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The field of automatic image inpainting has progressed rapidly in recent years, but no one has yet proposed a standard
method of evaluating algorithms. This absence is due to the problem’s challenging nature: imageinpainting algorithms
strive for realism in the resulting images, but realism is a subjective concept intrinsic to human perception. Existing objective
imagequality metrics provide a poor approximation of what humans consider more or less realistic.

To improve the situation and to better organize both prior and future research in this field, we conducted a subjective
comparison of nine stateoftheart inpainting algorithms and propose objective quality metrics that exhibit high correlation
with the results of our comparison.
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1. Introduction

Image inpainting, or hole filling, is the task of filling
in missing parts of an image. Given an incomplete image
and a hole mask, an inpainting algorithm must generate the
missing parts so that the result looks realistic. Inpainting is
a widely researched topic. Many classical algorithms have
been proposed [5, 26], but over the past few years most re
search has focused on using deep neural networks to solve
this problem [12, 16, 17, 19, 23, 31, 32].

Because of the many avenues of research in this field,
the need to evaluate algorithms emerges. The goal of an
inpainting algorithm is to make the final image as realis
tic as possible, but image realism is a concept intrinsic to
humans. Therefore, the most accurate way to evaluate an
algorithm’s performance is a subjective experiment where
many participants compare the outcomes of different algo
rithms and choose the one they consider the most realistic.

Unfortunately, conducting a subjective experiment in
volves considerable time and resources, somany authors re
sort to evaluating their proposed methods using traditional
objective imagesimilarity metrics such as PSNR, SSIM
and mean l2 loss relative to the groundtruth image. This
strategy, however, is inadequate. One reason is that eval
uation by measuring similarity to the groundtruth image
assumes that only a single, best inpainting result exists—a
false assumption in most cases.

Thus, a perceptually motivated objective metric for
inpaintingquality assessment is desirable. The objective
metric should approximate the notion of image realism and
yield results similar to those of a subjective study when
comparing outputs from different algorithms.

We conducted a subjective evaluation of nine stateof
theart classical and deeplearningbased approaches to im
age inpainting. Using the results, we examine different
methods of objective inpaintingquality evaluation, includ
ing both fullreference methods (taking both the resulting
image and the groundtruth image as an input) and no
reference methods (taking the resulting image as an input).

2. Related work

Little work has been done on objective image
inpaintingquality evaluation or on inpainting detection in
general. The somewhat related field of manipulatedimage

detection has seenmoderate research, including both classi
cal and deeplearningbased approaches. This field focuses
on detecting altered image regions, usually involving a set
of common manipulations: copymove (copying an image
fragment and pasting it elsewhere in the same image), splic
ing (pasting a fragment from another image), fragment re
moval (deleting an image fragment and then performing ei
ther a copymove or inpainting to fill in the missing area),
various effects such as Gaussian blur, and recompression.
Among these manipulations, the most interesting for this
work is fragment removal with inpainting.

The approaches to imagemanipulation detection can
be divided into classical [13, 20], and deeplearningbased
approaches [2, 21, 34, 35]. These algorithms aim to locate
themanipulated image regions by outputting amask or a set
of bounding boxes enclosing suspicious regions. Unfortu
nately, they are not directly applicable to inpaintingquality
estimation because they have a different goal: whereas an
objective qualityestimation metric should strive to accu
rately compare realistically inpainted images similar to the
originals, a forgerydetection algorithm should strive to ac
curately tell one apart from the other.

3. Inpainting subjective evaluation

The gold standard for evaluating imageinpainting al
gorithms is human perception, since each algorithm strives
to produce images that look the most realistic to hu
mans. Thus, to obtain a baseline for creating an objective
inpaintingquality metric, we conducted a subjective evalu
ation of multiple stateoftheart algorithms, including both
classical and deeplearningbased ones. To assess the over
all quality and applicability of the current approaches and
to see how they compare with manual photo editing, we
also asked professional photo editors to fill in missing re
gions of the test photos.

3.1 Test data set

Since human photo editors were to perform inpainting,
our data set could not include publicly available images.
We therefore created our own private set of test images by
taking photographs of various outdoor scenes, which are
the most likely target for inpainting.
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Fig. 1. Images for the subjective inpainting comparison. The black square in the center is the area to be inpainted.
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Fig. 2. Subjectivecomparison results across three images 
inpainted by human artists.

Each test image was 512 × 512 pixels with a square 
hole in the middle measuring 180×180 pixels. We chose a 
square instead of a freeform shape because one algorithm 
in our comparison [30] lacks the ability to fill in freeform 
holes. The data set comprised 33 images in total. Fig. 1 
shows examples.

3.2 Inpainting methods
We evaluated three classical [1, 5, 7] and six deep

learningbased approaches [10, 16, 27, 29, 30, 32]. Ad
ditionally, we hired three professional photorestoration 
and photoretouching artists to manually inpaint three ran
domly selected images from our test data set.

3.3 Test method
The subjective evaluation took place through the 

http://subjectify.us platform. Human observers were 
shown pairs of images and asked to pick from each pair 
the one they found most realistic. Each pair consisted of 
two different inpainting results for the same picture (the 
set also contained the original image). In total, 6945 valid 
pairwise judgements were collected from 215 participants.

The judgements were then used to fit a BradleyTerry 
model [3]. The resulting subjective scores maximize like
lihood given the pairwise judgements.

3.4 Results of the subjective comparison
Fig. 2 shows the results for the three images in

painted by the human artists. The artists outperformed all
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Fig. 3. Subjectivecomparison results for 33 images 
inpainted using automatic methods.
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Fig. 4. Comparison of inpainting results from Artist #1 
and statistics of patch offsets [7] (preferred in the 

subjective comparison).

automatic algorithms, and out of the deeplearningbased 
methods, only generative image inpainting [32] outper
formed the classical inpainting methods.

The individual results for each of these three images ap
pear in Fig. 5. In only one case did an algorithm beat an 
artist: statistics of patch offsets [7] scored higher than one 
artist on the “Urban Flowers” photo. Fig. 4 shows the 
respective results. Additionally, for the “Splashing Sea” 
photo, two artists actually “outperformed” the original im
age: their results turned out to be more realistic.

We additionally performed a subjective comparison of 
various inpainting algorithms among the entire 33image 
test set, collecting 3969 valid pairwise judgements across 
147 participants. The overall results appear in Fig. 3.
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Fig. 5. Results of the subjective study comparing images inpainted by human artists with images inpainted by 
conventional and deeplearningbased methods.

They confirm our observations from the first comparison:
among the deeplearningbased approaches we evaluated,
generative image inpainting [32] seems to be the only one
that can outperform the classical methods.

4. Objective inpaintingquality estimation

Using the results we obtained from the subjective com
parison, we evaluated several approaches to objective
inpaintingquality estimation. In particular, we used these
objective metrics to estimate the inpainting quality of the
images from our test set and then compared them with the
subjective results. For each of the 33 images, we applied
every tested metric to every inpainting result (as well as
to the groundtruth image) and computed the Pearson and
Spearman correlation coefficients with the subjective re
sult. The final value was an average of the correlations
over all 33 test images.

4.1 Fullreference metrics
To construct a fullreference metric that encourages se

mantic similarity rather than perpixel similarity, as in [11],
we evaluated metrics that compute the difference between
the groundtruth and inpaintedimage feature maps pro
duced by an imageclassification neural network. We se
lected five of the most popular architectures: VGG [22]
(16 and 19layer deep variants), ResNetV150 [8], Incep
tionV3 [25], InceptionResNetV2 [24] and Xception [4].
We used the models pretrained on the ImageNet [6] data
set. The mean squared error between the feature maps was
the metric result.

We additionally included the structuralsimilarity
(SSIM) index [28] as a fullreference metric. SSIM is
widely used to compare image quality, but it falls short
when applied to inpaintingquality estimation.

4.2 Noreference metrics
We picked several popular imageclassification neural

network architectures and trained them to differentiate im
ages without any inpainting from partially inpainted im
ages. The architectures included VGG [22] (16 and 19

layer deep), ResNetV150 [8], ResNetV250 [9], Incep
tionV3 [25], InceptionV4 [24] and PNASNetLarge [15].

For training, we used clean and inpainted images based 
on the COCO [14] data set. To create the inpainted images, 
we used five inpainting algorithms [5, 7, 10, 29, 32] in eight 
total configurations.

The network architectures take a square image as an in
put and output the score—a single number where 0 means 
the image contains inpainted regions and 1 means the im
age is “clean.” The loss function was mean squared error. 
Some network architectures were additionally trained to 
output the predicted class using onehot encoding (similar 
to binary classification); the loss function for this case was 
softmax crossentropy.

The network architectures were identical to the ones 
used for image classification, with one difference: we al
tered the number of outputs from the last fully connected 
layer. This change allowed us to initialize the weights of all 
previous layers from the models pretrained on ImageNet, 
greatly improving the results compared with training from 
random initialization.

For some experiments we tried using the RGB noise 
features [34] and the spectral weight normalization [18].

In addition to the typical validation on part of the data 
set, we also monitored correlation of network predictions 
with the subjective scores collected in Section 3. We used 
the networks to estimate the inpainting quality of the 33
image test set, then computed correlations with subjective 
results in the same way as the final comparison. The train
ing of each network was stopped once the correlation of the 
network predictions with the subjective scores peaked and 
started to decrease (possibly because the networks were 
overfitting to the inpainting results of the algorithms we 
used to create the training data set).

4.3 Results
Fig. 6 shows the overall results. The noreference 

methods achieve slightly weaker correlation with the 
subjectiveevaluation responses than do the best full
reference methods. But the results of most noreference 
methods are still considerably better than those of the
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Fig. 6. Mean Pearson and Spearman correlations between objective inpaintingquality metrics and subjective human 
comparisons. The error bars show the standard deviations.

fullreference SSIM. The best correlation among the no
referencemethods came from the InceptionV4model with
spectral weight normalization.

It is important to emphasize that we did not train the
networks to maximize correlation with human responses.
We trained them to distinguish “clean” images from in
painted images, yet their output showed good correlation
with human responses. This confirms the observations
made in [33] that deep features are good for modelling hu
man perception.

5. Conclusion

We have proposed a number of perceptually moti
vated noreference and fullreference objective metrics for
imageinpainting quality. We evaluated the metrics by cor
relating themwith human responses from a subjective com
parison of stateoftheart imageinpainting algorithms.

The results of the subjective comparison indicate that
although a deeplearningbased approach to image inpaint
ing holds the lead, classical algorithms remain among the
best in the field.

We achieved good correlation with the subjective
comparison results without specifically training our
proposed objective qualityevaluation metrics on the
subjectivecomparison response data set.
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