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Abstract. The paper is a script of a lecture given at the ISAPP-Baikal summer school in
2018. The lecture gives an overview of the Tunka Advanced Instrument for cosmic rays and
Gamma Astronomy (TAIGA) facility including historical introduction, description of existing
and future setups, and outreach and open data activities.

1. Introduction
The nature of the most energetic phenomena of the Universe is still under cover of mystery.
They happen farer than tens to hundreds light years from the Earth (luckily for the life on the
planet) and we receive very fragmented information from such distances. For the time being
modern science has discovered all known messengers connected to the fundamental interactions:
photons (electromagnetism), cosmic rays (strong force), neutrinos (weak force) and gravitational
waves (gravitation). In this work we will discuss two of these messengers, namely the very- and
ultra-high energy cosmic and gamma rays, what kind of information they carry and see how they
can be detected, with a focus on the instrumentation installed in the Tunka Valley in Russia,
near the southern tip of Lake Baikal.

Cosmic rays are nuclei ranging from hydrogen to iron, which are produced and accelerated in
non-thermal processes in the Universe, e.g. in supernova explosions, ultra-relativistic jets from
compact objects, etc. [1, 2]. By measuring the flux and composition of them we can decipher
the processes happening in the accelerator. Particularly it was found that the transition from
galactic to extragalactic accelerators happens in the energy range between PeV and EeV, i.e.
the most energetic particles are accelerated outside of our Galaxy. Unfortunately, due to their
charge, cosmic rays are heavily declined in cosmic magnetic fields, what makes it impossible to
trace them back to the source. Modern detectors can resolve only large-scale anisotropies in their
direction [3, 4], which gives only hints regarding the sources. Contrary to charged cosmic rays,
neutral gamma rays of energies in the TeV-PeV region, which are generated in the processes
strongly connected to the production of cosmic rays, can directly point to the source of their
production [5].

The flux of these high-energetic particles falls steeply (with power of γ ≈ −2.7), reaching
one particle per square kilometer in thousand years, which at the moment makes their direct
detection impossible. Nevertheless they can be detected after collision with the Earth’s
atmosphere, which produces a particle cascade radiating at different wavelengths and expanding
to tens of square kilometers at the ground level. These cascades, which are called extensive
air showers, can be either detected by sparse ground arrays measuring secondary particles
and radiation, or by Cherenkov and fluorescence telescopes measuring light directly in the
atmosphere.

One of these arrays is installed in the Tunka Valley in Eastern Siberia near the southern
tip of Lake Baikal. The Tunka Advanced Instrument for cosmic rays and Gamma Astronomy
(TAIGA) [6] is a facility equipped with three detectors measuring secondary particles, air-
Cherenkov light and radio emission from air-showers created by primary cosmic rays with
energies in the PeV-EeV region as well as with telescopes and a timing array measuring air-
Cherenkov light created by gamma-ray air showers with energies of TeV-PeV. Combining the
sensitivity of all setups, TAIGA covers four orders of magnitude in the cosmic-ray energy
spectrum, overlapping satellite measurements at the lower energies and the transition from
galactic to extragalactic components at the highest ones. For the time being TAIGA covers an
area of 3 km2, and is planned to be extended and equipped with new detectors. One can see
the layout of the facility in Fig. 1, the particular setups will be described below.

Besides the main activity of TAIGA related to astroparticle physics, we will discuss the
cooperation with experiments located in the same area (Tunka) as well as the support of
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Figure 1. Layout of TAIGA observatory. Cosmic-ray setups are arranged in 25 clusters, solid
circles indicate cluster centers.

education, outreach and open data policies, and give a short historical introduction.

2. The history of the Tunka astrophysical facility
The predecessor of the astrophysical activity in the Tunka Valley was a test setup with four
PMTs QUASAR-370 (manufactured in the Soviet Union) on the ice of Lake Baikal. Later
this pathfinder array was relocated to the valley and formed the first engineering array Tunka-4.
After the ICRC conference in 1995, the Tunka experiment received support from Gianni Navarra
and Andrew Michael Hillas (see some historical photos in Fig. 2). This collaboration led
to the calibration of the forthcoming air-Cherenkov detector Tunka-13 [7] with the QUEST
experiment [8] co-located with EAS-TOP at LNGS. Later, the array was extended to Tunka-
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Figure 2. Left: A. M. Hillas (1932–2017) and G. Navarra (1945–2009) at the International
Cosmic Ray Conference in Rome in 1995. Right: Leonid Kuzmichev, the head of the Tunka
facility, is discussing the Tunka-133 project with the late Gianni Navarra (spokesperson of EAS-
TOP) in Torino.

25 [9] covering a square area of 0.1 km2 (see Fig. 3). In the beginning of the 2000s, the PMTs from
the former MACRO experiment were shipped to Tunka, and deployed in the optical modules of
the Tunka-133 detector covering 1 km2 [10], which was later extended to 3 km2 by installing six
satellite clusters.

In 2012 in the frame of Russian-German joint research activities, the construction of two
new detectors was started. The first one, a digital radio array called Tunka Radio Extension
(Tunka-Rex) [11], was deployed and commissioned in the same year. The second one, a
low-threshold non-imaging air-Cherenkov array originally called Tunka-HiSCORE (Hundred*i
Square-km Cosmic ORigin Explorer) and later TAIGA-HiSCORE (High-Sensitivity Cosmic
ORigin Explorer) was put into operation one year later, in 2013 [12]. The deployment of
the array has started the re-orientation of the Tunka facility towards gamma detection, and
the entire facility was later called TAIGA (Tunka Advanced Instrument for cosmic rays and
Gamma Astronomy).

In 2014-2015 in the frame of an agreement between MSU and KIT, the former KASCADE-
Grande scintillators were shipped to Tunka and formed the Tunka-Grande array [13], which
could deliver a full-day trigger for Tunka-Rex. At the same time the TAIGA-HiSCORE and
Tunka-Rex detectors have been several times extended. Tunka-Rex reached its current layout
in 2016.

Meanwhile the construction of a net of imaging atmospheric Cherenkov telescopes (IACT)
was granted by the Russian government, and the first telescope, TAIGA-IACT was deployed in
2017 [14, 15]. The second telescope of the net was constructed one year later, in 2018.

Since 2018 TAIGA is supporting open data policies in the frame of the German-Russian
Astroparticle Data Life Cycle (GRADLC) Consortium [16]. The part of software and data
measured by the TAIGA experiments (mostly by Tunka-Rex) are open, the next release is
planned to be done in cooperation with KCDC project [17]. Having unique experience in
constructing and maintaining cosmic-ray setups as well as in data analysis, the members of
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Figure 3. Development stages of the Tunka-133 air-Cherenkov detector. Left: Tunka-25
detector [9]. Black points are the original Tunka-13 detector [7] triggering Tunka-25. Right: First
stage of the Tunka-133 detector [10] of the year 2009. Six additional satellite clusters were
deployed in 2011.

TAIGA collaboration will share their knowledge in the future educational and outreach program
of GRADLC.

3. Cosmic-ray setups
The cosmic-ray setups of TAIGA are optimized for measurements in the energy range up to
a few EeV. The main features of this region are the first and second knee and the transition
from galactic to extragalactic accelerators of cosmic rays. The first feature has been studied by
measuring the absolute flux of the cosmic rays (see Fig. 4). Since Tunka-133 is operating in the
same energy range as KASCADE-Grande [19], it provides a cross-check of the position of second
knee using a model-independent reconstruction with air-Cherenkov techniques [20]. By using
the Tunka-Rex and LOPES radio extensions of Tunka-133 and KASCADE-Grande, respectively,
it was shown that both detectors feature a consistent energy scale [21], what confirmed the
determination of the spectral shape in this energy region.

While yielding consistent measurements of the cosmic-ray flux, the instruments from Tunka
facility could not add more clarity to the mass composition in the region of the transition
between galactic and extragalactic components of cosmic rays (energies of 0.1–1 EeV). While all
experiments disfavor heavy components, the fractions of lighter ones is still very uncertain (see
Fig. 5). Future analyses of Tunka-Rex data combined with particle measurements by Tunka-
Grande can decrease this uncertainty and shed light on the mass composition in the transition
region.

Besides solving primary astroparticle problems, cosmic-ray experiments in the Tunka Valley
are contributing to the development of the different techniques for air-shower detection. The
techniques of air-shower detection using a non-imaging air-Cherenkov array was significantly
improved and successfully applied to Tunka-133. The Tunka-Rex detector has developed and
tested many successful techniques of data analysis in the relatively young field of air-shower
detection with digital radio arrays [29]. Finally, with the recently commissioned Tunka-Grande
array the new technique of combined analysis of secondary particles (electrons and muons) and
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Figure 4. Top: The flux of cosmic rays in energy range from the knee to the galactic-
extragalactic transition reconstructed by Tunka-25 and Tunka-133 setups (zoomed in right
panel). Bottom: Cosmic ray spectrum extended with measurements of TAIGA-HiSCORE in
the low-energy region compared to balloon and satellite experiments and ground setups [18].

electromagnetic energy (Cherenkov light and radio) will be implemented and validated.
As the reader can seen in Fig. 1, the cosmic-ray detectors are arranged in 19 clusters over

1 km2 (dense core of the setup) and in 6 satellite clusters extending the area to 3 km2. The photo
of a single Tunka cluster from the dense area is shown in Fig. 6. The interiors of a Tunka-133
optical module and Tunka-Grande detectors are given in Fig. 7. All three setups are equipped
with similar data acquisition (DAQ) electronics which 12 bit-sampling at a rate of 200 MHz;
the data are collected in traces made of 1024 samples each. Each detecting element (Tunka-133
optical module, Tunka-Grande scintillators or Tunka-Rex antenna) has two channels, which are
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showers [22, 23, 24, 25], the model curves are from Refs. [26, 27, 28]. Right: mean mass of
primary cosmic rays reconstructed by Tunka-133

.

Figure 6. Photo of a single cosmic-ray cluster of the TAIGA facility. Lines mark the cable
connections between Tunka-Rex antennas and the DAQ of Tunka-133 and Tunka-Grande.

connected via coaxial cables to the local DAQ. Each cluster is triggered independently, the signals
from the active detectors are digitalized and sent to the central DAQ via optical fibers, these
optical cables also conduct time synchronization between clusters of about 5 ns. During clean
moonless nights the cosmic-ray setup operates in a triplex mode (air-Cherenkov light, particles
and radio) triggered by Tunka-133, the rest of the time it is triggered by Tunka-Grande recording
only particle and radio traces. It is worth noting, that each detector is analyzed with its own
unique analysis pipeline, what gives one an opportunity of independent cross-checks on the same
events. Examples of reconstruction from all three detectors are given in Fig. 8. The operation
period of TAIGA setups usually lasts from October to May, which is motivated by the short dark
time during summer time, maintenance activity and lack of lightning protection. The detailed
descriptions of each detector and its features are given below in this section.

Tunka-133, the pioneer of large-scale setups in the valley, consists of 165 optical modules
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Figure 7. Photo of the interior of a Tunka-133 optical module (left), on-ground (center) and
underground (right) Tunka-Grande scintillators.

(OM) grouped in 25 clusters. Each cluster consists of 7 OMs arranged in a hexagon (one OM is
placed in the center of the cluster), with a distance of about 80 m between the OMs. Each optical
module consists of a 20 cm PMT housed by a 50 cm metallic cylinder [30]. Due to its dense
layout Tunka-133 features an energy resolution of about 10%, a shower maximum resolution of
about 25 g/cm2 and a core resolution of about 10 m for high-energy events [22].

Tunka-Rex in its final stage consists of 57 antenna stations located in the dense core (3 per
cluster) and 6 satellite antenna stations (1 per cluster). Each Tunka-Rex antenna station consists
of two perpendicular active Short Aperiodic Loaded Loop Antennas (SALLA) [31], the signals
are pre-amplified with a Low Noise Amplifier (LNA). Signals from antenna arcs are transmitted
via 30 m coaxial cables to the analog filter-amplifier, which passfilters a frequency band of 30-
80 MHz, and later are digitalized by the local DAQ. One of the goals of the Tunka-Rex detector
was the development and test of techniques for the precise reconstruction of air-showers. This
goal was successfully achieved: analytical and Monte-Carlo-driven methods were developed and
semi-blindly cross-checked with Tunka-133 reconstruction [32, 33, 23]. Besides this, Tunka-Rex
actively uses machine learning techniques [34, 35] and develops methods for reconstruction of
inclined events [36]. Since Tunka-Rex features absolute energy calibration, it (and radio in
general) can serve as a good tool for cross-check of systematics in the energy spectrum [37, 38].

Tunka-Grande is a scintillator array consisting of 19 detectors located in the dense core of
the Tunka clusters. Each detector features 8 m2 surface and 5 m2 underground scintillators
constructed from the former KASCADE-Grande scintillators. Tunka-Grande was put into
operation in 2015. Calibration and adjustment are still in progress, however simulations and
preliminary analyses show promising results in the reconstruction of cosmic rays, especially in
combination with Tunka-133 and Tunka-Rex [39, 13].

4. Gamma-ray setups
TAIGA has a unique concept of gamma-ray detection, which combines both imaging and non-
imaging techniques. The wide-angle non-imaging air-Cherenkov array TAIGA-HiSCORE allows
one to reconstruct energy, arrival direction and position of the core covering zenith angles up
to 60◦. At the same time, a sparse net of Imaging Atmospheric Cherenkov Telescopes (IACT)
TAIGA-IACT operating in monoscopic mode provides high-efficiency gamma-hadron separation
using the geometry reconstruction from TAIGA-HiSCORE. This configuration allows TAIGA
to push the sensitivity to gamma rays towards highest energies (> 50 TeV) and makes it
complementary to existing imaging and non-imaging telescopes. Moreover, TAIGA is the most
Northern telescope (longitude of ≈ 52◦), which opens prospects of studying unexplored regions
of the TeV sky. One can see the concept of TAIGA and its sensitivity in Fig. 9.
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Figure 8. Example events reconstructed by the Tunka cosmic-ray detectors. Each detector
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from one of the clusters. Bottom: Footprint and lateral distribution function reconstructed by
Tunka-Grande.
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Muon detectors

Figure 9. Left: To cover very-high energy range it was suggested to apply a hybrid concept
for TAIGA. The wide-angle non-imaging array TAIGA-HiSCORE provides direction and core
reconstruction for a net of imaging telescopes TAIGA-IACT, which adds superior gamma-hadron
separation. This configuration allows one to cover a large area with telescopes operating in
monoscopic mode. To improve the quality of gamma-hadron separation and to increase the
sensitivity to diffuse gamma rays, an array of underground muon detectors TAIGA-Muon will
be constructed complementary to TAIGA-HiSCORE. Right: sensitivity of TAIGA compared to
other existing and planned gamma-ray experiments.

Figure 10. Left and center: TAIGA-HiSCORE design and photo of a deployed station.
Right: Skymap footprint of the ISS lidar detected by TAIGA-HiSCORE.

At the moment TAIGA-HiSCORE consists of about 60 stations distributed over an area of
0.6 km2. Each station is equipped with four 8-inch PMTs with a total light collection area of
0.5 m2 and a 0.6 sr field of view. The data acquisition of TAIGA-HiSCORE differs from the
one used in the Tunka cosmic-ray setups and are based on DRS boards with 2 GHz sampling
rate. The array operates with 20 Hz count rate, the trigger is based on the sum of the signals
from all four PMTs, which are digitalized locally and sent to the central DAQ via optic fibers.
Precise timing synchronization allows sub-ns reconstruction of air-shower arrival times, what is
important for the high angular resolution [40]. One can see the design of a TAIGA-HiSCORE
station in the left panel of Fig. 10.

The TAIGA-HiSCORE stations are slightly inclined in order to increase their sensitivity to
the Crab nebula. Monte Carlo studies cross-checked with measurements and the comparison
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Figure 11. Left and center: Design and photo of a TAIGA-IACT camera cluster, which contains
28 PMTs and an independent board generating the trigger. Right: Photo of the first TAIGA-
IACT telescope with 29 mirror segments installed.

Figure 12. Left: The design of the TAIGA-Muon counter. Right: Photo of a prototype TAIGA-
Muon counter.

against Tunka-133 have shown that the array features an angular resolution up to 0.1◦ and
an energy resolution of up to 10%. An additional cross-check has been done when TAIGA-
HiSCORE detected the lidar installed on the ISS [41]. The signal appeared in the array as a
plane-wave source moving with a velocity of 7 km/s. One can see its skymap footprint in the
right panel of Fig. 10.

The first TAIGA-IACT telescope was put into operation in 2017. Its mechanical part has
a HEGRA-like design [42] with a 4.3 m Davies-Cotton mirror consisting of 34 segments with
diameter 60 cm, the focal length of telescope is 4.75 m. The camera comprises 560 hexagonal-
shaped pixels with 19 mm XP1911 PMTs equipped with Winston cones. The PMTs had formerly
worked in the calorimeter of the ZEUS experiment in DESY, Hamburg, and have been delivered
by DESY and by Gent University. The field of view of a single pixel is 0.36◦, which results in
a full field of view of 9.72◦ [14]. One can see the design and photo of telescope and camera in
Fig. 11.

The pointing of the telescope is calibrated with a CCD-camera Prosilica GC1380, which is
installed at a distance of 1 m from the telescope optical axis on the dish near the mirrors. The
CCD camera observes the same sky as the camera of the telescope and allows on-fly correction
of the tracking. First measurements have shown that the precision of the tracking is better than
0.05◦ [43].

In the winter 2017-2018, TAIGA-IACT has performed about 25 h of measurements targeting
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Figure 13. Tunka-Rex SALLA installed at different sites. From left to right: Tien-Shan
High Mountain Cosmic Station (Kazakhstan), Pierre Auger Observatory (Argentina) [45], ISU
educational cluster (later Tunka-21cm), future TRASGO detector (Spain) [46].

the Crab nebula and Mkr421. The data is under analysis [44].
Complementary to optical instruments, there is TAIGA-Muon, a planned array of

underground muon detectors, aimed at improving gamma-hadron separation. The detector will
be based on 1 m2 cost-effective mass-produced scintillators based on polystyrene with thickness
10-20 mm equipped with 25-46 mm PMTs. One can see the design and prototype photo of
TAIGA-Muon in Fig. 12.

5. Open data and outreach
Modern astroparticle science develops with increasing complexity of instruments, methods,
software, data formats, etc. Combination of these factors led the scientific community to the
problem of data life cycle, which resides in data description, conservation, refining and reusing.
There are a number of different approaches to this problem, some of them are suggested in the
frame of the German-Russian Astroparticle Data Life Cycle Initiative (GRADLCI) [16]. As a
partner of this initiative, TAIGA provides a platform for testing algorithms of deep learning on
simulated and real data. The system of data storage and collaboration use is actively developing
and will be tested on TAIGA and KCDC [17] data with the future possibility of combined
analyses of measurements from several experiments. Last, but not least, the educational and
outreach programs will be developed and released on the astroparticle.online platform,
which will consist of different features, e.g. access to open astroparticle data and software,
online courses and tutorials.

As was mentioned above, the modern technique for detection of ultra-high energy air-
showers with digital radio arrays is actively developing at TAIGA in the frame of the Tunka-
Rex experiment. Tunka-Rex has shown the feasibility of its robust and cost-effective antenna
(SALLA) and shared technology and software with other cosmic-ray experiments. Particularly,
one more upgrade of the Pierre Auger Observatory was approved [45], in frame of which every
surface detector will be equipped with SALLA hardware. Tunka-Rex antennas and experience
have also been used for deployment of educational and engineering arrays in Spain [46] and
Kazakhstan (high-altitude array Almarac, an Almaty RAdio Cluster). One can see the photos
of these instruments in Fig. 13.

6. Cooperation with other experiments in the valley
There are a few neighboring instruments installed on the same site as TAIGA and sharing the
infrastructure and resources. The first is a telescope of the MASTER robotic network [47],
which performs wide-angle and fast follow-up observations of optical transients, particularly
gamma-ray bursts [48]. The second is the geophysical observatory consisting of low-frequency
MHz antennas, which belongs to the Institute of Solar-Terrestrial Physics and is mainly aimed



Baikal

IOP Conf. Series: Journal of Physics: Conf. Series 1263 (2019) 012006

IOP Publishing

doi:10.1088/1742-6596/1263/1/012006

13

at the study of the ionosphere. The latest one is the recently deployed engineering array Tunka-
21cm, a side project of the Tunka-Rex experiment, which aims at the development of methods
for detection of the cosmological signal from neutral hydrogen.

7. Conclusion
We have overviewed the instruments installed in the Tunka Valley at the TAIGA observatory
focused on very- and ultra-high energy cosmic rays and gamma radiation. A comprehensive
description of every detector is given as well as their performance and resolution. Let us
summarize the main achievements of the observatory:

• Precise study of the cosmic-ray flux in the energy region of 1014.5–1018.5 eV, studying the
knees of the spectrum, providing a cross-check with KASCADE-Grande results.

• Study the region of the transition from galactic to extragalactic accelerators with different
techniques (air-Cherenkov, radio).

• Developing and improving techniques for the measurement of ultra-high energy air-showers
with non-imaging arrays using air-Cherenkov, radio and scintillator techniques.

Since the observatory develops towards very-high energy gamma astronomy, the plan for the
near future (before the end of 2019) is the deployment of about 120 HiSCORE detectors, 3
IACTs and 250 m2 of TAIGA-Muon scintillators. This pilot array will cover about 1 km2. The
full-scale TAIGA observatory is intended to consist of about 1000 HISCORE detectors and 15
IACTs on an area of 10 km2 [6]. Its unique layout and the hybrid techniques allow TAIGA to
measure the highest tails of the spectrum of brightest galactic and extragalactic sources. The
geographical location allows TAIGA to observe unexplored parts of the high-energy gamma-ray
sky, particularly the remnant of the Tycho Brahe supernova.

Being the most advanced astrophysical facility in Russia, TAIGA affiliates about 80 scientists
from 15 institutions in Russia and Europe (mostly Germany) and conserves very strong and
fruitful cooperation with colleagues around the world.
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[29] Schröder, Frank G 2017 Prog. Part. Nucl. Phys. 93 1–68 (Preprint 1607.08781)
[30] Lubsandorzhiev B (Tunka, TAIGA) 2014 Nucl. Instrum. Meth. A766 52–56
[31] Abreu P et al. (Pierre Auger) 2012 JINST 7 P10011 (Preprint 1209.3840)
[32] Kostunin D et al. 2016 Astropart. Phys. 74 79
[33] Bezyazeekov P A et al. (Tunka-Rex) 2016 JCAP 1601 052 (Preprint 1509.05652)
[34] Bezyazeekov P A et al. 2017 25th European Cosmic Ray Symposium (ECRS 2016) Turin, Italy, September

04-09, 2016 (Preprint 1701.05158)
[35] Shipilov D et al. (Tunka-Rex) 2018 ARENA 2018 proceedings (Preprint 1812.03347)
[36] Marshalkina T et al. 2018 Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2018) Catania,

Italy, June 12-15, 2018 (Preprint 1812.03724)
[37] Fedorov O et al. 2017 PoS ICRC2017 387 (Preprint 1712.00974)
[38] Lenok V et al. 2018 (Preprint 1812.06893)
[39] Monkhoev R D et al. (Tunka) 2017 Bull. Russ. Acad. Sci. 81 468–470
[40] Tluczykont M et al. (TAIGA) 2018 PoS ICRC2017 759
[41] Porelli A et al. 2018 PoS ICRC2017 754
[42] Puhlhofer G et al. (HEGRA) 2003 Astropart. Phys. 20 267–291 (Preprint astro-ph/0306123)
[43] Zhurov D et al. ECRS2018 proceedings
[44] Sveshnikova L et al. ECRS2018 proceedings
[45] J Hörandel et al 2018 ARENA2018 proceedings
[46] Belver D et al. 2012 Nucl. Instrum. Meth. A661 S163–S167
[47] Lipunov V et al. 2010 Adv. Astron. 2010 349171 (Preprint 0907.0827)
[48] Lipunov V M et al. 2017 Astrophys. J. 850 L1 (Preprint 1710.05461)

1509.08624
1403.5688
1811.12086
1806.05493
1306.6283
1803.06862
1603.01594
http://inspirehep.net/record/1618417/files/1617990_40-47.pdf
http://inspirehep.net/record/1618417/files/1617990_40-47.pdf
1010.1869
astro-ph/0611311
1510.00568
1607.08781
1209.3840
1509.05652
1701.05158
1812.03347
1812.03724
1712.00974
1812.06893
astro-ph/0306123
0907.0827
1710.05461

