Капиллярно-гравитационные волны конечной амплитуды на поверхности однородной жидкости

Методом многих масштабов получены уравнения для трех нелинейных приближений капиллярно-гравитационных возмущений свободной поверхности слоя однородной жидкости постоянной глубины, в которых учтены пространственно-временные изменения волнового профиля в выражении потенциала скорости на поверхности жидкости. На их основе построены асимптотические разложения до величин третьего порядка малости для потенциала скорости и возвышения поверхности жидкости, формируемого бегущей периодической волной конечной амплитуды. Проведен анализ зависимости амплитудно-фазовых характеристик волновых возмущений от силы поверхности натяжения, глубины жидкости, длины и крутизны волны основной гармоники.

Введение. В линейной постановке влияние поверхностного натяжения на волновые процессы в однородной жидкости рассмотрено в работах [1 – 3]. Теоретический анализ развития волн малой амплитуды в двухслойной жидкости с учетом капиллярных сил на свободной поверхности и на границе раздела слоев приведен в [4]. Исследование капиллярно-гравитационных поверхностных периодических бегущих волн конечной амплитуды выполнено в работе [5] методом многомасштабных разложений без оценки изменений амплитудно-фазовых характеристик, обусловленных зависимостью потенциала скорости движения жидких частиц на свободной поверхности от ее пространственно-временных деформаций.

В настоящей работе методом многомасштабных асимптотических разложений получены уравнения для нелинейных приближений, в которых учтены пространственно-временные изменения волнового профиля в выражении потенциала скорости на границе жидкость — воздух.

На основе полученных уравнений выполнено исследование влияния поверхностного натяжения на распространение периодических волн конечной амплитуды. Дана оценка изменений, вносимых в структуру возмущений в результате учета пространственно-временных деформаций поверхности жидкости в выражении потенциала скорости при выводе кинематического и динамического граничных условий для нелинейных приближений.

Постановка задачи. Рассмотрим влияние поверхностного натяжения на распространение периодических волн конечной амплитуды в однородной идеальной несжимаемой жидкости постоянной глубины H. В предположении потенциальности движения жидкости в безразмерных переменных $x = kx_1$, $z = kx_1$, $t = \sqrt{\nu k} t_1$, где k — волновое число, задача заключается в решении уравнения Лапласа

$$\Delta \varphi = 0, -\infty < x < \infty, -H < z < \zeta$$

(1)
с граничными условиями на поверхности \((z = \zeta)\)

\[
\zeta - \varphi_t + \frac{1}{2} (\varphi_x^2 + \varphi_z^2) - \alpha_1 k^2 \zeta_x (1 + \zeta_z^2)^{3/2} = 0
\]

(2)

и на дне бассейна \((z = -H)\)

\[
\varphi_z = 0.
\]

(3)

В начальный момент времени \((t = 0)\)

\[
\zeta = f(x), \quad \zeta_t = 0.
\]

(4)

Здесь \(\alpha_1 = \alpha/(\rho g)\), \(\rho\) — плотность жидкости, \(g\) — ускорение силы тяжести, \(\alpha\) — коэффициент поверхностного натяжения. Потенциал скорости \(\varphi\) и возвышение поверхности бассейна \(\zeta\) при \(z = \zeta\) связаны кинематическим условием

\[
\zeta_t - \zeta_x \varphi_x + \varphi_z = 0.
\]

(5)

Уравнения для нелинейных приближений. Решение задачи (1) — (5) найдем методом многих масштабов [6]. Введем две новые медленно меняющиеся по сравнению с \(t = T_0\) переменные \(T_1 = \varepsilon \cdot t, T_2 = \varepsilon^2 t\), где \(\varepsilon\) — малое, но конечное, и предположим справедливость выражений

\[
\zeta = \varepsilon \zeta_0(x, t), \quad \varphi = \varepsilon \varphi_0(x, z, t), \quad f = \varepsilon f_0(x),
\]

\[
\zeta_0 = \zeta_1 + \varepsilon \zeta_2 + \varepsilon^2 \zeta_3 + O(\varepsilon^3), \quad \varphi_0 = \varphi_1 + \varepsilon \varphi_2 + \varepsilon^2 \varphi_3 + O(\varepsilon^3),
\]

\[
f_0 = f_1 + \varepsilon f_2 + \varepsilon^2 f_3 + O(\varepsilon^3).
\]

(6)

Подставив \(\varphi\) из (6) в (1) и (3), с точностью до величин третьего порядка малости получим

\[
\varepsilon \Delta \varphi_1 + \varepsilon^2 \Delta \varphi_2 + \varepsilon^3 \Delta \varphi_3 = 0, \quad \varepsilon \frac{\partial \varphi_1}{\partial z} + \varepsilon^2 \frac{\partial \varphi_2}{\partial z} + \varepsilon^3 \frac{\partial \varphi_3}{\partial z} = 0.
\]

(7)

Рассмотрим теперь динамическое (2), кинематическое (5) и начальное (4) условия. В силу малости \(\varepsilon\) представим потенциал скорости \(\varphi(k, z, t)\) на поверхности жидкости \(z = \varepsilon \zeta_0\) в виде

\[
\varphi(x, t, \varepsilon \zeta_0) = \varphi(x, t, 0) + \varepsilon \zeta_0 \varphi_x(x, t, 0) + \frac{1}{2} \varepsilon^2 \zeta_0^2 \varphi_{xx}(x, t, 0) + \ldots
\]

(8)

Подставим \(\zeta = \varepsilon \zeta_0, f = \varepsilon f_0, \varphi(x, t, \varepsilon \zeta_0)\) в условия (2), (3), (4), (5), имея в виду при этом, что по правилу дифференцирования сложной функции частная производная по времени определяется выражением

\[
\frac{\partial}{\partial t} = \frac{\partial}{\partial T_0} + \varepsilon \frac{\partial}{\partial T_1} + \varepsilon^2 \frac{\partial}{\partial T_2},
\]

26
и учитывая зависимость \(\zeta_0 \) от \(x \) и \(t \) в (8). Тогда, собрав коэффициенты при одинаковых степенях \(\varepsilon \) и приравнив их к нулю из (2) — (5), (7), найдем

\[
\Delta \phi_n = 0, -\infty < x < \infty, -H < z < 0, \tag{9}
\]

\[
\zeta_n - \frac{\partial \phi_n}{\partial T_0} - \alpha k^2 \frac{\partial^2 \zeta}{\partial x^2} = F_n^*, \quad z = 0, \tag{10}
\]

\[
\frac{\partial \zeta_n}{\partial T_0} + \frac{\partial \phi_n}{\partial z} = L_n^*, \quad z = 0, \tag{11}
\]

\[
\frac{\partial \phi_n}{\partial z} = 0, \quad z = -H, \tag{12}
\]

\[
\zeta_n = f_n(x), \quad \frac{\partial \zeta_n}{\partial T_0} = G_n, \quad t = 0. \tag{13}
\]

Здесь

\[
F_n^* = F_n + F_n^0, \quad L_n^* = L_n + L_n^0, \quad F_1 = F_1^0 = L_1 = L_1^0 = L_2 = G_1 = 0, \]

\[
F_2 = \zeta_1 \frac{\partial^2 \phi_1}{\partial T_0 \partial z} + \frac{\partial \phi_1}{\partial T_1} - \frac{1}{2} \left[\left(\frac{\partial \phi_1}{\partial x} \right)^2 + \left(\frac{\partial \phi_1}{\partial z} \right)^2 \right], \]

\[
L_2 = \frac{\partial \zeta_1}{\partial x} \frac{\partial \phi_1}{\partial x} - \frac{\partial \zeta_1}{\partial T_1} - \zeta_1 \frac{\partial^2 \phi_1}{\partial x^2}, \quad G_2 = -\frac{\partial \zeta_1}{\partial T_1}, \quad G_3 = -\frac{\partial \zeta_1}{\partial T_1} - \frac{\partial \zeta_2}{\partial T_1}, \]

\[
F_3 = \zeta_1 \left(\frac{\partial^2 \phi_1}{\partial T_1 \partial x} + \frac{\partial^2 \phi_2}{\partial T_0 \partial x} \right) \frac{\partial \phi_1}{\partial T_1} + \frac{\partial \phi_2}{\partial T_2} \frac{\partial \phi_1}{\partial x} + \frac{\partial \phi_1}{\partial \partial \phi_2} - \frac{\partial \phi_1}{\partial z} \frac{\partial \phi_2}{\partial \partial \phi_2} + \frac{1}{2} \zeta_2 \frac{\partial^2 \phi_1}{\partial T_0 \partial z} - \frac{3}{2} \alpha k^2 \frac{\partial^2 \zeta_1}{\partial \partial \phi_2} \left(\frac{\partial \zeta_1}{\partial x} \right)^2, \]

\[
L_3 = \frac{\partial \zeta_2}{\partial x} \frac{\partial \phi_1}{\partial x} + \frac{\partial \zeta_1}{\partial x} \left(\frac{\partial \phi_2}{\partial x} + \frac{\partial \phi_1}{\partial \partial \phi_2} \right) - \zeta_1 \frac{\partial^2 \phi_1}{\partial x^2} - \zeta_2 \frac{\partial^2 \phi_1}{\partial x^2} - \frac{\partial \zeta_1}{\partial T_2} - \frac{\partial \zeta_2}{\partial T_1} - \frac{1}{2} \zeta_2 \frac{\partial^3 \phi_1}{\partial x^3}, \]

\[
F_2^0 = \frac{\partial \zeta_1}{\partial T_0} \frac{\partial \phi_1}{\partial z}, \quad L_3^0 = \left(\frac{\partial \zeta_1}{\partial \partial \phi_2} \right)^2 \frac{\partial \phi_1}{\partial \partial \phi_1}, \]

\[
F_3^0 = \frac{\partial \zeta_1}{\partial T_0} \frac{\partial \phi_2}{\partial \partial \phi_2} + \frac{\partial \zeta_2}{\partial T_0} \frac{\partial \phi_1}{\partial z} + \zeta_1 \frac{\partial \zeta_1}{\partial \partial \phi_2} \frac{\partial \phi_1}{\partial \partial \phi_2} + \frac{\partial \zeta_1}{\partial T_1} \frac{\partial \phi_1}{\partial \partial \phi_1} - \frac{\partial \phi_1}{\partial \partial \phi_2} \frac{\partial \phi_1}{\partial \partial \phi_1} \frac{\partial \zeta_1}{\partial \partial \phi_2}. \]
(11) видно, что зависимость ζ_0 от x и t в (8) не проявляется в выражениях для приближения порядка $\varepsilon (F_1^0 = L_1^0 = 0)$. В приближениях же ε^2 такое слагаемое (F_2^0) входит только в динамическое уравнение, а в приближении ε^3 — в динамическое (F_3^0) и кинематическое (L_2^0) условия.

Выражения для потенциала скорости и возвышения поверхности жидкости. Задача (9) — (13) сформулирована для общего случая неустановившихся возмущений конечной амплитуды. Остановимся на рассмотрении бегущих периодических волн, задавая $f_n(x)$ в соответствующем виде. В таком случае выберем первое приближение ($n = 1$) возвышения поверхности бассейна ζ_1 в форме

$$
\zeta_1 = \cos \theta, \quad \theta = x + \tau T_0 + \beta(T_1, T_2).
$$

(14)

Тогда из кинематического условия (11) находим

$$
\frac{\partial \varphi_1}{\partial x} = \tau \sin \theta, \quad z = 0.
$$

(15)

Чтобы удовлетворить граничному условию (12) на дне бассейна, запишем φ_1 в форме

$$
\varphi_1 = b_0 \cosh(z + H) \sin \theta.
$$

(16)

После подстановки (16) в (15) получим $b_0 = \tau (\sinh H)^{-1}$. В результате

$$
\varphi_1 = b_1 \sin \theta, \quad b_1 = \tau (\sinh H)^{-1} \cosh(z + H).
$$

(17)

Подставляя (14) и (17) в динамическое условие (10), найдем дисперсионное соотношение

$$
\tau^2 = \left(1 + \alpha_2 k^2 \tanh H\right).
$$

(18)

Выражение, определяющее $\beta(T_1, T_2)$ в (14), получим из последующих приближений. Чтобы найти второе приближение (решение задачи при $n = 2$), определим правые части уравнений (10), (11), используя (14), (17). Тогда с учетом требования отсутствия основной гармоники получим

$$
\zeta_2 = a_2 \cos 2\theta, \quad \varphi_2 = b_2 \cosh 2(z + H) \sin 2\theta + \varphi_2^*,
$$

(19)

где

$$
a_2 = \tau^2 \left[1 + 4\alpha_4 k^2 \tanh^2 2H - 2\tau^2\right] \mu_2,
$$

$$
b_2 = \left(a_2 - \frac{1}{2} \coth H\right) \cosh 2(z + H) \sinh^{-1} 2H,
$$

$$
\mu_2 = \tanh 2H - \coth H - \frac{1}{4} \tanh 2H \left(\coth^2 H - 1\right), \quad \varphi_2^* = \frac{1}{4} \tau^2 \left(\coth^2 H + 1\right) T_0.
$$

При этом оказывается, что θ не зависит от T_1. Поэтому $\beta = \beta_2(T_2)$. Полученные решения для первого (14), (17) и второго (19) приближений опреде-
ляют правые части динамического (10) и кинематического (11) условий задачи для третьего приближения \((n = 3)\). Исключив в них слагаемые, порождающие сейсмальность для \(\zeta_3, \phi_3\), найдем

\[
\zeta_3 = a_3 \cos 3\theta, \quad \phi_3 = b_3 \sin 3\theta + \phi_3^*, \quad \beta = \tau \sigma_0 T_2.
\]

Здесь

\[
a_3 = \tau^2 \left[(1 + 9a_1k^2) \tanh 3H - 3\tau^2 \right]^{-1} (l_4 \tanh 3H - l_6),
\]

\[
b_3 = \tau \left[a_3 - \frac{1}{3} l_6 \right] \cosh 3(z + H) \sinh^{-1} 3H,
\]

\[
\sigma_0 = \frac{1}{2} (l_5 - l_3 \tanh H),
\]

\[
\phi_3^* = \tau \left[\frac{1}{2} (l_5 - l_3 \tanh H) - l_5 \right] \cosh (z + H) \sinh^{-1} H \sin \theta,
\]

\[
l_3 = \frac{3}{8} \alpha, k^2 r^{-2} + \frac{1}{2} \coth H \left(\coth H \coth 2H - \frac{5}{4} \right) - a_2 \left(\frac{1}{2} + \coth H \coth 2H \right),
\]

\[
l_4 = -\frac{3}{8} \alpha, k^2 r^{-2} + \frac{1}{2} \coth H \left(\coth H \coth 2H - \frac{15}{4} \right) + a_2 \left(\frac{11}{2} - \coth H \coth 2H \right),
\]

\[
l_5 = l_2 + \frac{9}{8}, \quad l_6 = 3l_2 + \frac{1}{8}, \quad l_2 = \frac{1}{2} \left[a_2 \left(\coth H + 2\coth 2H \right) - \coth H \coth 2H \right].
\]

Следовательно, возвышение поверхности бассейна \(\zeta\) и потенциал скорости движения жидкости \(\phi\) до величин третьего порядка малости определяется из выражений

\[
\zeta = \sum_{n=1}^{3} e^n a_n \cos n\theta, \quad \phi = \sum_{n=1}^{3} e^n (b_n \sin n\theta + \phi_n^*),
\]

(20)

\[
\theta = x + \sigma t, \quad \sigma = \tau (1 + \varepsilon^2 \sigma_0), \quad a_1 = 1, \quad \phi_1^* = 0.
\]

В размерных величинах \((\zeta = \zeta/k, \Phi = \phi \sqrt{g/k^2}, \varepsilon = \alpha k, \text{ где } \alpha — \text{ амплитуда начальной гармоники})

\[
\zeta = \cos \theta + a^2 k a_z \cos 2\theta + a^3 k^2 a_2 \cos 3\theta,
\]

\[
\Phi = a \sqrt{g/k} b_3 \sin \theta + a^2 \sqrt{g} b_3 \sin 2\theta + a^3 k \sqrt{g} b_3 \sin 3\theta + \sum_{n=1}^{3} e^n \Phi_n^*,
\]

где \(\theta = kx + \sigma_1 (1 + \alpha k^2 \sigma_0) t, \quad \sigma_1 = \tau \sqrt{g}, \quad \Phi_1^* = \phi_1^* \sqrt{g/k^2}, \text{ а индекс } 1 \text{ у } x \text{ и } t \text{ здесь и далее опущен.}

ISSN 0233-7584 Мор. гидрофиз. журн., 2005, № 5
Фазовую скорость волновых возмущений определим из формулы

\[\nu = \nu_1 \left(1 + \varepsilon^2 \sigma_0 \right), \quad \nu_1 = \tau \sqrt{g/k}. \]

Анализ волновых характеристик. Из полученных выражений следует, что частота и фазовая скорость возмущений зависят не только от коэффициента поверхностного натяжения, но и от амплитуды начальной волновой гармоники. Фазовая скорость \(\nu_1 \) основной линейной гармоники как функция волнового числа \(k \) имеет минимум при значении \(k = k^* \), удовлетворяющем условию \(V_1(k) = \nu_1(k) \), где

\[V_1 = \frac{g}{2\sigma} \left[(1 + 3\alpha_1 k^2) \tanh(kH) + (1 + \alpha_1 k^2)(1 - \tanh^2(kH))kH \right] \]

характеризует групповую скорость линейных гравитационно-капиллярных волн.

Для глубокой воды \((kH \gg 1)\) решение упрощается, так как

\[a_2 = 0, \quad a_3 = \frac{3}{16} \alpha_1 k^2 \left(1 - 3\alpha_1 k^2 \right)^{-1}, \quad \sigma_0 = \frac{6 + 3\alpha_1 k^2}{16(1 + \alpha_1 k^2)}, \]

\[\tau = \sqrt{1 + \alpha_1 k^2}, \quad \sigma_1 = \sqrt{\kappa g(1 + \alpha_1 k^2)}, \quad \alpha = \sqrt{(1 + \alpha_1 k^2)g/k}, \]

\[k^* = \frac{1}{\sqrt{\alpha_1}}, \quad \lambda(k^*) = 2\pi \sqrt{\alpha_1}, \quad \sigma(k^*) = \frac{2g}{\sqrt{\lambda_1}}, \quad \nu_1(k^*) = \sqrt{\frac{2g}{\lambda_1}}, \]

\[V_1 = \frac{1}{2} g \sigma^{-1}(1 + 3\alpha_1 k^2). \]

Причем \(V_1 \) и \(\nu_1 \) связаны соотношением

\[V_1 = \frac{1}{2} \nu_1 \left(1 + 3\alpha_1 k^2 \right)^{-1} \left(1 + \alpha_1 k^2 \right)^{-1}. \]

Минимальное значение имеет и \(V_1 \) как функция \(k \) в точке \(k = k^0 \). Если \(kH \gg 1 \), то

\[k^0 = \sqrt[3]{\frac{2}{3}} k^*, \quad \lambda(k^0) = \sqrt[3]{\frac{3}{7 - 4\sqrt{3}}} \lambda(k^*), \quad \sigma(k^0) = \sqrt[3]{\frac{2 - \sqrt{3}}{3\sqrt{3}}} \sigma(k^*), \]

\[V_1(k^0) = g \left(\sqrt[3]{3 - 1} / \sigma(k^0) \right), \quad V_1(k^0) = 0.768 \nu_1(k^*). \]

Минимальные значения групповой \(V_1(k^0) \) и фазовой \(\nu_1(k^*) \) скоростей линейных гравитационно-капиллярных волн равны соответственно 17,82 и 23,21 см/с для коэффициента поверхностного натяжения воды на границе с воздухом \(\alpha = 74 \) дин/см. Коэффициенту поверхностного натяжения бензина на границе с воздухом \(\alpha = 30 \) дин/см [8] отвечают значения \(V_1(k^0) = 14,22 \) см/с и \(\nu_1(k^*) = 18,52 \) см/с.
Волновое число \(k = k' \) и соответствующие ему длина волны и частота колебаний равны 3,639 см^{-1}, 1,726 см, 84,453 с^{-1} для \(\alpha = 74 \) дин/см и 5,715 см^{-1}, 1,099 см, 105,841 с^{-1} для \(\alpha = 30 \) дин/см. Величины \(k', \lambda(k'), \alpha(k') \), отвечающие минимальному \(\nu(k) \), равны 1,431 см^{-1}, 4,387 см, 40,245 с^{-1} при \(\alpha = 74 \) дин/см и 2,248 см^{-1}, 2,794 см, 50,436 с^{-1} при \(\alpha = 30 \) дин/см.

Если при выводе кинематического и динамического поверхностных условий для нелинейных приближений пренебречь зависимостью \(\zeta_0 \) от \(x \) и \(t \) в (8) (полагая \(F_2^0, F_3^0, L_3^0 \) равными нулю в (10), (11)), то в формулах (20) – (22), определяющих решение задачи, следует учесть, что

\[
I_3 = \frac{3}{8} \alpha_1 k^2 \tau^{-2} + \frac{1}{2} \coth \left(\coth H \coth 2H - \frac{9}{4} \right) + a_2 \left(\frac{3}{2} - \coth H \coth 2H \right)
\]

\[
I_4 = \frac{3}{8} \alpha_1 k^2 \tau^{-2} + \frac{1}{2} \coth \left(\coth H \coth 2H - \frac{11}{4} \right) + a_2 \left(\frac{7}{2} - \coth H \coth 2H \right)
\]

\[
I_5 = I_2 + \frac{3}{8}, \quad I_6 = 3I_2 + \frac{3}{8}, \quad \mu_2 = \frac{1}{2} \tanh 2H - \frac{1}{4} \tanh 2H \left(\coth^2 H - 1 \right) - \coth H.
\]

В этом случае [5] на глубокой воде

\[
a_2 = \frac{1 + \alpha_1 k^2}{2 - 2 \alpha_1 k^2}, \quad a_3 = \frac{3}{16} \left(\frac{2 + 7 \alpha_1 k^2 + 2(\alpha_1 k^2)^2}{1 - 2 \alpha_1 k^2} \right), \quad \sigma_0 = \frac{8 + \alpha_1 k^2 + 2(\alpha_1 k^2)^2}{16 \left(1 - 2 \alpha_1 k^2 \right)}.
\]

Отсюда при \(\alpha = 0 \) найдем значения \(a_2 = 1/2, \ a_3 = 3/8, \ \sigma_0 = 1/2, \) совпадающие с полученными в [9] при обычном разложении по малому параметру.

Отметим, что полученное решение (20) справедливо вне малых окрестностей резонансных значений волновых чисел \(k_2 \) и \(k_3 \), удовлетворяющих уравнению

\[
\left(1 + n^2 \alpha, k^2 \right) \tanh H - n \tau^2 = 0
\]

при \(n = 2 \) и \(n = 3 \) соответственно.

Если \(kH \gg 1 \), то \(k = 1/\sqrt{n \alpha} \). Указанные точки остаются сингулярными как при учете, так и без учета слагаемых \(F_2^0, F_3^0, L_3^0 \). Значения резонансных волновых чисел увеличиваются с ростом толщины слоя жидкости \(H \). Для оценки влияния этих слагаемых на структуру волновых профилей вне зон сингулярности проводились численные расчеты при \(t = 0 \).

Аналит результатов расчетов показал, что пренебрежение слагаемыми \(F_2^0, F_3^0, L_3^0 \) может привести к существенным деформациям профиля капиллярно-гранитационных волн. Это иллюстрируют графики \(\zeta(x) \), представленные на рис. 1 для случая \(kH \gg 1, k = 2,2 \) см^{-1}, \(a = 0,05 \) см сплошными и штриховыми линиями соответственно без учета и с учетом указанных слагаемых при \(\alpha = 74 \) дин/см (рис. 1, a) и \(\alpha = 30 \) дин/см (рис. 1, b). В качественном отношении аналогичные изменения распределений \(\zeta \) по \(x \) при \(kH \gg 1 \) за счет слагаемых \(F_2^0, F_3^0, L_3^0 \) могут иметь место и при других значениях крутизны и
длины волны (вне малых окрестностей резонансных значений) основной гармоники. В случае полного учета кривизны волнового профиля в уравнениях для нелинейных приближений возвышение поверхности бассейна, формируемое капиллярно-гравитационными волнами, имеет вид, близкий к гармоническому. Нелинейный характер этого распределения заметно проявляется лишь в случае малой толщины слоя жидкости, что иллюстрируют графики на рис. 2 при \(h = 0,55 \, \text{см}, \ k = 2,25 \, \text{см}^{-1}, \ a = 0,05 \, \text{см}, \ \alpha = 74 \, \text{дин/см} \) (рис. 2, a) и \(\alpha = 30 \, \text{дин/см} \) (рис. 2, b). Сплошным и штриховыми линиями соответствуют здесь \(\zeta(x) \), полученные при равных нулю и отличных от нуля слагаемых \(F_2^0, F_3^0, L_3^0 \).

Р и с. 1. Профили волновых возмущений с учетом (штриховые линии) и без учета (сплошные) слагаемых \(F_2^0, F_3^0, L_3^0 \) для случая \(kH >> 1, \ k = 2,2 \, \text{см}^{-1}, \ a = 0,05 \, \text{см}, \ \iota = 0 \) при \(\alpha = 74 \, \text{дин/см} \) (a) и \(\alpha = 30 \, \text{дин/см} \) (b)
Заключение. Методом многих масштабов получены уравнения для трех нелинейных приближений решения задачи о влиянии капиллярных сил на распространение произвольного начального возмущения поверхности однородной идеальной нежимаемой жидкости постоянной глубины. В них учтены пространственно-временные изменения волнового профиля в выражении потенциала скорости на границе жидкость — воздух. В случае периодической бегущей волны найдены решения полученных уравнений, позволяющие представить потенциал скорости и возвышение поверхности жидкости в виде асимптотических разложений до величин третьего порядка малости. На основе этих разложений проведен анализ зависимости амплитудно-фазовых ха-
рактеристик волновых возмущений от силы поверхностного натяжения, глубины жидкости, длины и крутизны волны основной гармоники.

Показано, что пренебрежение кривизной волнового профиля в выражении потенциала скорости при выводе кинематического и динамического поверхностных граничных условий для нелинейных приближений может привести к заметным изменениям пространственного распределения вертикальных смещений поверхности жидкости, формируемых капиллярно-гравитационными волнами конечной амплитуды.

СПИСОК ЛИТЕРАТУРЫ

Морской гидрофизический институт НАН Украины,
Севастополь

Материал поступил в редакцию 11.02.04

ABSTRACT The equations for three non-linear approximations of capillary-gravitational disturbances of free surface of the uniform fluid layer of finite depth are obtained by the method of multiple scales. They take account of spatial-temporal variations of a wave profile in the expression of the velocity potential on the fluid surface. They constitute a basis for constructing asymptotic expansions up to the values of the third-order infinitesimal for the velocity potential and fluid surface rising resulting from a running periodic wave of finite amplitude. Dependence of the amplitude-phase characteristics of wave disturbances upon the surface tension, fluid depth, length and steepness of the main harmonic wave is analyzed.