Трансформация ветровых волн ледяным покровом в северо-западной части Черного моря

А. Е. Букатов*, Д. Д. Завьялов*

Проведено исследование трансформации ледяным покровом ветрового волнения, приходящего из открытой части Черного моря к северо-западному побережью. Получены частотные спектры амплитуд и горизонтальной составляющей скорости волн, прошедших покрытую льдом область моря. Выполнен анализ зависимости спектральных и статистических характеристик волнения от региональных условий. Определен модуль индукционного волнами напряжения изгиба ледяной пластины как функции расстояния от кромки.

Особенности ледового режима

В северо-западной части Черного моря льды образуются ежегодно. Они наблюдаются в прибрежной полосе от Днепровского лимана до пролива Босфор и в районе, примыкающем к Керченскому проливу от Феодосии до Новороссийска [1, 3, 6, 8, 10]. Ледовитость (площадь поверхности моря, покрытая льдом) Черного моря испытывает большую межгодовую изменчивость. Возможны случаи, когда ледовитость одной зимы может в 10 и более раз превосходить ледовитость другой. Колебания ледовитости Черного моря не обнаруживают заметной закономерности в хронологической последовательности зим различной суровости. После очень суровых и ледовитых зим (например, 1953/54 г.) могут наблюдаться очень мягкие и малоледовые зимы (1954/55 г.), и наоборот (1952/53 г. и 1953/54 г.). Суровые зимы, как и мягкие, могут продолжаться по несколько лет подряд.

Внешняя кромка льда в Черном море, подобно ледовитости, испытывает колебания как длительного характера, обусловленные сезонными и межгодовыми особенностями атмосферных процессов, так и кратковременные, согласующиеся со сменой естественных синоптических периодов над морем. Максимальные за зиму площади распространения льда имеют наибольшую обеспеченность в феврале. В феврале же отмечаются и наиболее отклонения ледовитости от средних значений. Данные, основанные на непрерывных многолетних наблюдениях, показывают, что, несмотря на значительные (превосходственно 3—7 дневные) изменения ледовитости и положения кромки, их среднемесячные аномалии сохраняются во времени довольно устойчиво и продолжительно [8]. Результаты многолетних наблюдений показывают, что экстремальные или близкие к ним по суровости зимы — явление не редкое для рассматриваемого региона. Их обеспеченность составляет [3, 8, 10] около 20%. В такие зимы необход́имые для ледообразования условия могут возникнуть на площади до 20 тыс. км². При этом кромка льда может удалиться от берега на

* Морской гидрофизический институт Национальной академии наук Украины.
расстояние до 35 миль, а толщина льда достигать 60 см. Для суровых зим также характерно то, что лед наблюдается (по меньшей мере в прибрежной полосе) примерно с середины декабря до середины марта и общая продолжительность ледового периода составляет 3,5—4,0 месяца [8, 9]. Аномально холодные зимы обусловливают не только повышенную ледовитость моря, но также способствуют нарастанию толщины льда сверх нормы и большей устойчивости и продолжительности существования ледяного покрова в целом.

В суровые зимы, когда ледяной покров получает большое распрос транение по площади моря и увеличивается по толщине, его наличие значительно усложняет условия навигации, существенно изменяет характер поверхностного волнения, воздействуя тем самым на обменные, гидрохимические и гидрофизические процессы в толще воды под ледяным полем. Регулярные и все возрастающие плавания транспортных судов в Одессе, Николаеве, Херсоне и другие порты на северо-западе Черного моря, а также освоение ресурсов шельфовой части моря, природоохранные задачи требуют изучения и учета особенностей ледяного покрова, его динамики, сезонных и межгодовых изменений. В связи с этим практический интерес представляет изучение динамического состояния северо-западной части бассейна Черного моря с учетом особенностей, обусловленных характером ледового режима в зимний период.

Особенности ветрового волнения

В Черном море заметно сезонное и пространственное изменение характера ветрового волнения. Преобладающими ветрами в зимний период для рассматриваемого региона являются ветры северного и северо-восточного направлений. Их средняя продолжительность составляет около 15 сут, однако такие ветры могут иметь непрерывную продолжительность до 10 сут. Следует отметить, что повторяемость и продолжительность ветров других направлений также достаточно велики, что связано с местными орографическими условиями района [2]. Зимнюю периоду соответствуют максимально возможные значения скорости ветра. Так, обеспеченность ветров скоростью ≥ 14 м/с — 7%, а их повторяемость порядка 4%. Повторяемость ветра ≥ 20 м/с составляет 0,3—0,5%. Наиболее характерные скорости ветра зимой в данном регионе заключены в пределах 4—10 м/с. Из обеспеченность колеблется от 40 до 80%, а повторяемость составляет около 20%.

Значительные размеры моря и большие глубины способствуют развитию крупных волн, высоты которых могут превышать 11 м. Однако повторяемость сильного волнения невелика: зимой для волн ≥ 6 м она менее 1%, а 90% волн имеют высоту менее 3 м. Как правило, периоды волн на Черном море — не более 9 с, наиболее повторяющимися являются волны с периодами 3—5 с (48%). Их обеспеченность — 75%. Режим волнения в прибрежной зоне очень изменчив и в значительной степени зависит от местных особенностей региона. Так, зимой у северо-западного, а иногда и у западного побережья развитию и распространению волнения препятствуют льды.

Целью настоящей работы является изучение трансформации ледяного покровом спектров развивающегося и развитого ветрового волнения, приходящего из открытой части моря к северо-западному побережью. Рас-
смотрины также спектры горизонтального компонента скорости волнения, прошедшего под лед, а также приведены модули индуцированного волнами напряжения ледяной пластины как функции расстояния от кромки льда для различных параметров ледяного покрова.

Теоретическая модель

Пусть часть акватории моря, прилежащая к берегу, покрыта сплошным упругим льдом толщиной h. На кромку льда из открытой части моря набегает плоская прогрессивная волна, длина которой много меньше расстояния от кромки до берега. Для математической постановки задачи о влиянии кромки льда на волновые возмущения выберем систему координат, начало которой находится на дне бассейна, а ось Z направлена вертикально вверх. Слева от вертикальной оси ($x < 0$) расположена область открытой воды, а справа ($x > 0$) — покрытая льдом. Движения жидкости в этих областях будем считать потенциальным. Соответствующие потенциалы скорости запишем в виде

$$
\Phi_1(x, z, t) = \varphi_1(x, z) e^{i\omega t}, \quad \Phi_2(x, z, t) = \varphi_2(x, z) e^{i\omega t}.
$$

Здесь ω — заданная частота падающей из области $x < 0$ волны.

Таким образом, задача сводится к решению уравнений Лапласа

$$
\Delta \varphi_{1,2} = 0
$$

(1)

с граничными условиями на поверхности бассейна ($z = H$)

$$
g \frac{\partial \varphi_1}{\partial z} - \omega^2 \varphi_1 = 0 \quad (x < 0),
$$

(2)

$$
D \frac{\partial^2 \varphi_2}{\partial z \partial x} + (1 - x \omega^2) \frac{\partial \varphi_2}{\partial z} - \frac{\omega^2}{g} \varphi_2 = 0 \quad (x > 0)
$$

(3)

и на дне ($z = 0$)

$$
\frac{\partial \varphi_{1,2}}{\partial z} = 0,
$$

(4)

где

$$
D = \frac{Eh}{12 \rho g (1 - \nu^2)}, \quad x = \frac{\rho_1 h}{\rho g},
$$

 Здесь E, ρ, ν — модуль нормальной упругости, плотность и коэффициент Пуассона льда соответственно, ρ — плотность воды, g — ускорение свободного падения. Кроме того, на границе контакта областей ($x = 0$) удовлетворим условиям непрерывности потенциалов и скоростей горизонтальных волновых течений

$$
\varphi_1 = \varphi_2, \quad \frac{\partial \varphi_1}{\partial x} = \frac{\partial \varphi_2}{\partial x} \quad (0 < z < H),
$$

(5)

а на кромке льда — условиям свободного края, заключающимся в равенстве нулю изгибающего момента и перерезывающей силы.
\[
\frac{\partial^2 \varphi_2}{\partial z \partial x} = \frac{\partial \varphi_2}{\partial z \partial x} = 0.
\] (6)

Решая уравнение (1) с условиями (2)—(4), получим дисперсионные соотношения

\[
\omega^2 = rg \tanh (rH),
\] (7)

\[
\omega^2 = \frac{(Dk^4 + 1) kg \tanh (kH)}{1 + x kg \tanh (kH)},
\] (8)

связывающие частоту колебаний \(\omega \) с волновым числом, обозначенным через \(r \) и \(k \) для областей \(x < 0 \) и \(x > 0 \) соответственно. Решение уравнения (7) являются два действительных \(\pm r \) и счетное множество мнимых \(\pm ir_n, n = 1, 2, 3... \) корней. Уравнение (8), кроме двух действительных \(\pm k \) и счетного множества мнимых \(\pm ik_n, n = 1, 2, 3..., \) имеет две пары комплексно сопряженных \(\beta \pm \iota \alpha \) корней. Учитывая ограниченность потенциалов и отсутствие набегающей на кромку незатухающей волны из области \(x > 0 \), запишем:

\[
\varphi_1 = I e^{-i \alpha x} \cosh (Rx) + R^* e^{i \alpha x} \cosh (Rx) + \sum_{n=1}^{\infty} A_n e^{+i \alpha x} \cos (r_n x),
\] (9)

\[
\varphi_2 = T^* e^{-i \alpha x} \cosh (kz) + T_1 e^{-(\alpha + i \beta) x} \cos [(\alpha + i \beta) x] +
\]
\[
+ T_2 e^{-i (\alpha - i \beta) x} \cos [(\alpha - i \beta) x] + \sum_{n=1}^{\infty} B_n e^{-k_n x} \cos (k_n x).
\] (10)

Все амплитудные коэффициенты потенциалов \(\varphi_1 \) и \(\varphi_2 \) — комплексные. Из них \(I, R, T^* \) представляют падающую, отраженную и прошедшую незатухающие прогрессивные волны, характеристые корнями \(-r \), \(r \) и \(-k \) соответствующих дисперсионных уравнений. Коэффициенты \(T_1, T_2 \) отвечают затухающим прогрессивным волнам, обусловленным изгибной жесткостью льда. Их определяют корни \(\pm \beta + \iota \alpha \) уравнения (8). Краевые волны, существующие по обе стороны от кромки и экспоненциально затухающие с удалением от нее, представлены корнями \(r_n, k_n \) уравнений (7), (8) и коэффициентами \(A_n \) и \(B_n \) в областях \(x < 0 \) и \(x > 0 \) соответственно.

Представив задачу удовлетворения условий (5), (6) как вариационную [11], произведем минимизация функционала

\[
c^2 (\delta Q_r + \mu Q_d + \gamma Q_z + \eta K) c - 2 \eta \nu^c c,
\]

осуществив тем самым сшивку потенциалов и скоростей горизонтальных волновых течений на границе контакта областей \(x = 0 \) по всей глубине бассейна и выполнив условия свободного края при набегании на кромку льда прогрессивной волны единичной амплитуды.

Здесь \(c \) — вектор-столбец реальных и мнимых частей искомых амплитудных коэффициентов потенциалов (9), (10); матрицы \(Q_r, Q_d \) и \(Q_z \);
характеризуют соответственно невязки при склейке потенциалов, их производных и при выполнении условий свободного края на кромке льда; \(v \) — вектор, элементы которого расставлены так, что амплитуда \(I \) соответствует единица, а остальным коэффициентам — нули; \(K \) — квадратичная матрица, для которой \(Kc = v; \delta, \mu, \gamma, \eta \) — неизвестные множители Лагранжа. Звездочка означает транспонирование. Определев вектор \(c \), получим потенциалы скорости (9), (10) волновых возмущений в свободной от льда области бассейна и в области, покрытой льдом.

При ветровом волнении поверхность моря имеет сложную нерегулярную форму, являющуюся результатом суперпозиции прогрессивных волн. Энергия волн различных периодов описывается энергетической спектральной плотностью \(S(f) \), \(f = 2\pi \omega \). При набегании волны единичной амплитуды для заданной частоты \(f \) найдем по модели ее амплитуду \(\xi(x, f) \) в области, покрытой льдом. Определив теперь для каждого из компонентов спектра \(S(f) \) набегающих на кромку льда волн их амплитуды в области \(x > 0 \), получим спектр

\[
S^*(x, f) = |\xi(x, f)|^2 S(f)
\]

на удалении \(x \) от кромки льда. Спектр горизонтального компонента скорости можно получить по формуле

\[
S_a(\omega) = \omega^3 \frac{\text{ch}(kz)}{\text{sh}(kH)} S(\omega),
\]

Прошедшая кромку льда волна вызывает в ледяной пластине напряжение изгиба

\[
F(x, f) = \frac{1}{2} Eh \frac{\partial^2 \xi(x, f)}{\partial x^2}.
\]

Определив \(\xi(x, f) \) через потенциал скорости (10) из кинематического соотношения \(\partial \xi / \partial x = \partial \varphi / \partial t \) (при \(z = H \)) и подставив в (11), для набегающей волны единичной амплитуды найдем

\[
F(x, f) = E F_0(x, f), \quad F_0 = a(F_1 + F_2 + F_3), \quad a = -h (2ik \text{sh}(kH))^{-1},
\]

\[
F_1 = T^2 k^3 e^{-ikx} \text{sh}(kH),
\]

\[
F_2 = T_1 (\alpha + i \beta)^3 e^{-(\alpha + \beta)x} \sin [(\alpha + i \beta)H] +
\]

\[
+ T_2 (\alpha - i \beta)^3 e^{-(\alpha - i\beta)x} \sin [(\alpha - i \beta)H],
\]

\[
F_3 = \sum_{n=1}^{\infty} B_n k_n x e^{-k_n x} \sin (k_n H),
\]

где \(F_1, z, z \) характеризуют соответственно вклады прогрессивных, прогрессивно-затухающих и краевых волн в напряжение изгиба. Так как спектральная плотность квадрата напряжения \(N^*(x, f) \) связана с энергетическим спектром набегающих волн соотношением [1]

\[
N^*(x, f) = |F_0(x, f)|^2 S(f),
\]

87
то ожидаемое напряжение, вызванное всеми частотными компонентами волны на удалении x от кромки, можно рассчитать по формуле

$$N(x) = \left(\int_0^\infty N^*(x, f)df \right)^{1/2}. \quad (12)$$

Различия модели и анализ полученных результатов

Рассмотренная модель набегания волн на кромку льда использована для ледовых условий северо-западной части Черного моря. Параметры ледового режима в экстремально суровые зимы для районов вблизи пунктов Вилково, Одесса, Очаков, Скадовск, Черноморское, Евпатория (районы 1—6) приведены в табл. 1. Модуль Юнга, коэффициент Пуассона и плотность льда определялись равными $8 \cdot 10^3 \, \text{Н/м}^2$, $0,33$, $870 \, \text{кг/м}^3$ соответственно при плотности воды $1025 \, \text{кг/м}^3$. Для характеристики волн в табл. 2, 3. В табл. 2 представлены скорость ветра u_0 на горизонте 10 м над уровнем моря, ее повторяемость (P_{u_0}, %) и обеспеченность (G_{u_0}, %); частота (f_m) и период (τ_m) спектрального максимума с их повторяемостью (P_{f_m}, %) и обеспеченностью (G_{f_m}, %); дисперсии η_{u_0} и η_{f_m} и повторяемость ($P_{\eta_{u_0}}$, %) волн трехпроцентной обеспеченности; длина волны (λ_m, км) и отношение (u_{uo} / C_m) скорости ветра к фазовой скорости волн компонента с частотой f_m. Соответствующие характеристики спектров горизонтальной составляющей скорости $S_0(f)$ содержатся в табл. 3, где в соответствие с [7]

$$U_{\text{max}} = \left[\frac{\pi}{2} \right]^{1/2} \frac{\eta_{\text{max}}}{\eta} \sigma_{u_0}.$$

Вариант 1 представлен в качестве примера развивающегося волнения. Его достаточно хорошо описывает спектр JONSWAP [5]

$$S_{\text{i}} = \alpha g^2 (2\pi)^{-4} f^{-5} \exp \left[-\frac{5}{4} \left(\frac{f_m}{f} \right)^4 + (\ln \gamma) \exp \left[\frac{(f - f_m)^2}{2\delta^2 f_m^2} \right] \right].$$

Таблица 1

<table>
<thead>
<tr>
<th>Район</th>
<th>Максимальное удаление кромки льда от берега, мили</th>
<th>Максимальная толщина льда, м</th>
<th>Глубина бассейна вблизи кромки льда, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Вилково</td>
<td>7—13</td>
<td>0,44</td>
<td>10</td>
</tr>
<tr>
<td>2 Одесса</td>
<td>30—35</td>
<td>0,40</td>
<td>30</td>
</tr>
<tr>
<td>3 Очаков</td>
<td>35</td>
<td>0,62</td>
<td>20</td>
</tr>
<tr>
<td>4 Скадовск</td>
<td>3,5—7,0</td>
<td>0,57</td>
<td>10</td>
</tr>
<tr>
<td>5 Черноморское</td>
<td>0,5—1,0</td>
<td>0,48</td>
<td>15</td>
</tr>
<tr>
<td>6 Евпатория</td>
<td>1</td>
<td>0,46</td>
<td>15</td>
</tr>
</tbody>
</table>

88
Таблица 2
Характеристики набегающих на кромку льда ветровых волн и спектров их амплитуд

<table>
<thead>
<tr>
<th>Вариант</th>
<th>u_1</th>
<th>P_2</th>
<th>G_2</th>
<th>f_m</th>
<th>τ_m</th>
<th>P_f</th>
<th>G_f</th>
<th>σ^2</th>
<th>η_{33}</th>
<th>P_η</th>
<th>X</th>
<th>U_{10}/C_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7,8</td>
<td>18</td>
<td>60</td>
<td>0,300</td>
<td>3,3</td>
<td>48</td>
<td>75</td>
<td>120,0</td>
<td>58</td>
<td>58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>6,5</td>
<td>18</td>
<td>60</td>
<td>0,210</td>
<td>4,8</td>
<td>48</td>
<td>75</td>
<td>350,0</td>
<td>99</td>
<td>58</td>
<td>110</td>
<td>0,879</td>
</tr>
</tbody>
</table>

Примечание. Пояснения даны в тексте.

$$\delta = \begin{cases}
0,07, & f \leq f_m \\
0,09, & f > f_m
\end{cases}, \quad \gamma = 3,3, \quad \alpha = 5,15 \cdot 10^{-3}.$$

Вариант II отвечает практически развитому волнению, реализуемому в открытой части моря при установившемся ветре [4], что позволяет привлечь для описания такого рода волнения теоретический спектр Пирсона — Московитца

$$S_n(f) = \alpha g^2 (2\pi f)^{-5} \exp \left\{ -\frac{5}{4} \left(\frac{f_m}{f} \right)^4 \right\}, \quad \alpha = 8,1 \cdot 10^{-3}.$$

Учитывая, что в ходе экспериментов направление ветра находилось в диапазоне 300—0—120°, а экспериментальные функции углового распределения энергии достаточно узкие [4, 5], будем считать, что набегание ветровых волн на кромку льда происходит по нормали к ней во всех шести районах. Тем самым рассмотрим случай наибольшего прохождения волнения под лед. При выходе волн в зону взаимодействия с кромкой их спектры могут быть трансформированы вследствие уменьшения глубины двух некоторых из рассматриваемых районов. На рис. 1 приведены частотные спектры амплитуд и спектры горизонтального компонента скорости набегающих и прошедших волн. Римские цифры I, II соответствуют номеру варианта. Порядок кривых сверху вниз соответствует порядку расположения номера района в столбце цифр. При этом спектры набегающих волн даны с учетом их трансформации, обусловленной изменением глубины. Опосредовался путем приравнивания потока энергии спектральной составляющей на глубине и на мелкой воде [7]. Отметим, что спектры варианта I для всех районов и варианта II для второго района практически совпадают с глубоководными. Для других районов влияние изменения глубины оказалось также незначительным. Оно заключается в уменьшении дисперсии σ^2 в пределах 10% и смещении

Таблица 3
Максимальные значения горизонтальной составляющей скорости набегающих на кромку льда волн и характеристики ее спектров

<table>
<thead>
<tr>
<th>Вариант</th>
<th>f_m</th>
<th>τ_m</th>
<th>σ_{f_2} (см/с)2</th>
<th>U_{\max} cm/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,303</td>
<td>3,3</td>
<td>640,3</td>
<td>69,77</td>
</tr>
<tr>
<td>II</td>
<td>0,238</td>
<td>4,2</td>
<td>1753,0</td>
<td>136,43</td>
</tr>
</tbody>
</table>
спектрального максимума в высокочастотную область не более чем на \(0.6 \times 10^{-2}\) Гц. Длина волны на частоте спектрального максимума в трансформированном изменением глубины спектре набегающих волн для районов 1—6 равна соответственно 17,29, 17,31, 17,31, 17,29, 17,31, 17,31 (вариант I) и 32,39, 35,08, 34,73, 32,39, 33,66, 33,66 м (вариант II).

Относительный вклад возбужденных в покрытой льдом области систем прогрессивных, прогрессивно-затухающих и краевых волн в волновые возмущения изменяется с удалением от кромки, что приводит к трансформации спектра прошедших волн. Практически стационарную форму спектры прошедших волн (рис. 16, а, д, е) принимают на расстоянии, где вклад затухающих волн незначителен. Количественные оценки характеристик прошедших волн приведены в табл. 4, 5.

Таблица 4

Характеристики прошедших крому льда ветровых волн и спектров их амплитуд

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Район</th>
<th>(f_m, \Gamma \text{ Гц})</th>
<th>(\tau_m, \text{с})</th>
<th>(\bar{\tau}, \text{с})</th>
<th>(\bar{\lambda}, \text{м})</th>
<th>(\sigma^2, \text{см}^2)</th>
<th>(\bar{\eta}, \text{см})</th>
<th>(\sigma_{\eta, y}, \text{см})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>0.2959</td>
<td>3.38</td>
<td>3.38</td>
<td>32.97</td>
<td>8,13</td>
<td>7,13</td>
<td>15,12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.2959</td>
<td>3.38</td>
<td>3.43</td>
<td>32.30</td>
<td>9,60</td>
<td>7,74</td>
<td>15,65</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.2941</td>
<td>3.40</td>
<td>3.47</td>
<td>39.99</td>
<td>4,52</td>
<td>5,31</td>
<td>11,27</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.2959</td>
<td>3.38</td>
<td>3.37</td>
<td>37,15</td>
<td>5,22</td>
<td>5,71</td>
<td>12,11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.2959</td>
<td>3.38</td>
<td>3,39</td>
<td>34,98</td>
<td>7,11</td>
<td>6,67</td>
<td>14,13</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.2959</td>
<td>3,38</td>
<td>3,39</td>
<td>34,29</td>
<td>7,58</td>
<td>6,88</td>
<td>14,59</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>0.1894</td>
<td>5.28</td>
<td>4,60</td>
<td>43,61</td>
<td>100,85</td>
<td>25,11</td>
<td>53,22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.1880</td>
<td>5.32</td>
<td>4,68</td>
<td>45,13</td>
<td>138,56</td>
<td>29,42</td>
<td>62,39</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.1852</td>
<td>5.40</td>
<td>4,77</td>
<td>52,98</td>
<td>73,92</td>
<td>21,49</td>
<td>45,57</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.1869</td>
<td>5.35</td>
<td>4,64</td>
<td>47,91</td>
<td>69,80</td>
<td>20,89</td>
<td>44,28</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.1880</td>
<td>5.32</td>
<td>4,67</td>
<td>47,08</td>
<td>102,38</td>
<td>25,30</td>
<td>53,63</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.1887</td>
<td>5.30</td>
<td>4,66</td>
<td>46,35</td>
<td>106,72</td>
<td>25,83</td>
<td>54,75</td>
</tr>
</tbody>
</table>
Таблица 5
Максимальные значения горизонтальной составляющей скорости прошедших волн и характеристики ее спектров

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Район</th>
<th>f_m</th>
<th>Γ_u</th>
<th>τ_m</th>
<th>c</th>
<th>σ_u (см/с)2</th>
<th>U_{max} см/с</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>0,2976</td>
<td>3,36</td>
<td>30,3</td>
<td>15,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,2976</td>
<td>3,36</td>
<td>32,2</td>
<td>15,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,2976</td>
<td>3,37</td>
<td>14,9</td>
<td>10,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,2976</td>
<td>3,35</td>
<td>20,5</td>
<td>12,48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,2976</td>
<td>3,36</td>
<td>24,8</td>
<td>13,73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,2976</td>
<td>3,36</td>
<td>26,4</td>
<td>14,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>0,2088</td>
<td>4,79</td>
<td>228,6</td>
<td>49,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,2000</td>
<td>5,00</td>
<td>250,3</td>
<td>51,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,1961</td>
<td>5,10</td>
<td>132,1</td>
<td>37,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,1961</td>
<td>5,10</td>
<td>162,3</td>
<td>41,51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,1961</td>
<td>5,10</td>
<td>194,1</td>
<td>45,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,2000</td>
<td>5,00</td>
<td>205,6</td>
<td>46,72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Анализ полученных результатов показал, что ледяной покров смешает частоту спектрального максимума в низкочастотную область. Для спектра горизонтального компонента скорости это смешение несколько больше, чем для частотного спектра возвышений. Наибольшее значение этого смещения бывает при развитом (вариант II) волнении в районе 4. Для спектров амплитуд и горизонтальной скорости оно составляет здесь примерно 0,0282 и 0,0539 Γ_u соответственно. Средние периоды и длины прошедших волн при развитом волнении меньше периода и длины волны компонента с частотой f_m. В частности, для района 2 отличие λ_m от средней длины λ максимально и составляет около 6,1%. Соответствующее отклонение τ_m от τ равно здесь примерно 12%. При развивающемся волнении для всех районов λ превышает λ_m на 4,06—5,70%, а среднее значение периода τ практически совпадает с τ_m. Наибольшей пропускной способностью по амплитудам и горизонтальной составляющей скорости волн обладает кромка льда в районе Одессы. Эти волновые характеристики могут достигать здесь (вариант II) значений 62,39 см и 51,55 см/с. В районах Очаков и Скадовск пропускная способность минимальна.

Спектр напряжения $N^*_w(x, f)$ от набегающих волн единичной амплитуды сужается с удалением от кромки, где напряжение равно нулю. Пик спектра становится более выраженным, а частота пика убывает. Достигнув на некотором удалении x_0 своей верхней границы, спектр спадает, приближаясь к устойчивой форме. Количественные характеристики спектра $N^*_w(x, f)$ (при $S(f) \equiv 1$), характеризующие пропускную способность падающих волн различной частоты генерировать напряжение во льду, даны для рассматриваемых районов в табл. 6. Здесь f^0 и τ^0 представляют собой частоту и период волн, способных обеспечить наиболее значительное напряжение изгиба льда. Видно, что при одинаковой на всех частотах амплитуде падающих на кромку волн максимально возможное напряжение изгиба реализуется в районе 2 на удалении $x_0 \approx 15$ м. Чем дальше от
Таблица 6

Характеристики спектра напряжения изгиба льда, вызванного набегающими волнами единичной амплитуды

<table>
<thead>
<tr>
<th>Район</th>
<th>Верхняя граница спектра</th>
<th>Устойчивая форма</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f_m Γ_4</td>
<td>φ_m с</td>
</tr>
<tr>
<td>1</td>
<td>0,2232</td>
<td>4,48</td>
</tr>
<tr>
<td>2</td>
<td>0,2475</td>
<td>4,04</td>
</tr>
<tr>
<td>3</td>
<td>0,2049</td>
<td>4,88</td>
</tr>
<tr>
<td>4</td>
<td>0,2000</td>
<td>5,00</td>
</tr>
<tr>
<td>5</td>
<td>0,2262</td>
<td>4,42</td>
</tr>
<tr>
<td>6</td>
<td>0,2294</td>
<td>4,36</td>
</tr>
</tbody>
</table>

кромки спектр $N_0^c(x, f)$ достигает своей верхней границы, тем меньше значение его максимума. Отметим, что расстояние от кромки, на котором реализуется устойчивая форма спектра $N_0^c(x, f)$, характеризует ширину прикромочной зоны существенных изменений волновых характеристик. Она максимальна в районе Очакова и минимальна вблизи Одессы.

Ожидаемое напряжение изгиба льда $N(x)$, определяемое его способностью $N_0^c(x, f)$ и спектральными характеристиками набегающего ветрового волнения, приведено на рис. 2. Оно рассчитано для районов 1—6 по формуле (12) при различных значениях модуля упругости и плотности льда, измеряющихся в течение зимнего периода. Графики показывают, что в рассматриваемых районах $N(x)$ достигает своего максимального значения на различных расстояниях x от кромки. Рост упругости льда уменьшает напряжение $N(x)$, смещающая при этом положение его максимума в глубь покрытой льдом области. Максимально возможные напряжения изгиба льда в рассматриваемых условиях развитого ветрового волнения значительно больше, чем в условиях развивающегося.

Работа выполнена при частичной финансовой поддержке Объединенного фонда Правительства Украины и Международного научного фонда (грант К31100).

![Рис. 2. Изменение модуля напряжения изгиба льда с удалением от кромки.](image)

а) $E = 8 \cdot 10^9$ Н/м2, $\rho_1 = 870$ кг/м3; б) $E = 6 \cdot 10^9$ Н/м2, $\rho_1 = 922,5$ кг/м3.

92
Литература

1. Атлас льдов Черного и Азовского морей /Под ред. Назарова В. С. — Л., Гидрометеоиздат, 1962, 120 с.
2. Ветер и волны в океанах и морях: Справочные данные — Л., Транспорт, 1974, 359 с.
4. Ефимов В. В., Кривицкий В. Б., Соловьев Ю. П. Изучение зависимости энергии морских ветровых волн от района. — Метеорология и гидрометеорология, 1986, № 11, с. 68—75.
5. Ефимов В. В., Соловьев Ю. П. Дисперсионное соотношение и частотно-уровневые спектры ветровых волн. — Известия АН СССР. Физика атмосферы и океана, 1979, т. 15, № 11, с. 1175—1187.
6. Каракаш А. И., Короб М. И. Долгосрочный прогноз ледовитости нервторгических морей — Труды Гидрометцентра СССР, 1984, вып. 263, с. 81—90.
7. Крылов Ю. М., Стрекалов С. С., Циплухин В. Ф. Ветровые волны и их воздействие на сооружения. — Л., Гидрометеоиздат, 1976, 256 с.
8. Крыдин А. Н. Сезонные и межгодовые изменения ледовитости и положения кромки льда на Черном и Азовском морях в связи с особенностями атмосферной циркуляции. — Труды ГОИМ, 1964, вып. 76, с. 7—79.

WIND WAVE TRANSFORMATION BY ICE COVER IN THE NORTHWESTERN BLACK SEA

A. E. Bukatov and D. D. Zav'yalov

Transformation of wind waves propagating from the Black Sea open region to the northwest coast by the ice cover is investigated. Frequency spectra of amplitudes and a horizontal velocity component of waves transited and ice-cover area are obtained. The dependence of spectral and statistical wave characteristics on regional conditions is analysed. The modulus of wave-induced bending strain of the ice plate is determined as a function of distance from the ice edge.