МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

На правах рукописи

Кушунина Мария Александровна

РОЛЬ КЛЕТОЧНЫХ СТЕНОК В ПОГЛОЩЕНИИ ИОНОВ Cu^{2+} И Ni^{2+} КОРНЯМИ РАСТЕНИЙ

03.01.05 – физиология и биохимия растений

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена на кафедре физиологии растений Биологического факультета МГУ имени М.В.Ломоносова

Научный руководитель

Мейчик Наталия Робертовна

доктор биологических наук, профессор, ведущий научный сотрудник кафедры физиологии растений биологического факультета МГУ имени М.В.Ломоносова

Официальные оппоненты

Балнокин Юрий Владимирович

доктор биологических наук, профессор, зав. лабораторией транспорта ионов и солеустойчивости, ФГБУН Институт физиологии растений им. К.А. Тимирязева РАН

Казнина Наталья Мстиславовна

доктор биологических наук, ведущий научный сотрудник лаборатории экологической физиологии растений Института биологии КарНЦ РАН

Осмоловская Наталия Глебовна

кандидат биологических наук, доцент, старший научный сотрудник кафедры физиологии и биохимии растений биологического факультета Санкт-Петербургского государственного университета

Защита диссертации состоится «22» ноября 2019 г. в 15 час. 30 мин. на заседании диссертационного совета МГУ.03.03 Московского государственного университета имени М.В.Ломоносова по адресу: 119234, Москва, Ленинские горы, д. 1, стр. 12, биологический факультет МГУ, ауд. М1

E-mail: dissovet_00155@mail.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на сайте ИАС «ИСТИНА»: https://istina.msu.ru/dissertations/241694714/

Автореферат разослан « » 2019	9г
-------------------------------	----

Ученый секретарь диссертационного совета, кандидат биологических наук

Д.М. Гершкович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Медь и никель являются необходимыми микроэлементами для растений. В то же время в повышенных концентрациях эти тяжелые металлы (далее — ТМ) приводят к ингибированию процессов фотосинтеза, дыхания, клеточного деления и ионного транспорта (Pandey, Sharma, 2002; Gajewska et al., 2006; Lequeux et al., 2010).

Внутриклеточные защитные механизмы, реализуемые в ответ на металлстресс, широко изучаются и обсуждаются научным сообществом, и освещены в ряде обзоров (например, Burkhead et al., 2009; Klaumann et al., 2011; Pilon, 2011). В то же время, проблема детоксикации Cu²⁺ и Ni²⁺ в апопласте изучена недостаточно, хотя стенка клеток корня первой вступает в контакт с ионами ТМ в почвенном растворе и является барьером на пути их проникновения в протопласт. Наличие у клеточной стенки (КС) способности к связыванию ионов ТМ является движущей силой их поступления в корень из почвенного раствора и может создавать конкуренцию их поглощению симпластом, особенно при низких концентрациях металла в среде (Redjala et al., 2010).

Накопление меди и никеля в апопласте ранее было показано для разных видов растений, как устойчивых к избытку этих металлов в среде, так и чувствительных к нему. Считается, что адсорбционная способность КС в отношении ионов ТМ определяется только наличием карбоксильных групп полигалактуроновой кислоты в составе пектинов (Krzeslowska, 2011; Kholodova et al., 2011). Однако известно, что помимо них в КС присутствуют и другие катионообменные группы (Meychik, Yermakov, 1999, 2001), однако их роль в связывании ионов металлов не установлена. Также в литературе отсутствуют данные о сорбционной способности КС по ионам Cu²⁺ и Ni²⁺ в зависимости от рН среды, концентрации ионов Cu²⁺ и Ni²⁺ в растворе, вида растения и в связи с количеством ионообменных групп в КС. Таким образом, на сегодняшний день информация о роли апопласта в поглощении ионов меди и никеля корнями растений крайне ограничена.

Цель работы. Определить Cu- и Ni-связывающую способность клеточных стенок, изолированных из корней растений разных видов, и оценить роль апопласта в поглощении Cu^{2+} и Ni^{2+} при их разной концентрации в среде растениями маша ($Vigna\ radiata\ (L.)\ R.Wilczek)$ и пшеницы ($Triticum\ aestivum\ L.$), резко отличающихся содержанием катионообменных групп в КС.

Для достижения данной цели были поставлены следующие задачи:

- 1. Определить максимальную Сu- и Ni-связывающую способность клеточных стенок, изолированных из корней растений пшеницы (*Triticum aestivum* L.), кукурузы (*Zea mays* L.), сведы (*Suaeda altissima* Pall.), шпината (*Spinacia oleracea* L., сорт «Матадор»), маша (*Vigna radiata* (L.) R.Wilczek), нута (*Cicer arietinum* L., сорт «Bivanij») и вики нарбонской (*Vicia narbonesis* L.) при изменении рН среды;
- 2. Выяснить, только ли карбоксильные группы полигалактуроновой кислоты полимерного матрикса клеточных стенок принимают участие в связывании ионов меди и никеля;
- 3. Провести сравнительный анализ поглощения ионов меди и никеля интактными растениями маша и пшеницы и изолированными из их корней клеточными стенками и оценить вклад клеточных стенок в накопление Сu и Ni корнями растений в зависимости от их концентрации в среде.

Научная новизна. Впервые показано, что способность КС корней растений к связыванию Cu^{2+} и Ni^{2+} зависит от pH среды и вида растения. В интервале рН 3-4 для всех исследованных растений установлена прямая зависимость между содержанием карбоксильных групп полигалактуроновой кислоты и Cu(Ni)-связывающей способностью КС. Впервые установлено, что наряду с карбоксильными группами полигалактуроновой кислоты в адсорбции Cu^{2+} и Ni^{2+} клеточными стенками участвуют карбоксильные группы гидроксикоричных кислот. На примере пшеницы выявлено функционирование как апопластного, так и симпластного механизмов накопления Cu^{2+} и Ni^{2+} в корне в зависимости от концентрации металла и показано, что внутриклеточные ≥90% карбоксильных механизмы «включаются», когда групп

полигалактуроновой кислоты заняты катионами Cu^{2+} или Ni^{2+} . Установлено, что у маша депонирование Cu^{2+} и Ni^{2+} в КС корня является основным ответом на присутствие этих металлов в среде во всем исследованном диапазоне концентраций, что обеспечивается более высоким содержанием карбоксильных групп полигалактуроновой кислоты в КС маша по сравнению с пшеницей.

Теоретическая и практическая значимость работы. Разработан новый экспериментальный подход к оценке эффективности КС как барьера для проникновения металла в цитоплазму клеток корня растений. Данный подход позволил выявить функционирование как апопластного, так и симпластного механизмов накопления Cu²⁺ и Ni²⁺ в корне, а также провести сравнительный анализ Cu(Ni)-связывающей способности КС в зависимости от состава структурных полимеров и концентрации токсичного металла в среде. Полученные в работе данные расширяют фундаментальные знания о механизмах ионообменной адсорбции Cu²⁺ и Ni²⁺ в КС, показывают роль этих механизмов в устойчивости растений к действию повышенных концентраций ионов меди и никеля в окружающей среде и могут быть использованы в исследовательской практике, а также включены в курсы лекций по минеральному питанию и стрессустойчивости растений.

Методология диссертационного исследования. Диссертационная работа выполнена с использованием физиолого-биохимических, физико-химических и статистических методов, а также анализа данных литературы.

Положения, выносимые на защиту.

- 1. В интервале pH от 3 до 4 единиц в связывание и Cu²⁺, и Ni²⁺ включаются только карбоксильные группы полигалактуроновой кислоты, при этом существует прямая корреляция между содержанием данных групп и содержанием металлов в КС корней различных видов растений.
- При рН≥5 наряду с карбоксильными группами полигалактуроновой кислоты в связывании ионов Cu²⁺ и Ni²⁺ могут принимать участие карбоксильные группы гидроксикоричных кислот.

- 3. Количество меди и никеля, связанных как в корнях интактных растений маша и пшеницы, так и в изолированных КС корней, прямо пропорционально содержанию карбоксильных групп полигалактуроновой кислоты в стенках клеток корня и возрастает при увеличении концентрации Cu²⁺ или Ni²⁺ в растворе.
- 4. Основным механизмом, предотвращающим накопление меди и никеля в симпласте корня у растений маша и пшеницы, является депонирование этих ионов в апопласт корня, и внутрь клеток корня данные металлы поступают только при самой высокой концентрации в среде, когда ≥90% карбоксильных групп полигалактуроновой кислоты заняты катионами Cu²+ или Ni²+.

Личный вклад соискателя заключается в планировании и проведении экспериментальных исследований, представленные результаты получены самим автором или при его непосредственном участии. Фамилии и имена соавторов указаны в соответствующих публикациях.

Апробация работы. Результаты работы были представлены в материалах конференций: Международная конференция «Клеточная биология И биотехнология растений» (Минск, Беларусь, 2013); XX Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов-2013» (секция «Биология», Москва, 2013); Всероссийская научная конференция с международным участием «Растения в условиях глобальных и локальных природно-климатических и антропогенных воздействий» (Петрозаводск, 2015); Всероссийская научная конференция с международным участием «Факторы устойчивости растений и микроорганизмов в экстремальных природных условиях и техногенной среде» (Иркутск, 2016); Всероссийская научная конференция с международным участием «Экспериментальная биология растений: фундаментальные и прикладные аспекты» (Судак, 2017). Результаты и выводы работы докладывались и обсуждались на научных семинарах кафедры физиологии растений биологического факультета МГУ.

Публикации. Общее число публикаций автора -44 (статей в журналах, индексируемых в Scopus -23, Web of Science -21), из них по теме диссертации

опубликовано 5 статей в журналах, рекомендованных ВАК и включенных в базы данных Scopus (все статьи) и Web of Science (4 статьи), а также 6 тезисов докладов научных конференций.

Диссертация состоит из введения, списка условных сокращений, обзора литературы, материалов и методов исследования, результатов исследований и обсуждения, заключения, выводов и списка литературы. Список литературы включает 180 источников, из которых 163 на английском языке. Работа изложена на 121 страницах машинописного текста, содержит 17 рисунков и 15 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Глава 1. Обзор литературы

Обзор литературы состоит из семи разделов. В нем обобщены современные данные о токсических эффектах меди и никеля в растениях, о механизмах поглощения и транспорта этих металлов, о полимерах КС растений и ионообменных группах в их составе, а также о роли КС клеток корня в защитных реакциях растений на присутствие в среде повышенных концентраций ионов меди и никеля.

Глава 2. Материалы и методы

Объектами исследования являлись: а) растения из семейства маревые (Chenopodiaceae) – 50-дневные растения сведы (Suaeda altissima) и шпината (Spinacia oleracea, сорт «Матадор»); б) растения из семейства злаки (Gramineae) – 9- и 21-дневные растения пшеницы (*Triticum aestivum*) и 16-дневные растения кукурузы (Zea mays); в) растения из семейства бобовые (Fabaceae) – 9- и 20дневные растения маша (Vigna radiata), 20-дневные растения нута (Cicer arietinum, сорт «Bivanij») и вики нарбонской (Vicia narbonesis, сорт «Sel2384»). модифицированном Растения выращивали на питательном Прянишникова или Робинсона (сведа, шпинат). Концентрация Cu^{2+} и Ni^{2+} во всех питательных растворах не превышала 0,5 мкМ. Растения содержали в климатической камере при температуре 24–26°C и световом режиме 14 ч (день) и 10 ч (ночь), освещенности 110 мкмоль фотонов/м 2 ×с.

Клеточные стенки корней выделяли в соответствии с ранее описанной методикой (Meychik, Yermakov, 1999), позволяющей получать материал, в котором не изменена форма полимерного каркаса КС, а также степень метилирования карбоксильных групп полигалактуроновой кислоты.

Определение качественного и количественного состава ионообменных групп в изолированных клеточных стенках проводили методом потенциометрического титрования (Meychik, Yermakov, 1999).

Для определения Cu^{2+} - и Ni^{2+} -связывающей способности изолированных КС и установления вклада карбоксильных групп полигалактуроновой и гидроксикоричных кислот в связывание ЭТИХ металлов образцы КС инкубировали в течение 7 суток в 12,5 мл 1 мМ раствора CuCl₂ или NiCl₂ с различным значением pH: a) pH_{исх} $5,00\pm0,05$, pH_{равн} 3,1-3,8; б) pH_{исх}=pH_{равн}=5,0(1 мМ ацетатный буфер); в) $pH_{ucx}=pH_{pagh}=6,5$ (1 мМ аммонийный буфер). Ni^{2+} концентрацию Cu^{2+} И Начальную равновесную определяли колориметрическим методом и по разнице определяли Сu- и Ni-связывающую способность КС.

Чтобы определить роль клеточной стенки в поглощении меди и никеля корнями растений, 9-дневные растения маша и пшеницы с примерно одинаковой массой корней (8 растений маша, 10 – пшеницы) переносили в сосуды со 150 мл раствора CuCl₂ или NiCl₂ с концентрацией 10, 50 или 100 мкМ, рН_{исх} 5,0±0,1. Следует отметить, что при определении накопления металла в тканях важно принимать во внимание соотношение его концентрации и объема среды к количеству растений в сосуде. В наших экспериментах оно было подобрано таким образом, чтобы количество металла в расчете на одно растение было в среднем в 50, 10 или 5 раз меньше, чем в тех работах, где наблюдали проявление токсичности Сu или Ni (L'Huillier et al., 1996; Kopittke, Menzies, 2006; Kopittke et al., 2007). Через 24 ч растения извлекали из раствора, часть растений разделяли на корни и надземную часть и озоляли их, а из корней остальных растений выделяли КС («опытные растения»). Также КС выделяли из того же количества 10-дневных растений, не подвергавшихся воздействию Cu и Ni («контрольные

растения»). Выделенные КС инкубировали 24 ч в растворе $CuCl_2$ или $NiCl_2$ с концентрацией 10, 50 или 100 мкМ и затем определяли количество связанного ими металла.

Статистическую обработку результатов экспериментов проводили с помощью программ Microsoft Excel и IBM SPSS Statistics. Приведены средние значения и их стандартные ошибки. Достоверность различий между изучаемыми показателями определяли с помощью двухвыборочного t-критерия Стьюдента. Различия считали достоверными при p<0,05.

Глава 3. Результаты и обсуждение

3.1. Си- и Ni-связывающая способность изолированных клеточных стенок различных видов растений

Установлено, что разнообразие ионообменных групп в семи изученных нами видах растений ограничивается четырьмя типами, три из которых представляют собой катионообменные группы (карбоксильные группы полигалактуроновой и гидроксикоричных кислот (ПГК и ГКК) и фенольные гидроксильные группы), а четвертый тип представлен анионообменными группами (первичные аминогруппы). При физиологических значениях рН (4–8) только карбоксильные группы диссоциированы и способны принимать участие в реакциях ионного обмена, так как значения pK_a двух других групп лежат вне пределов указанной области рН. У изученных видов содержание и карбоксильных групп ПГК ($S_{\Pi\Gamma K}$), и карбоксильных групп ГКК ($S_{\Gamma KK}$) значительно различается. $S_{\Pi\Gamma K}$ возрастает в ряду кукуруза < пшеница < шпинат < сведа \approx нут < маш < вика (злаки < маревые < бобовые), тогда как $S_{\Gamma KK}$ – в ряду вика < нут < маш < пшеница < шпинат < кукуруза < сведа (бобовые < злаки \approx маревые; Таблица 1). Содержание обоих типов групп одного порядка с данными, полученными ранее для других видов растений (Meychik, Yermakov, 1999; 2001; Colzi et al., 2012).

Наши результаты показывают, что способность изолированной КС связывать ионы Си и Ni варьирует от 30 до 250 (Ni) и 320 (Си) мкмоль/г сухой массы КС (Рисунок 1) в зависимости от вида растения и рН раствора. Самые

низкие значения Cu- и Ni-связывающей способности КС ($S_{Cu(Ni)}$) обнаружены у пшеницы и кукурузы, самые высокие — у бобовых (маш, вика, нут), при этом во всех случаях и во всем исследованном дискретном диапазоне pH S_{Cu} значительно выше, чем S_{Ni} (Рисунок 1).

Таблица 1. Количество карбоксильных групп полигалактуроновой кислоты $(S_{\Pi\Gamma K}, \text{мкмоль/}\Gamma \text{ сухой массы KC})$ и гидроксикоричных кислот $(S_{\Gamma KK}, \text{мкмоль/}\Gamma \text{ сухой массы KC})$ в изолированных KC корней исследованных растений, и отношение $Q_{\text{Cu(Ni)}}=2\times S_{\text{Cu(Ni)}}/S_{\Pi\Gamma K}$, где $S_{\text{Cu(Ni)}}$ – количество Cu(Ni), связанного изолированными KC корней при различных равновесных pH раствора (мкмоль/г сухой массы KC).

Растение	$\mathbf{S}_{\Pi\Gamma\mathbf{K}}$	$\mathbf{S}_{\Gamma \mathrm{K} \mathrm{K}}$	рН _{равн} 3–4		рН _{равн} 5		рН _{равн} 6,5	
			Q_{Cu}	Q_{Ni}	Q_{Cu}	Q_{Ni}	Q_{Cu}	Q_{Ni}
Шпинат	303±14	400±15	0,69	0,41	1,60	-	1,80	-
Сведа	420±50	503±15	0,55	0,34	1,20	0,59	1,60	1,10
Маш	550±45	220±45	0,60	0,35	1,00	0,57	1,20	0,90
Нут	420±40	210±21	0,57	0,43	1,10	0,78	1,30	1,20
Вика	590±50	60±30	0,51	0,33	0,95	0,54	1,20	0,84
Кукуруза	80±20	450±25	0,77	0,72	2,90	2,00	6,30	3,30
Пшеница	120±20	330±25	0,60	0,67	1,60	1,40	2,80	1,70

Полученные нами данные о способности КС к адсорбции Сu и Ni в целом согласуются с данными других авторов, использовавших иные методы выделения КС (Iwasaki et al., 1990; Wei et al., 2008).

У всех исследованных видов $S_{Cu(Ni)}$ значительно зависит от pH раствора (Рисунок 1). С увеличением значений pH от 3–4 до 5 этот показатель возрастает более, чем в 2 раза, а при pH 6,5 достигает максимальных значений, что обусловлено увеличением количества диссоциированных карбоксильных групп, способных связать катионы Cu^{2+} и Ni^{2+} .

Чтобы ответить на вопрос, только ли карбоксильные группы ПГК участвуют в связывании Cu^{2+} и Ni^{2+} , нами применен следующий подход. Связывание двухвалентных катионов (M^{2+}) с карбоксильными группами полимеров КС описывается уравнением $2RCOOH + M^{2+} \rightarrow (RCOO)_2M + 2H^+$, где R — полимерный матрикс КС. В соответствии с этим уравнением, отношение

удвоенного количества адсорбированного металла к количеству карбоксильных групп ПГК ($Q_{Cu(Ni)}$ =2× $S_{Cu(Ni)}$ / $S_{\Pi\Gamma K}$) показывает, какая доля этих групп занята ионами металла. Если $Q_{Cu(Ni)}$ меньше или равно 1, то в реакции обмена участвуют только карбоксильные группы ПГК. Если же это отношение больше единицы, то можно утверждать, что в связывание Cu^{2+} и Ni^{2+} включаются ГКК. Как показывают наши результаты, представленные в таблице 1, при р $H_{\text{равн}}$ 3–4 у всех изученных видов в ионообменных реакциях с Cu^{2+} и Ni^{2+} участвуют только карбоксильные группы ПГК ($Q_{Cu(Ni)}$ <1).

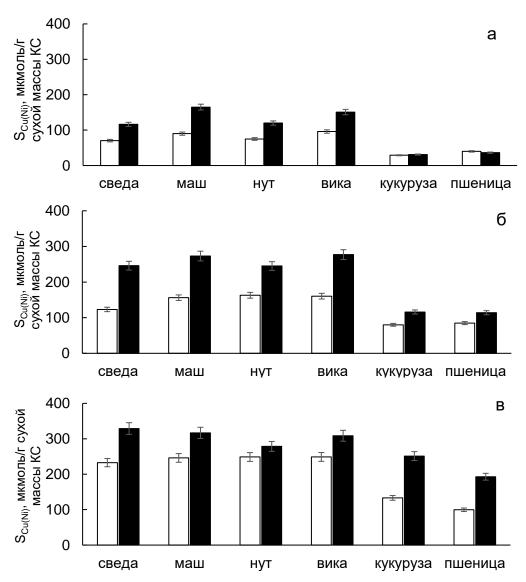


Рисунок 1. Сорбционная способность изолированных КС корней в отношении ионов Cu^{2+} (черные прямоугольники) и Ni^{2+} (белые прямоугольники) при разных рН раствора: а - р $H_{\text{равн}}$ 3–4; б - р $H_{\text{равн}}$ 5; в - р $H_{\text{равн}}$ 6,5. Приведены средние значения и их стандартные отклонения (n = 3–5).

Кроме того, при этих значениях pH существует прямая корреляция между содержанием данных групп и содержанием металлов в клеточных стенках исследованных видов растений. При pH_{равн}≥5 у всех видов Q_{Cu}≥1, следовательно, в связывании ионов меди наряду с ПГК участвуют и карбоксильные группы ГКК. В связывание никеля эти группы включаются при pH 6,5 у сведы, нута, кукурузы и пшеницы.

Наши результаты полностью согласуются с известными представлениями о ведущей роли пектинов в связывании ионов тяжелых металлов в КС. Так, нами показано, что бобовые растения имеют и самое высокое содержание карбоксильных групп ПГК в КС (Таблица 1), и самую высокую Сu- и Ni-связывающую способность КС (Рисунок 1). У злаков, напротив, и тот, и другой показатель наименьшие. В то же время, в нашем исследовании впервые показано, что карбоксильные группы ГКК также участвуют в связывании Cu²⁺ и Ni²⁺ при определенных значениях рН среды.

3.2. Поглощение ионов меди растениями маша и пшеницы и изолированными из их корней клеточными стенками

Сухая масса корней исследуемых растений по-разному изменялась в ответ на увеличение концентрации меди (C_{Cu}) в среде. У маша при C_{Cu} 10 мкМ этот показатель был выше контроля на 12%, а затем снижался и при C_{Cu} 100 мкМ был на 24% ниже контроля. У пшеницы при C_{Cu} 10 и 50 мкМ сухая масса корней оставалась неизменной, а при 100 мкМ снижалась на 15% по сравнению с контролем. У обоих видов растений сухая масса побегов не изменялась по сравнению с контролем при всех C_{Cu} . У пшеницы оводненность корней не изменялась, а у маша возросла на 9,9% по сравнению с контролем при C_{Cu} 50 мкМ, и на 18,9% — при 100 мкМ. В надземных частях обоих растений этот показатель достоверно не изменялся. Поскольку сырая и сухая массы, а также оводненность тканей растений обоих видов не отличались от контроля после 24 ч обработки 10 мкМ Cu, можно заключить, что данная концентрация меди не является стрессовой для исследуемых растений (при соответствующем объеме

раствора и количестве растений). Однако, при C_{Cu} 50 и 100 мкМ у маша наблюдалось значительное снижение массы корней по сравнению с контролем. Эти результаты подтверждают вывод о том, что маш более чувствителен к Cu, чем пшеница, как ранее показали Lee et al. (2008).

С увеличением концентрации меди в среде содержание меди в корнях исследуемых растений увеличивалось (Рисунок 2), и при C_{Cu} 100 мкМ оно было приблизительно в 35 и 110 раз больше по сравнению с контролем в корнях пшеницы и маша, соответственно. При всех обработках корни растений маша накапливали больше Cu, чем корни пшеницы, причем различие возрастало с увеличением концентрации меди в растворе (Рисунок 2).

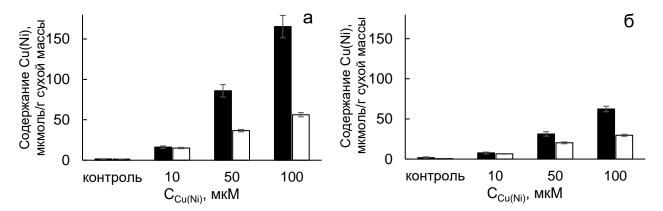


Рисунок 2. Содержание меди (черные прямоугольники) и никеля (белые прямоугольники) в расчете на сухую массу в корнях растений маша (а) и пшеницы (б) при разных концентрациях металлов в среде. Приведены средние значения и их стандартные ошибки (n=8–12).

В надземных частях растений содержание меди также увеличивалось при возрастании концентрации Cu^{2+} в среде (Рисунок 3), но составляло не более 10% от общего содержания металла в растении. Преобладающее накопление меди в корнях было ранее показано для многих растений (Ouzounidou et al., 1995; Kopittke, Menzies, 2006; Lequeux et al., 2010).

Также как и корни интактных растений, изолированные КС корней обоих видов адсорбировали больше меди из раствора при возрастании ее концентрации (Рисунок 4). Си-связывающая способность КС корней маша была выше по сравнению с КС пшеницы при всех C_{Cu} в среде, что обусловлено тем, что КС

бобовых растений содержат в 2–7 раз больше карбоксильных групп ПГК, чем КС злаков (Таблица 1; Meychik, Yermakov, 1999; Vogel, 2008).

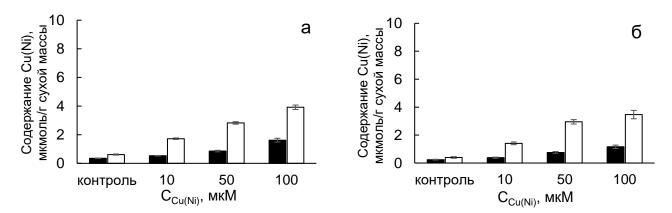


Рисунок 3. Содержание меди (черные прямоугольники) и никеля (белые прямоугольники) в расчете на сухую массу в побегах растений маша (а) и пшеницы (б) при разных концентрациях металлов в среде. Приведены средние значения и их стандартные ошибки (n=8–12).

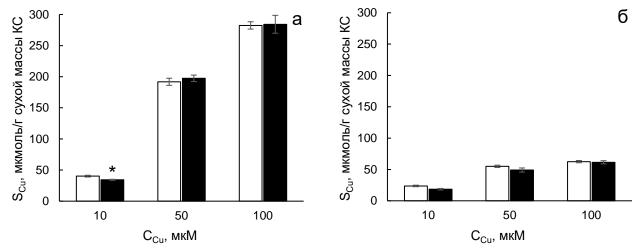


Рисунок 4. Си-связывающая способность КС (S_{Cu}), выделенных из корней контрольных (белые прямоугольники) и опытных (черные прямоугольники) растений маша (а) и пшеницы (б), при разных концентрациях меди в растворе. Приведены средние значения и их стандартные ошибки (n=15). Значения S_{Cu} КС опытных растений, достоверно (при p<0.05) отличающиеся от S_{Cu} КС контрольных растений, обозначены звездочкой.

У маша при всех C_{Cu} в среде в связывании ионов меди клеточными стенками участвуют только карбоксильные группы ПГК, при этом при C_{Cu} 10 мкМ лишь 15% этих групп задействовано в связывании металла. При 50 и 100 мкМ Cu данный показатель возрастает до 70 и 100%, соответственно. В отличие от маша, у пшеницы помимо карбоксильных групп ПГК в связывание меди

вовлекаются и карбоксильные группы ГКК, которые связывают 8 и 26% ионов меди в КС при 50 и 100 мкМ Си в растворе, соответственно.

Клеточные стенки, выделенные из корней «опытных» растений маша (после 24 ч обработки 10 мкМ Cu), обладали значительно меньшей медьсвязывающей способностью при сорбции из 10 мкМ раствора Си, чем КС контрольных растений, в то время как у пшеницы значения этого показателя не различались между контрольными и опытными растениями при всех C_{Cu} (Рисунок 4). Можно предположить, что в ответ на присутствие 10 мкМ Си в среде в КС корней маша или уменьшается содержание карбоксильных групп ПГК, или возрастает степень их метилирования. Ранее модификация состава полимеров КС, направленная на ограничение накопления Си в корнях, была обнаружена у устойчивых к воздействию повышенных концентраций меди растенийнакопителей Cu Athyrium yokoscense и Silene paradoxa (Konno et al., 2010; Colzi et al., 2012). У растений маша после обработки 50 и 100 мкМ Си доля КС в сухой массе корней была выше, чем у контрольных растений, поэтому Сисвязывающая способность КС, выделенных из корней опытных растений, была выше, чем у КС контрольных растений при расчете на сухую массу корней. Однако в расчете на сухую массу стенки Си-связывающая способность КС опытных и контрольных растений достоверно не отличалась, т.е. после 24 ч воздействия 50 и 100 мкМ Си в КС корней опытных растений не происходило изменения количества свободных карбоксильных групп ПГК.

Сравнение Си-связывающей способности корней растений и изолированных из них КС показывает, что у маша КС может принять на себя 94, 127 и 103% от содержания Си в корнях, а у пшеницы – 145, 93 и 62% при 10, 50 и 100 мкМ Си в среде, соответственно. Следовательно, мы предполагаем, что при С_{Си} в среде 10 и 50 мкМ КС вносит основной вклад в накопление меди в корнях и маша, и пшеницы. В то же время, у пшеницы при 100 мкМ Си в среде, когда все карбоксильные группы ПГК в КС связаны с катионами Си, происходит накопление металла внутри клеток корня. Так как при этой концентрации наблюдалось снижение массы корней по сравнению с контролем, можно

заключить, что накопление меди в симпласте токсично для растений пшеницы, в отличие от иммобилизации меди в апопласте корней при 10 и 50 мкМ Си в среде. Наши результаты подтверждают выводы других исследователей о важной роли КС в поглощении и накоплении меди у растений как устойчивых, так и чувствительных к избытку Си в среде (Iwasaki et al., 1990; Lou et al., 2004; Bravin et al., 2010).

3.3. Поглощение ионов никеля растениями маша и пшеницы и изолированными из их корней клеточными стенками

У маша при повышении концентрации Ni в среде сухая масса корней 10-дневных растений достоверно не отличалась от контроля, тогда как у пшеницы наблюдалось некоторое увеличение (на 6%) сухой массы корня при достижении концентрации 50 мкМ Ni. У обоих видов сухая масса надземной части не изменялась при обработке никелем. Как у маша, так и у пшеницы происходило снижение оводненности тканей: при C_{Ni} 100 мкМ оводненность тканей корня маша и пшеницы была ниже, чем в контроле на 9,9% и 8,2%, соответственно, а тканей побегов – на 6,7% и 2,5%, соответственно. Таким образом, и у маша, и у пшеницы токсическое лействие Ni выражалось только снижении оводненности. Нарушение водного обмена в ответ на избыток никеля в среде рассматривается как один из основных симптомов Ni-стресса у растений (Bashmakov et al., 2005; Gajewska et al., 2006).

С увеличением концентрации никеля в растворе содержание этого металла увеличивалось как в корнях (Рисунок 2), так и в надземной части обоих исследованных видов растений (Рисунок 3). При всех C_{Ni} в растворе содержание Ni в корнях маша было приблизительно в 2 раза больше, чем у пшеницы (Рисунок 2), однако в надземных частях этих растений содержание никеля достоверно не отличалось. Полученные нами данные о значительно большем накоплении Ni в корнях по сравнению с надземными частями у обоих видов согласуются с представлениями о том, что у большинства растений Ni

накапливается преимущественно в корнях и почти не перемещается в побеги (Gabbrielli et al., 1999; Kopittke et al., 2007; Mihailovic, Drazic, 2011).

При всех концентрациях Ni в среде КС, выделенные из корней маша, накапливали больше металла, чем КС пшеницы как в расчете на сухую массу КС, так и на сухую массу корней. Ni-связывающая способность КС, выделенных из контрольных растений маша, была в 2,6, 4,4 и 5,7 раз выше, чем таковая у пшеницы при 10, 50 и 100 мкМ Ni в среде, соответственно (Рисунок 5, в расчете на сухую массу КС). Данные различия в Ni-связывающей способности КС между машем и пшеницей определяются разным содержанием карбоксильных групп ПГК у этих растений. Расчеты показывают, что при С_{Ni} 10 мкМ с ионами Ni²⁺ связано 18 и 48% данных групп в КС маша и пшеницы, соответственно, а при 100 мкМ Ni в среде этот показатель достигает 74 и 89%. Следовательно, можно заключить, что карбоксильные группы ГКК, которые имеют более низкую константу ионизации, при всех С_{Ni} не принимают участия в связывании Ni ни у маша, ни у пшеницы.

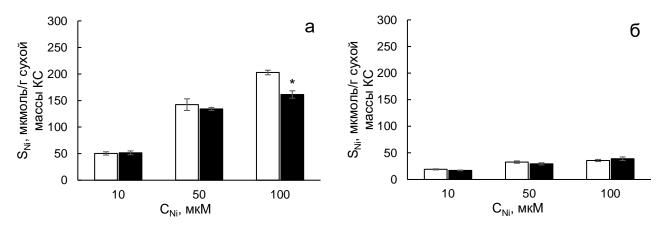


Рисунок 5. Ni-связывающая способность КС (S_{Ni}), выделенных из корней контрольных (белые прямоугольники) и опытных (черные прямоугольники) растений маша (а) и пшеницы (б) при разных концентрациях никеля в растворе. Приведены средние значения и их стандартные ошибки (n=6-12). Значения S_{Ni} КС опытных растений, достоверно (при p<0,05) отличающиеся от S_{Ni} КС контрольных растений, обозначены звездочкой.

Клеточные стенки, выделенные из корней растений маша, подвергшихся 24-часовой обработке 100 мкМ Ni поглощали значительно меньше ионов Ni²⁺ из 100 мкМ раствора, чем КС контрольных растений (Рисунок 5), что является

следствием либо более низкого содержания карбоксильных групп ПГК в КС обработанных растений по сравнению с контрольными, либо более высокой степени метилирования этих групп. Таким образом, нами впервые было показано снижение Ni-связывающей способности КС корней маша в ответ на избыток никеля в среде. Инкубация растений пшеницы на среде с Ni не оказала влияния на Ni-связывающую способность КС, выделенных из их корней (Рисунок 5).

И у маша, и у пшеницы Ni-связывающая способность клеточных стенок корней была выше или равна Ni-связывающей способности корней интактных растений. Исключением были растения пшеницы – после 24 ч обработки 100 мкМ Ni в КС было связано на 24% меньше никеля, чем в корнях, что свидетельствует о том, что у пшеницы при данной С_{Ni} в среде имеет место накопление Ni в симпласте корня. Большая способность КС к связыванию Ni по сравнению с корнями может быть обусловлена несколькими причинами: а) в интактном корне часть сайтов связывания Ni (карбоксильные группы ПГК) занята другими катионами (Ca^{2+} , Mg^{2+} , K^{+} и др.; Marschner, 1995), которые присутствуют в среде, но отсутствуют в изолированной КС (в нашем эксперименте в среде присутствуют только ионы Ni^{2+} , Cl^- и H^+); б) в ответ на избыток Ni корни растений выделяют в среду аминокислоты и органические кислоты (Callahan et al., 2006; Bravin et al., 2009; Chen et al., 2017), которые связывают катионы Ni²⁺ в растворе и таким образом препятствуют их адсорбции на КС (Araújo et al., 2009); в) благодаря удалению протопластов облегчается диффузия ионов в КС по сравнению с интактным корнем несмотря на то, что используемая нами методика выделения КС позволяет сохранить архитектуру полимерного каркаса (Meychik, Yermakov, 2001).

3.4. Сравнение поглощения ионов меди и никеля растениями маша и пшеницы и изолированными из их корней клеточными стенками

Результаты наших экспериментов свидетельствуют о том, что медь для исследованных растений более токсична, чем никель, так как присутствие никеля в среде даже в самой высокой концентрации не приводило к снижению сухой

массы корней. Сухая масса надземной части растений не отличалась от контроля как при воздействии как Cu, так и Ni. Cu- и Ni-связывающая способность как KC, так и корней при всех $C_{Cu(Ni)}$ в среде выше для маша, чем для пшеницы, что коррелирует с содержанием карбоксильных групп ПГК в КС клеток корня. Оба вида накапливали медь и никель главным образом в корнях, а в побегах обнаруживалось не более 10% от общего содержания металла в растении. Большее накопление Cu по сравнению с Ni в корне, но меньшее – в побегах также является следствием более прочного связывания меди с КС клеток корня и ее относительно низкой подвижности в растениях.

Сравнение металл-связывающей способности КС и корней растений показывает, что у маша при всех концентрациях КС вносит основной вклад в накопление и меди, и никеля в корне в первые 24 ч поглощения. И можно предположить, что при 10 мкМ Си и Ni в среде депонирование этих металлов в апопласте корня является основным механизмом защиты от металл-стресса у маша, так как не наблюдается ингибирования роста корня и надземной части.

У пшеницы при 100 мкМ металлов в среде КС может связать только 62% меди или 76% никеля от общего количества, накопленного в корнях, т.е. происходит накопление металлов не только в апопласте, но и в симпласте корней. Так как при 100 мкМ Си наблюдалось снижение массы корней по сравнению с контролем, можно заключить, что накопление меди в симпласте токсично для растений пшеницы, в отличие от иммобилизации меди в апопласте корней при 10 и 50 мкМ Си в среде, а также никеля при всех концентрациях, когда наблюдалось только снижение оводненности корней и надземной части.

ЗАКЛЮЧЕНИЕ

Результаты настоящего исследования показывают, что катионообменная способность клеточных стенок корней растений в физиологических условиях определяется наличием в них карбоксильных групп полигалактуроновой кислоты (ПГК) и гидроксикоричных кислот (ГКК). У изученных видов содержание карбоксильных групп ПГК возрастает в ряду кукуруза < пшеница <

шпинат < сведа \approx нут < маш < вика (злаки < маревые < бобовые), а карбоксильных групп ГКК — в ряду вика < нут < маш < пшеница < шпинат < кукуруза < сведа (бобовые < злаки \approx маревые). Было обнаружено, что у всех видов способность изолированных КС корней связывать ионы Cu^{2+} и Ni^{2+} возрастает с увеличением значений рН раствора, что обусловлено увеличением количества диссоциированных карбоксильных групп, способных участвовать в реакциях ионного обмена. В интервале рН от 3 до 4 единиц в связывание и Cu^{2+} , и Ni^{2+} включаются только карбоксильные группы ПГК. В то же время, нами впервые показано, что при рН \geq 5 наряду с карбоксильными группами полигалактуроновой кислоты в связывании ионов Cu^{2+} и Ni^{2+} принимают участие карбоксильные группы гидроксикоричных кислот.

У маша и пшеницы Cu- и Ni-связывающая способность и корней, и ИЗ них клеточных стенок возрастала параллельно изолированных концентрацией ионов металлов в среде, при этом важно принимать во внимание соотношение объема среды к количеству растений. У маша значения обоих параметров выше, чем у пшеницы вследствие более высокого содержания карбоксильных групп ПГК в КС корней. В связывании никеля в КС у обоих растений участвуют только карбоксильные группы ПГК, тогда как у пшеницы в связывание меди при Сси 50 и 100 мкМ вовлекаются и карбоксильные группы ГКК. У растений маша при 10 мкМ Си и 100 мкМ Ni в среде происходило снижение металл-связывающей способности КС корней, что может быть обусловлено или снижением содержания карбоксильных групп ПГК или возрастанием степени их метилирования. Следует подчеркнуть, что в случае меди модификация КС наблюдается при нетоксичной для растений маша концентрации, тогда как в случае никеля – когда начинают проявляться симптомы Ni-стресса (снижение оводненности корней).

Мы полагаем, что в условиях нашего эксперимента при времени воздействия 24 часа при $C_{Cu(Ni)}$ 100 мкМ и ниже у маша основным механизмом, предотвращающим поступление меди и никеля в симпласт корня, является их депонирование в КС. Этот вывод также справедлив и для пшеницы при 10 и 50

мкМ Си и Ni в среде. Однако, у пшеницы при 100 мкМ Сu(Ni) растворе Cu(Ni)-связывающая способность корней на 38(24)% выше, чем аналогичный показатель для КС. Эти результаты однозначно свидетельствуют о том, что у пшеницы при данной $C_{Cu(Ni)}$ в среде имеет место накопление металлов в симпласте корня. Некоторые исследователи полагают, что в поглощении металлов корнем при низких концентрациях основную роль играют внутриклеточные механизмы. Наши результаты не поддерживают такого заключения и показывают, что внутрь клеток корня медь и никель поступают только тогда, когда \geq 90% карбоксильных групп ПГК связаны с катионами Cu^{2+} или Ni^{2+} .

ВЫВОДЫ

- 1. Наряду с карбоксильными группами полигалактуроновой кислоты в составе пектинов, в связывании Cu^{2+} и Ni^{2+} клеточными стенками корней могут принимать участие карбоксильные группы гидроксикоричных кислот при рН среды выше 5,0.
- 2. Сu- и Ni-связывающая способность как корней всех изученных видов растений, так и изолированных из них клеточных стенок прямо пропорциональна содержанию карбоксильных групп полигалактуроновой кислоты в клеточной стенке и возрастает при увеличении концентрации меди и никеля в растворе.
- 3. Основным механизмом, предотвращающим накопление меди и никеля в симпласте корня у растений маша и пшеницы, является депонирование этих ионов в апопласт корня, причем эффективность этого механизма прямо пропорциональна содержанию карбоксильных групп полигалактуроновой кислоты в клеточных стенках.
- 4. У растений маша при определенных концентрациях Cu^{2+} и Ni^{2+} в среде происходит модификация стенок клеток корня, направленная на уменьшение количества сайтов связывания катионов металлов.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в журналах, индексируемых в базах данных Web of Science и Scopus

- 1. Meychik N., Nikolaeva Y., **Kushunina M.**, Yermakov I. Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls? // Plant and Soil. 2014. Vol. 381, № 1–2. Р. 25–34. Импакт-фактор журнала 3,306.
- 2. Meychik N., Nikolaeva Y., **Kushunina M.**, Yermakov I. Contribution of apoplast to short-term copper uptake by wheat and mung bean roots // Functional Plant Biology. 2016. Vol. 43, № 5. Р. 403–412. Импакт-фактор журнала 2,083.
- 3. Meychik N., Nikolaeva Yu., **Kushunina M.**, Titova M., Nosov A. Ion-exchange properties of the cell walls isolated from suspension-cultured plant cells // Plant Cell, Tissue and Organ Culture. 2017. Vol. 129, № 3. Р. 493–500. Импакт-фактор журнала 2,004.
- 4. Meychik N., Nikolaeva Yu., **Kushunina M.** The role of the cell walls in Ni binding by plant roots // Journal of Plant Physiology. Vol. 234—235. P. 28—35. Импактфактор журнала 2,833.

Статья в журнале, индексируемом в базе данных **Scopus**

1. Мейчик Н.Р., Николаева Ю.И., **Кушунина М.А.** Влияние дефицита азота на ионообменные свойства полимеров клеточных стенок корней пшеницы // Вестник Московского Университета. Серия 16. Биология. — 2017. — Т. 72, № 2. — С. 87—91. (Meychik N.R., Nikolaeva Yu.I., Kushunina M.A. Effect of nitrogen deficiency on the ion-exchange properties of cell wall polymers from wheat roots // Moscow University biological sciences bulletin. — 2017. — Vol. 72, № 2. — Р. 74—78.)

Тезисы докладов конференций

- 1. Мейчик Н.Р., Николаева Ю.И., Ермаков И.П., **Кушунина М.А.** Барьерная функция клеточной стенки при поглощении Ni^{2+} // Клеточная биология и биотехнология растений: Тез. докл. Минск: Изд. Центр БГУ, 2013. С. 104.
- 2. **Кушунина М.А.** Роль клеточной стенки в поглощении Cu^{2+} корнями растений (на примере *Triticum aestivum* L. и *Vigna radiata* (L.) R.Wilczek) //

- Ломоносов-2013: XX Междунар. конф. студентов, аспирантов и мол. ученых: Тез. докл. / под ред. Е.Н. Темеревой. М.: Макс-Пресс, 2013. С. 305.
- 3. **Кушунина М.А.**, Николаева Ю.И., Мейчик Н.Р. Влияние органических и синтетических лигандов на поглощение ионов меди клеточными стенками корней растений // Растения в условиях глобальных и локальных природно-климатических и антропогенных воздействий: Тез. докл. Всеросс. научн. конф. с междунар. участием / под ред. А.Ф. Титова. Петрозаводск: КарНЦ РАН, 2015. С. 301.
- 4. **Кушунина М.А.**, Николаева Ю.И., Мейчик Н.Р. Влияние различных условий азотного питания на некоторые биохимические характеристики клеточных стенок корней пшеницы // Факторы устойчивости растений и микроорганизмов в экстремальных природных условиях и техногенной среде: Материалы Всерос. научн. конф. с междунар. участием. Иркутск: Изд-во Института географии им. В.Б. Сочавы СО РАН, 2016. С. 119–120.
- 5. Мейчик Н.Р., Николаева Ю.И., **Кушунина М.А.** Изменение состава ионообменных групп клеточных стенок корней пшеницы при различных условиях азотного питания // Экспериментальная биология растений: фундаментальные и прикладные аспекты: Годичное собрание ОФР, науч. конф. и школа для мол. уч. / под ред. В.В. Кузнецова. М.: Изд-во АНО «Центр содействия научной, образовательной и просветительской деятельности «Соцветие», 2017. С. 228.
- 6. Мейчик Н.Р., Николаева Ю.И., **Кушунина М.А.** Роль клеточных стенок в поглощении меди и никеля корнями растений // Экспериментальная биология растений: фундаментальные и прикладные аспекты: Годичное собрание ОФР, науч. конф. и школа для мол. уч. / под ред. В.В. Кузнецова. М.: Издво АНО «Центр содействия научной, образовательной и просветительской деятельности «Соцветие», 2017. С. 227.