vectors, functions, etc. —
see, for example, in [5, 34, 39, 40]). Based on a using measure one can choose A = A(Af) but strictly
speaking A ~ Af and often simple rule of thumb A = Afis used.

This simple idea (inequality (10)) — is a cornerstone of a regularization theory [5]. However, this
inequality provides an existence of the solution but not its uniqueness. Indeed, a variety of different v.
can satisfy this inequality: for some of them left-hand side would be much less than A, for others — just
slightly less, and for a certain value of a v. right- and left-hand sides would be strictly equal. The
correct solution of IPoP and ICoP can be obtained using a variety of regularization methods
(deterministic, statistical or descriptive regularization) — see, for example, [5, 7, 39, 41] and references
therein. The most commonly used method of regularization of ill-posed problems is Tikhonov
regularization ("ridge regression", "weight decay", "Tikhonov—Miller method", "Tikhonov—Phillips
regularization").

Tikhonov regularization is based on minimization of smoothing functional
A
Av, - f,

J(I[&ave’ﬂ;a"f): +§'Q(Ve),

where &> 0 — regularization parameter, chosen based on equation (10); llAv, - £l — functional of
discrepancy between predicted and observed data; Q — regularization term [40]. Both functionals
should be constructed in a way to be nonnegative. Let us describe briefly one of possible options of
Tikhonov regularization method (where Morozov principle for choosing the regularization parameter
[5, 42, 43] was used, but there are also different principles of this choice — see, for example [42-45]).
For an arbitrary &, corresponding value of v.(&) is calculated, providing a minimal value of J. If for
calculated ve(&,) it was obtained that IIAve(éo) - fll < A, next iteration (of functional minimization) is
carried out using the value & > &.. If it was obtained that llAv.(&,) - £ill > A, for the next iteration value
&1 < &, should be used. For the obtained new value v.(&;) next check of discrepancy between functional
and uncertainty level should be performed. If lAv.(&) - fll # A, using the procedure described above
new value of & should be chosen. Then a new level of ve(&;), minimizing functional, should be found,
and again discrepancy should be compared with uncertainty level until it would be found a value of &-
providing lIAve(&:) - fill = A. Corresponding value of ve(&:), providing a minimum of functional J,
would be considered as a regularized solution.

It is obvious, that the scheme described above can be directly used in a case when solution of
operator equation (v) is a function. But here we want to discuss a simpler example, when v is a vector
(containing a certain number of components). A problem of parameter identification for equation (7)
described in section 4 belongs to this class. In this case J is a function and not a functional. So instead
of functional minimization relatively simple problem of minimization of multi-argument function
should be considered. The term llAv, - £l is a sum of squared deviations between model predictions
and observed data. If there are any prior estimates of parameter values in equation (7), that could be
considered as components of vector v,, term Q =llv. - vill can be calculated as a sum of squared
deviations between components of a resulting vector and components of a priory [46]. If components
of the vector vary considerably, normalization is usually carried out in Q. For example, these squared
deviations are divided into squares of corresponding v, vector components [41]. A priori estimates are
usually based on data for systems similar in certain characteristics to systems of interest. For example
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if we need to find parameters for chernozem and parameters for luvisol are known, one can use them
for calculations.

6. Concluding remarks

Apparently Chudnovskii [47] was one of the first scientists who raised the question about ill-posed
inverse problem in soil science. He considered IPoP for soil thermal conductivity identification and
methods for solving of this problem. Some inverse IPoP of ecology and soil science were solved in
[48-51] etc. However, the ideology of IPoP in soil science unfortunately has not been developed
comprehensively, despite the fact that IPoP is common in this area. Some researchers treated IPoP as a
usual (i.e. in this case — well-posed) problem of numerical analysis. Of course, the results obtained
with this approach, are ambiguous, since their uncertainty is high.

In this brief article we were able to consider only a few issues related to ill-posed and ill-
conditioned problems, as well as only a very limited number of examples of such problems in the soil
science. Thus, we absolutely did not discuss the classical problems of experimental data processing.
But the number of IPoP is very high among them. Specifically, the problem of function differentiation
(if the function has an uncertainty), probability density estimation for empirical distributions, solving
some types of integral equations, efc. lead to IPoP. On the other hand, in recent years, the processes of
automatic collection and processing of experimental data in soil science and ecology have become
increasingly widespread [52-55]. So solving different ill-posed and ill-conditioned problems could
become much more important in the near future.

Finally, it should be noted that due to the limited volume of the paper we briefly considered the
most important topic: how to solve IPoP and ICoP. Fortunately, these methods are well developed in
the mathematical literature.

7. Appendix
function Isqcurvefit_test
% Experimental data
X=[0.040.07.110.180.22 .33040.510.620.841.021.211431.611.792253];
Y =[54.5152.87 51 46.84 44.64 38 33.67 27.722.6 1459.796.523.952.58 1.67 1 0.3 .09];
L =0.008; % [kg/year/m2] Litter flux
N =90; CV =0.05; % N - the number of repetitions in statistical modeling; CV= std / mean
xdata = X; xInY = xdata(end-4:end); options = optimset('MaxFunEvals', 8000, 'MaxIter', 2000);
fori=1:N
for j = 1:length(X) % We generate pseudo-experimental data with an error
ydata(j)=Y (j)*(1+CV*randn); if ydata(j)<0 ydata(j)=eps; end % The concentration can not be <0
end % forj ...
InY = log(ydata(end-4:end)); [P, S] = polyfit(xInY, InY, 1); % Starting guess
X0 = [-exp(P(2)), -P(1), exp(P(2)), -P(1)];
% The solution of the least squares problem:
[x, resnorm] = Isqcurvefit(@myfun, x0, xdata, ydata, [], [], options);
% The calculation of the coefficients by the formulas (9):
B(i) =x(4); d(1) =L/(x(1)*x(2) + x(3)*x (4)); K(1) =d®)*x(2)"2; 1(i) = x(3)*(K(1)-d ()*x(4)"2);
end % fori ...
% Average values and CV according to the results of statistical modeling:
b =mean(B), CV_b =std(B)/b, D =mean(d), CV_D = std(d)/D,
k =mean(K), CV_k =std(K)/ k, R =mean(r), CV_R =std (1)/R,
% The equation for approximation of experimental data:
function F = myfun(x, xdata)
F = x(1)*exp(-x(2)*xdata) + x(3)*exp(-x(4)*xdata);
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