
HYDROLOGICAL PROCESSES
Hydrol. Process. 15, 3343–3355 (2001)
DOI: 10.1002/hyp.1032

Statistical self-similarity of spatial variations of snow
cover: verification of the hypothesis and application

in the snowmelt runoff generation models

L. S. KuchmentŁ and A. N. Gelfan
Water Problems Institute of Russian Academy of Sciences, 117735, Gubkin 3, Moscow, Russia

Abstract:

An analysis of snow cover measurement data in a number of physiographic regions and landscapes has shown that
fields of snow cover characteristics can be considered as random fields with homogeneous increments and that these
fields exhibit statistical self-similarity. A physically based distributed model of snowmelt runoff generation developed
for the Upper Kolyma River basin (the catchment area is about 100 000 km2) has been used to estimate the sensitivity
of snowmelt dynamics over the basin and flood hydrographs to the parameterization of subgrid effects based on the
hypothesis of statistical self-similarity of the maximum snow water equivalent fields. Such parameterization of subgrid
effects enables us to improve the description of snowmelt dynamics both within subgrid areas and over the entire river
basin. The snowmelt flood hydrographs appear less sensitive to the self-similarity of snow cover over subgrid areas
than to the dynamics of snowmelt because of a too large catchment area of the basin under consideration. However,
for certain hydrometeorological conditions and for small river basins this effect may lead to significant changes of the
calculated hydrographs. Copyright  2001 John Wiley & Sons, Ltd.
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INTRODUCTION

A distinctive feature of snow cover is its high spatial variability. The small-scale variations of snow depth
and density caused by spatial variation in topography, vegetation, and local meteorological conditions are
superimposed on the large-scale variability of snowfall associated with global atmospheric circulation and
physiographic zones. Distributed numerical modelling of snowmelt runoff generation is based on dividing a
river basin into grid cells. Within each cell, the model inputs and coefficients are considered to be spatially
uniform. The absence of data representing the small-scale subgrid variations of snow cover characteristics
may lead to errors in modelling snowmelt runoff generation even for small grid sizes. For example, it is very
difficult to take into account the spatial variations of snow cover induced by ravine networks, small-scale
variation of mountainous relief, and differences in types and density of vegetation. The measurements of snow
depths or snow water equivalents are commonly carried out irregularly in space, and do not often provide
direct representation of the spatial snow variability that is necessary for correct estimation of the river basin
water balance or for describing the influence of snow on the runoff generation processes.

It is well established that the spatial variations of snow depths and snow water equivalents for a given
region can be considered as random fields variables for which areal statistical distributions follow lognormal
or two-parametric gamma probability laws (e.g. Kuzmin, 1963; Gottschalk and Jutman, 1979; Kuusisto,
1984; Killingtveit and Sand, 1991; Shook and Gray, 1997). However, these random fields may be strongly
heterogeneous, and the statistical parameters needed for construction of probability distributions may vary
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in space and as a function of the area size. The number of measurement points needed for reasonable
estimation of spatial variance or higher statistical moments is commonly sufficient only for areas that are
significantly larger than the grid cells of numerical runoff models or, vice versa, only for a small part of
these grid cells. Thus, it is necessary to assign the statistical parameters for domains without measurements
or transfer these parameters from the larger or smaller domains. An opportunity to solve this problem is
presented by investigating regularities in the stochastic spatial structure of snow characteristics and searching
for relationships between variations of these characteristics for different spatial scales.

Early work in this field includes the theory of random fields with homogeneous increments in meteorology
(Gandin, 1963; Monin and Jaglom, 1967), and in geology the development of geostatistics (Matheron, 1967).
The theory of fractals (see Mandelbrot (1982) and references cited therein) has also been used successfully to
understand the relationships between statistical parameters of different spatial scales. The linkages between
geostatistical characterization of random fields and their fractal models have been demonstrated (Bruno and
Raspa, 1989). Both these approaches, under the certain property of random fields commonly called statistical
self-similarity, enabled us to transfer statistical parameters for one scale to statistical parameters for other scales
using a simple scaling transformation of the random variable. Thus, the problem of accounting for subgrid
variations of a spatial variable was simplified by applying the hypothesis on the statistical self-similarity. The
fractal theory and the hypothesis on the statistical self-similarity has been applied for modelling of random
fields of elevations (Mark and Aronson, 1984), rainfall characteristics (Lovejoy and Mandelbrot, 1985), soil
constants (Burrough, 1983), and a number of other geophysical variables (Kundzewicz, 1995).

The fractal and statistical self-similarity concepts were also used successfully for some research on the
spatial structure of snow cover; however, most of these investigations were associated with analysis of snow
covered areas. Fractal geometry was used for describing snow patches and change in snow covered areas
during the snowmelt processes (Shook and Gray, 1996, 1997). Based on the analysis of the four sets of
snow covered areas variograms, derived from remotely sensed snow cover images and images obtained in the
laboratory, Blöschl (1999) demonstrated that snow covered areas have fractal properties that are preserved
for a large range of spatial scales. Shook and Gray (1996), using the snow measurement data along 1000 m
transects on flat stubble fields near Saskatoon, Canada, showed that the spatial distribution of snow depth
and snow water equivalent were fractals for small scales. They also demonstrated that the scale for which
the snow cover was fractal depended on the topography and vegetation. The objectives of our study are the
following: (1) to verify the hypothesis of statistical self-similarity for snow cover for wide ranges of spatial
scales and physiographic conditions; (2) to use relationships following from this property for parameterization
of subgrid effects in a distributed model of snowmelt runoff generation; and (3) to determine the effectiveness
of this parameterization for improving the modelling of snowmelt runoff.

THEORETICAL BACKGROUND

According to Gupta and Waymire (1990), statistical self-similarity is a property of a given random variable
S�x�, where the probability distribution of S�x� within any cell Fk of an area F is the same as the distribution
over the whole area F, if a scaling transformation of this variable within Fk is made. An example of a scaling
transformation is when the variable S�x� is multiplied by a factor rH, where r is a constant depending on the
ratio of Fk to F and H is a constant depending on a measure of spatial correlation of S�x�. In this case, the
conditions of the equality of probability distributions of S�x� within the areas Fk and F can be presented as
the following relation between corresponding statistical moments E[Sk

n] and E[SF
n] of order n:

E[Sk
n] D rnHE[SF

n] �1�

As seen from Equation (1), if we confine ourselves to the first two moments, then one of the conditions
of the statistical self-similarity is that the coefficient of spatial variation is a constant and does not vary
with size of area under consideration. Kuchment et al. (1986) used this assumption to take into account the
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subgrid variations of saturated hydraulic conductivity, however, without proper theoretical interpretation and
validation.

If the random field S�x� is heterogeneous, but its increment I�h� D S�x C h� � S�x� is homogeneous and
isotropic, then it is possible to construct the variogram


�h� D E[S�x C h� � S�x�]2 �2�

where S�x� and S�x C h� are values of the random variable at points x and x C h respectively.
If the variogram of the value of S�x� has the power structure


�h� D ˛h2H �3�

where ˛ and H are constants, then for the increments with steps of h and rh the following equality can be
written:

I�rh� D rHI�h� �4�

Determining the statistical moments for both sides of Equation (4), we derive Equation (1). Therefore, the
random variables whose variograms demonstrate power structure are statistically self-similar.

An example of the self-similar random variable is the Brownian random process with the increments I�h�
being the Gaussian white noise and the variogram expressed by the function in Equation (3) at H D 0Ð5.
In a more general model of a self-similar random process suggested by Mandelbrot (see references in
Mandelbrot (1982)) and called the fractional Brownian process, the variogram was represented by the function
in Equation (3) at 0 < H < 1. If H > 0Ð5, the increments of this process are positively correlated and large-
scale variations prevail; if H < 0Ð5, the increments are negatively correlated and small-scale variations prevail.
As a measure of irregularity of a random surface and correlation of the large-scale and small-scale variations,
Mandelbrot also introduced the fractal dimension D such that

D D E C 1 � H �5�

where E is the topological dimension. Therefore, it is possible to estimate the fractal dimension of a fractal
surface by studying the fractal dimension of its section or points along a straight line. According to Matheron
(1967) and Feder (1988) by averaging the variogram in Equation (3) over two embedded circles or squares
with areas F and Fk having a centre at point x0, we obtain:

mk � S0 D rH�mF � S0� �6�

�2
k D r2H�2

F �7�

where S0 D S�x0�; mk and �2
k are respectively the mean and the variance of S�x� over the area Fk; mF and �2

F
are respectively the mean and the variance of S�x� over the area F; r D p

Fk/F. These relations allow one
to carry out scaling of statistical parameters of S�x� at relevant choice of embedded areas and S�x0�. If one
assigns S�x0� D 0, then the coefficient of spatial variation of S�x� for Fk and F is equal. If there are measured
values of mk and mF, it is possible to carry out only scaling of the variance, using Equation (7).

VERIFICATION OF THE HYPOTHESIS ON STATISTICAL SELF-SIMILARITY OF SNOW COVER

The available information about snow cover distribution includes two forms of data: (1) point measurements
along straight-line snow courses, and (2) snow cover data calculated by averaging the snow course measure-
ments. The snow courses are commonly chosen to represent the micro- and meso-scale variability of snow
cover for different types of landscape and relief. The required length of snow courses varies from 100 m
to several kilometres, and the distance between sampling points can be 10, 25, 50 or 100 m depending on
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local conditions (e.g. Kuzmin, 1963; Garstka, 1964; Kuusisto, 1984). To analyse the stochastic structure of
spatial snow characteristics, it was necessary to have sufficient number of snow courses inside the area under
consideration. In this case, the linear scales of the area covered by snow are usually more than 15 to 20 km.
Taking into account these peculiarities of snow cover measurements, we investigated the statistical structure
of snow cover for the snow courses and for the areas separately.

Figure 1a represents a typical example of the snow depth variation along the 7 km snow course on an open
plot near Moscow, based on the snow measurements carried by Moscow University Hydrological Department
(the distance between data points was 25 m). The variabilities of the snow depth over the first 700 m of this
snow course using a sample spacing of 25 m and over the entire snow course using a sample spacing of
250 m are shown in Figure 1b and c respectively. As seen in Figure 1, the snow depth variability over this
snow course at different spatial scales had a similar structure.

Figure 2 shows the variogram of the snow depth variations for the snow course under consideration together
with the variograms of snow depth variations in other landscapes constructed on the basis of the snow
measurements in the following regions: (a) Tien-Shan region (mountainous terrain); (b) North of Alaska
(tundra); (c) Valday region (forest zone); (d) the Oka River basin (forest zone); (e) the Don River basin
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Figure 1. Snow depth measurement along a 7 km snow course: (a) all data; (b) the first 700 m with the resolution equal to 25 m; (c) 7 km
with the resolution equal to 250 m
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Figure 2. Variograms of snow depth for scales from tens to hundreds meters: (a) Tien-Shan region; (b) Alaska; (c) Valday region; (d) oka
river basin; (e) don river basin; (f) lower Volga region

(forest steppe zone); and (f) Lower Volga region (steppe zone). The data used to construct these variograms
were taken from Dunaeva et al. (1960), Trifonova (1962), Brown and Johnson (1965), and Kopanev (1971).
As seen in Figure 2, the spatial variograms of snow depth in logarithmic coordinates were approximated quite
well by linear functions, and we can consider the variations of the snow depth at chosen snow courses as the
fractional Brownian processes.

The fractal dimensions of snow depth determined using Equation (5) (E was taken to be equal to unity
because the data of linear snow courses were used) are shown in Table I, and vary within a narrow range.
The values of H showed in Table I were close to the estimates of H obtained by Shook and Gray (1996) for
scales 20–100 m.

Table I. Fractal dimension of the snow depth

Region Number
of data
points

Lower
limit of

distances
(m)

Upper
limit of

distances
(m)

Exponent of
variogram
šstandard
deviation

Fractal
dimension of

surface

Tien-Shan region (mountains) 100 20 2000 0Ð30 š 0Ð03 1Ð85
Valday region (forest plain) 50 20 1000 0Ð15 š 0Ð01 1Ð93
Dubovskaya water balance station (steppe) 100 20 2000 0Ð18 š 0Ð02 1Ð91
North of Alaska (tundra) 100 100 1420 0Ð15 š 0Ð04 1Ð92
Oka River basin (open plain) 280 25 7000 0Ð22 š 0Ð01 1Ð89
Lower Volga region (steppe) 100 20 2000 0Ð36 š 0Ð03 1Ð82
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Because the spatial variation of snow density is small by comparison with the snow depth, and snow depth
and snow water equivalent are strongly correlated values, the fields of snow depth and snow water equivalent
have similar structure. In order to investigate the areal structure of the snow cover, we used measurements
of maximum (before melting) snow water equivalent in six physiographic regions of East Europe and the
Kolyma River basin (North-east Russia). We obtained these data from the Agrometeorological Annuals,
which were published by the Hydrometeorological Service of the USSR. Below is a short description of the
regions.

(1) This region with an area of 48 000 km2 is situated in the northwest of Russia and partially includes the
drainage area of the North Dvina, Mesen, Pechora and Upper Volga Rivers. The region has low relief
dominated by forest vegetation, except for the northern part where the vegetation consists largely of mixed
forest and tundra. The zonal distribution of snow cover is expressed weakly, but, in general, the forest has
higher snow cover than the tundra.

(2) The upper and middle part of the Volga River basin (31 000 km2 in area) is mainly a plain rugged relief
with small differences in elevation and with forest vegetation.

(3) The region is a sub-basin of the Kama River basin with a size of 42 000 km2. The upper part of the region
is mountainous and is bounded to the east by the Ural Mountains; the middle and lower part of the region
is a hilly plain.

(4) This region is located in the Don River basin (mainly the Sosna River basin) and covers an area of
21 000 km2. It is a rugged plain in the forest–steppe zone.

(5) This region covers an area of 34 000 km2 in the basins of the Dniester, South Bug and Pripyat (the west
part of the Ukraine). About 30% of the region is in the foothills of the Carpathian Mountains with forest
vegetation; the rest of the region is a forest–steppe zone.

(6) The upper part of the Kolyma River basin (drainage area is 99 400 km2) is a mountainous area with
elevations ranging from 1000 to 1200 m to 1700 to 2000 m. Most of this area is covered by tundra and
taiga vegetation. A significant portion of the basin is barren ground. This basin is located in the zone of
continuous permafrost.

The spatial variograms of the maximum snow water equivalents for all six physiographic regions are
depicted in Figure 3, which shows that all these variograms are well approximated by the power functions
and, consequently, the conditions of homogeneity of increments and the self-similarity are satisfied. The
number of sample points, the long-term mean of the areally averaged maximum snow water equivalents and
their standard deviations, the exponent of power variogram, and the fractal dimension for each region are
given in Table II (E was taken to be equal to two).

The calculated values of H, both for the snow courses in different landscapes and also for the physiographic
regions, have relatively small differences. The fractal dimensions for the forested area tend to have slightly
higher values. The relatively small value of the fractal dimensions for the Kolyma River basin is explained
by its mountainous relief. The values of H for all variograms were less than 0Ð5, and thus the spatial
increments of the snow depth or the snow water equivalent were negatively correlated, indicating that
these characteristics appeared relatively noisy and the short–range effects in their variations dominated
(the sign of the derivations from the mean values of these functions often alternates). Such antipersistent
properties of spatial variation are also typical for spatial distribution of rainfall (Gupta and Waymire, 1990),
topography (Mark and Aronson, 1984), and a number of soil parameters (Burrough, 1983). However, regardless
of dominance of short-range effects, the correlation of increments extended over arbitrarily large spatial
scales.
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Figure 3. Variograms of the snow water equivalent for scales from tens to hundreds kilometres

Table II. Fractal dimension of the maximum snow water equivalent

Region Number
of data
points

Mean areally
averaged

snow water
equivalent

(mm)

Standard
deviation of
snow water
equivalent

(mm)

Exponent of
variogram
šstandard
deviation

Fractal
dimension

Northern European Russia 65 142 34 0Ð30 š 0Ð05 2Ð85
Central European Russia 41 116 37 0Ð22 š 0Ð03 2Ð89
Kama River basin 50 114 33 0Ð16 š 0Ð03 2Ð92
Sosna River basin 30 82 32 0Ð28 š 0Ð02 2Ð86
Carpatian Region 40 50 32 0Ð31 š 0Ð05 2Ð84
Kolyma River basin 20 94 49 0Ð67 š 0Ð07 2Ð66
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THE APPLICATION OF THE HYPOTHESIS ON STATISTICAL SELF-SIMILARITY OF SNOW
COVER CHARACTERISTICS

In order to estimate the sensitivity of modelled snowmelt runoff to scaling of snow cover spatial variance,
we applied the distributed runoff generation model developed for the Upper Kolyma River basin (Kuchment
et al., 2000).

The model is based on a finite-element schematization on the river basin and describes the following
processes of runoff generation in the permafrost regions: snow cover formation and snowmelt, thawing of the
ground, evaporation, basin storage dynamics, overland, subsurface, and channel flow. The maximum snow
water equivalent S values were determined for each finite-element with aid of the Thiessen method using the
records at 20 snow measurements stations. The schematization of the basin and the location of data points
are shown in Figure 4.

In order to describe variations of S over each subgrid area, the following procedure was developed: we
assumed that the areal distribution of the initial value of S within each subgrid area satisfied lognormal
probability law. The mean value of S over the kth subgrid area (mk) was assigned equal to the value of S
measured at the closest snow station. The variance for subgrid areas �2

k was assigned in two ways: (1) as

Ayan-Yuryah Kolyma

Kulu

Detrin

Bokhapcha

Ust-Srednekan

Debin

Taskan

Berelyekh

Figure 4. Schematization of the Upper Kolyma River basin and the location of data points
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a constant over the whole basin area �2
F (this approach was used during the calibration of the model); and

(2) as calculated, according to Equation (6):

�2
k D

(
Fk

F

)0Ð67

�2
F �8�

The value �2
F was estimated using 20 data points (the standard error of estimation was about 13% under

the condition that the values of S were distributed by lognormal probability law).
The reduction of the subgrid variance reduced the portion of subgrid area with large values of the snow

water equivalent and the snowmelt ends earlier. Figures 5 and 6 reveal these effects for two snowmelt events
(Springs of 1967 and 1975). In both cases, the calculated snow-covered area declined more rapidly when the
subgrid variance of the snow water equivalent was determined as a function of the subgrid area than if this
variance was assigned to be equal to the constant value determined for the whole river basin. However, the
difference in the distributions of snow-free area was significantly larger for the 1967 Spring event. We explain
this by a more uniform distribution of snow cover over the basin.

The results from comparing the observed hydrographs with the hydrographs calculated when �k was
constant for the whole basin, and when �k was determined for each finite-element area taking into account
their sizes, are given in Figure 7. Table III contains a comparison of the peak discharges calculated using

a

b

10.00

20.00

30
.0

0

40.00

30.00
20.00

10.00

10.00

5.00
10.00

10.00

10.00

5.00

10.00

20.00

30.00

40
.0

0

50
.0

0

40.00

30.00

20.00

10.00 5.
00

Figure 5. Spatial distribution of calculated snow water equivalent S (mm) for 20 May 1967: (a) the variance of S depended on the size of
subgrid areas; (b) the variance of S was assigned as a constant for the whole basin
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Figure 6. Spatial distribution of calculated snow water equivalent S (mm) for 20 May 1975: (a) the variance of S depended on the size of
subgrid areas; (b) the variance of S was assigned as a constant for the whole basin

both ways of assigning variance �k . Because the lag time of the Upper Kolyma River basin is large enough
there is some smoothing of differences in timing of snowmelt water inputs from different basin areas, and
the sensitivity of the modelled snowmelt runoff to scaling of snow cover spatial variance was significantly
less than the sensitivity of snowmelt water inputs. However, as seen from Figure 7 and Table III, in most
cases there was a perceptible increase of snowmelt peak discharges when the size of area was taken into
account when assigning �k . Such increases reached 20% for 1974 and 30% for 1967 when the snowmelt
periods were long. Scaling of snow cover spatial variance did not improve calculation of the hydrographs
(Figure 7). This was a result of calibrating the model parameters without this scaling. At the same time,
it is possible to assume that, with some hydrometeorological conditions and for small river basins, this
scaling may allow one to improve the calibration of model parameters and the accuracy of calculating
runoff generation processes.

CONCLUSIONS

(1) The analysis of snow measurements carried out in different physiographic regions showed that fields of
snow cover characteristics may be considered as random fields with homogeneous increments.
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Figure 7. Observed (squares) and calculated hydrographs of the Kolyma River (dashed line: the variance of the initial snow water equivalent
depended on the size of subgrid areas; solid line: the variance of the initial snow water equivalent was assigned as a constant for the whole

basin)

(2) The variograms of these fields were approximated by a power function, and, consequently, these fields
were considered statistically self-similar.

(3) To transfer from statistical parameters of snow distributions for large areas to statistical parameters for
small areas, it was possible to use Equations (6) and (7).

(4) Use of self-similarity of snow cover for parameterization of subgrid effects enabled us to improve the
description of snowmelt dynamics both within subgrid areas and for the whole river basin.
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Table III. Peak discharges of snowmelt floods calculated
with different approaches to describing subgrid changes

of snow water equivalent

Year Peak discharge (m3 s�1) Deviation (%)
�k. 6D �F �k. D �F

1976 5921 5506 8
1975 5304 5388 �2
1974 6530 5421 20
1973 3654 3433 6
1972 6131 5577 10
1971 4226 3872 9
1970 3639 3556 2
1969 7527 6951 8
1968 10 578 10 653 �1
1967 8601 6658 29

Average 6211 5702 9

(5) The sensitivity of snowmelt flood hydrographs to the variance of the snow water equivalent on the size of
subgrid areas was less than for snowmelt dynamics. However, for some hydrometeorological conditions
and for small river basins this effect may lead to significant changes in the calculated hydrographs.
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