МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В. ЛОМОНОСОВА ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи

Марушина Елена Валентиновна

ТРОЙНЫЕ СОЕДИНЕНИЯ В СИСТЕМАХ {La, Ce, Sm}-Ru-Al: ФАЗОВЫЕ РАВНОВЕСИЯ, КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ И ФИЗИЧЕСКИЕ СВОЙСТВА

Специальность: 02.00.01 - неорганическая химия

ДИССЕРТАЦИЯ

на соискание ученой степени

кандидата химических наук

Научный руководитель:

к.х.н., доцент

Грибанов Александр Викторович

Список условных обозначений и сокращений

а, b, с – параметры элементарных ячеек

R1, R_F – факторы достоверности методов рентгеновской дифракции

РЗЭ – редкоземельный элемент

 $P3\Im_x Ru_y Al_z = R_x Ru_y Al_z (x+y+z=100) - состав тройного соединения в атомных процентах$

 $R_xT_yX_z$ – состав соединени, где R – лантаноид (или уран), T – переходный металл, X – элемент 13-15 групп

x/a, y/b, z/c – координаты атомов

α, β, γ - углы между направлениями кристаллографических осей

µ_в – магнетон Бора

µ_{eff} - эффективный магнитный момент

ат. % - атомный процент

АФУ – антиферомагнитное упорядочение

ВТСП – высокотемпературная сверхпроводимость

ДТА – дифференциальный термический анализ

ИМС – интерметаллическое соединение

КС – Кондо-соединение

КЧ – координационное число

ЛРСА – локальный рентгеноспектральный анализ

Пр. гр. – пространственная группа

РДМ – рентгеноская диффракция на монокристалле

РДП – рентгеновская диффрекция на порошке

РСА – рентгеноструктурный анализ

РФА – рентгенофазовый анализ

СИ – порошковая диффракция синхротронного излучения с высоким разрешением

СКЭС – сильнокоррелированные электронные системы

Стр.тип. – структурный тип

Тм – температура магнитного упорядочения

ТФ – тяжелофермионное (состояние, соединение)

ТФСП – тяжелофермионная сверхпроводимость

ФУ – ферромагнитное упорядочение

ФВ – флуктуации валентности

Содержание

1.	Вв	еден	ие	5
2	Ли	тера	гурный обзор	10
	2.1	Фи	зико-химические свойства исходных компонентов	10
	2.2	Φas	зовые диаграммы двойных систем	12
	2.	.2.1	Системы {La, Ce, Sm}-Ru	12
	2.	.2.2	Системы {La, Ce, Sm}-Al	14
	1.	.2.3.	Система Ru–A1	16
	1.	.2.4.	Физические свойства двойных соединений систем {La, Ce,Sm} – Ru	17
	2.3	Вза	имодействие компонентов в системах {La, Ce, Sm}-Ru-Al	19
	2.	.3.1	Система La-Ru-Al	19
	2.	.3.2	Система Се-Ru-Al	21
	2.	.3.3	Система Sm-Ru-Al	26
	2.4	Кор	ооткие расстояния между атомами церия и рутения	27
	2.5	Сил	тьно коррелированные электронные системы	33
	2.6	Occ	обенности строения и физические свойства соединений на основе РЗЭ	35
	2.	.6.1	Магнитные упорядочения: ферромагнетизм и антиферромагнетизм	36
	2.	.6.2	Сверхпроводимость.	36
	2.	.6.3	Кондо-эффект	37
	2.	.6.4	Тяжелофермионные системы	38
	2.	.6.5	Тяжелофермионная сверхпроводимость	40
	2.	.6.6	Флуктуации валентности	40
	2.	.6.7	Особенности строения и физические свойства соединений на основе РЗЭ	41
3	Эк	спер	иментальная часть	44
	3.1	Me	тодика приготовления сплавов	44
	3.	.1.1	Исходные материалы	44
	3.	.1.2	Синтез сплавов	44
	3.	.1.3	Термическая обработка сплавов	44
	3.2	Исс	следование полученных образцов методами физико-химического анализа	45
	3.	.2.1	Рентгенофазовый анализ и метод порошка	45
	3.	.2.2	Метод локального рентгеноспектрального анализа	46
	3.	.2.3	Метод рентгеновской дифракции на монокристалле	46
	3.	.2.4	Порошковая диффракция высокого разрешения	46
	3.	.2.5	Метод дифференциального термического анализа	47
	3.3	Изм	лерение физических свойств	47
	3.4	Рен	тгеновская спектроскопия поглощения выше L ₃ – края поглощения (XANES)	48
4	Рез	зульт	аты экспериментальных исследований	49
	4.1	Сис	стема La-Ru-Al	50
	4.	.1.1	Тройной интерметаллид La ₄ RuAl	53
	4.	.1.2	Новый тройной интерметаллид La ₃ RuAl ₃	56
	4.	.1.3	Новый тройной интерметаллид La ₂ RuAl ₂	60
	4.	.1.4	Новый тройной интерметаллид La ₂ RuAl ₃	63
	4.	.1.5	Тройной интерметаллид LaRu ₂ Al ₁₀	65
	4.	.1.6	Новый тройной интерметаллид LaRu ₂ Al ₈	67
	4.2	Сис	стема Се-Ru-Al	70

4.2.1	Новый тройной интерметаллид Ce ₂ Ru ₂ Al	73
4.2.2	Новый тройной интерметаллид Ce ₂₃ Ru _{7+x} Al _{4-x}	76
4.2.3	Новый тройной интерметаллид Ce ₄ Ru ₃ Al ₂	79
4.2.4	Соединение Ce ₂ RuAl	83
4.3 Ci	истема Sm-Ru-Al	85
4.3.1	Новое соединение SmRu ₃ Al ₁₀	88
4.3.2	С Тройное соединение Sm₄RuAl	90
4.3.3	Тройное соединение Sm ₃ Ru ₄ Al ₁₂	91
4.3.4	Тройное соединение Sm ₂ Ru ₃ Al ₁₅	93
4.3.5	Новый тройной интерметаллид Sm ₂ RuAl ₃	95
4.3.6	5 Тройной интерметаллид SmRu ₂ Al ₁₀	98
5 Обсуж	кдение результатов	100
5.1 Φ	азовые равновесия в системах {La, Ce, Sm}-Ru-Al	100
5.1.1	Область с большим содержанием Ru (> 55 ат.%) в системах {La, Ce, Sm}-Ru-A	41
	103	
5.1.2	С Область с большим содержанием Al (> 55 ат.%) в системах {La, Ce, Sm}-Ru-A	l
	104	
5.1.3	Область с содержанием РЗЭ около 30-40 ат.% в системах {La, Ce, Sm}-Ru-Al.	104
5.2 A	нализ кристаллических структур соединений с большим содержанием алюминия	ł
10)5	
5.3 B	заимосвязь между структурами La $_3$ RuAl $_3$, La $_2$ RuAl $_2$, La $_3$ Ru $_2$ Ga $_2$ и Yb $_3$ Pd $_2$ Sn $_2$	108
5.4 B	заимосвязь между структурами Ce ₂ Ru ₂ Al и Ce ₂ RuAl	110
5.4 B	заимосвязь между структурами Ce ₄ RuAl и Ce ₂₃ Ru _{7+x} Al _{4-x}	111
5.5 H	овый структурный тип Ce ₄ Ru ₃ Al ₂ и его связь с YbAuGe-типом	115
5.6 M	ежатомные расстояния в тройных соединениях систем {La, Ce, Sm}-Ru-Al	117
5.7 Φ	изические свойства	121
5.7.1	Физические свойства Ce ₂ Ru ₂ Al	121
5.7.2	Физические свойства Ce ₂ RuAl	123
5.7.3	Магнитные и электрические свойства Ce ₄ Ru ₃ Al ₂	125
5.7.4	Физические свойства Sm ₂ RuAl ₃	128
6 Вывод	цы	129
7 Списо	ж литературы	130
8 Благод	дарности	138
9 Прило»	кения	139

1. Введение

Актуальность темы:

В последние четыре десятилетия ведутся активные поиски, синтез и изучение структур и свойств нового класса соединений – так называемых сильно коррелированных электронных систем (СКЭС). Соединения этого класса демонстрируют набор необычных свойств, важных для более глубокого понимания химии и физики конденсированного состояния. Поэтому поиск, синтез и изучение таких соединений представляют собой актальную задачу современного материаловедения. Корреляции поведения электронов в зоне проводимости происходят под воздействием сильно локализованных магнитных моментов атомов, имеющих неспаренные *f*-электроны, поэтому в состав соединений этого класса входят редкоземельные элементы или актиноиды. Поведение электронов в зоне проводимости вблизи уровня Ферми в значительной степени модифицировано из-за сильного взаимодействия с локализованными магнитными моментами атомов РЗЭ и электрическим полем кристалла, за счет чего возникает целый ряд необычных физических явлений, таких как состояние Кондо-решетки, тяжелофермионное состояние, ТФ сверхпроводимость, состояние с нестабильной валентностью [1]. В соединениях класса СКЭС наблюдается тесная взаимосвязь магнитных, электрических, оптических и других физических свойств, что создает перспективу использования таких соединений в технических устройствах нового поколения, добавляет к фундаментальной мотивации изучения таких материалов практическую компоненту.

Среди соединений с сильными электронными корреляциями значительную часть составляют тройные интерметаллические соединения редкоземельных элементов с общей формулой R_xT_yX_z (R – лантаноид (или уран), T – переходный металл, X – элемент 13-15 групп). Появление аномальных физических свойств и необычных типов основного состояния является следствием конкуренции разных механизмов взаимодействий электронов на уровне Ферми с сильно локализованными магнитными моментами fэлементов и связано с валентной нестабильностью атомов РЗЭ. В свою очередь, валентное состояние этих атомов, степень гибридизации энергетических уровней, соотношение энергетических масштабов конкурирующих взаимодействий определяются кристаллохимическими особенностями: межатомными расстояниями, составом И симметрией координационного окружения редкоземельных атомов, общей симметрией кристалла. Поэтому для понимания механизмов возникновения свойств СКЭС важны корректные и полные данные о кристаллическом строении изучаемых интерметаллидов. Знания о механизмах формирования основного состояния и физических свойств этих

соединений, а также взаимной связи свойств и кристаллической структуры служат развитию общей теории твердого тела.

Взаимодействие РЗЭ с *d*-металлами и *p*-элементами 13-15 групп приводит к образованию в тройных системах R-T-X многочисленных (от 7 до 25) тройных интерметаллидов с общей формулой $R_x T_y X_z$ (R – редкоземельный элемент, T – переходный металл, Х – *p*-элемент). Большое многообразие соединений ставит структурные исследования в подобных системах на качественно новый, более высокий уровень по сравнению с другими металлическими системами без участия РЗЭ. Это связано как с большим количеством реализованных структурных типов в системах R-T-X, так и часто наблюдаемыми тонкими структурными отличиями родственных типов, образованием сверхструктур. В настоящее структурными модуляциями, время интерметаллидов РЗЭ, кристаллохимический структурные исследования анализ полученных результатов и систематика структурных типов ИМС составляют отдельную фундаментальную научную задачу. Одной из актуальных современных структурных проблем является изучение открытого недавно и пока необъясненного феномена аномально коротких межатомных расстояний Ce-Ru в тройных интерметаллидах $Ce_x Ru_y X_z$ (Х – *р*-элемент) [2, 3].

Из всех РЗЭ церий демонстрирует наибольшую способность образовывать интерметаллиды с необычными свойствами СКЭС. Химичекое поведение его ближайшего аналога лантана при взаимодействии с переходными металлами и элементами 13-15 групп в значительной степени повторяет поведение церия. Это дает возможность синтеза и изучения изоструктурных, но немагнитных соединений, в которых церий заменен лантаном. Сравнение физических свойств изоструктурных соединений церия и лантана важно для понимания природы феноменов СКЭС. Кроме того, ИМС лантана могут обладать сверхпроводимостью классического типа, например, La₃Ni₄Ge₄, La₃Pd₄Si₄ [4], LaPd₂Ge₂ [5]. Кроме интерметаллидов лантана значительный интерес представляет сравнение свойств соединений церия со свойствами ИМС самария, у которого больше неспаренных *f*-электронов и больше магнитный момент атома.

Поскольку в литературе имеются неполные или противоречивые данные лишь о некоторых соединениях, образующихся в системах {La, Ce, Sm}–Ru–Al, исследования вышеуказанных тройных систем, включающие поиск новых тройных интерметаллидов, установление фазовых равновесий, определение кристаллических структур и изучение свойств новых соединений, являются актуальной научной задачей.

Цель работы: Целью настоящей работы является изучение взаимодействия компонентов в системах {La, Ce, Sm}–Ru–Al; синтез новых интерметаллических соединений,

образующихся в этих системах, исследование кристаллических структур и физических свойств этих алюминидов, а также построение изотермических сечений диаграмм состояния систем при 550 °C.

Задачи исследования:

- 1) построение изотермических сечений диаграмм состояния систем {La, Ce, Sm}–Ru– Аl при 550 °C с применением комплекса методов физико-химического анализа;
- 2) определение составов новых тройных соединений;
- определение и изучение кристаллических структур новых и известных из литературы тройных соединений;
- 4) кристаллохимический анализа структур новых интерметаллидов;
- 5) синтез однофазных образцов тройных ИМС;
- 6) изучение физических свойств тройных соединений.

Объекты исследования: сплавы в тройных системах {La, Ce, Sm}-Ru-Al.

Предмет исследования: изотермические сечения фазовых диаграмм состояния систем {La, Ce, Sm}–Ru–A1 при 550 °C, кристаллические структуры тройных соединений, образующихся в этих системах, магнитные и электрические свойства новых интерметаллидов.

Методы синтеза и исследования: высокотемпературный жидкофазный синтез образцов в электродуговой печи, термообработка сплавов в вакуумированных ампулах для достижения термодинамического равновесия (отжиг), рентгеновская диффракция на порошке (РДП), локальный рентгеноспектарльный анализ (ЛРСА), рентгеноструктурный анализ (РСА) монокристаллов, порошковая диффракция высокого резрешения (СИ), дифференциально-термический анализ (ДТА), измерение магнитных параметров и удельного электросопротивления.

Научная новизна:

- Впервые систематически изучены и установлены фазовые равновесия в системах {La, Ce, Sm}-Ru-Al при 550 °C, а также определены границы областей гомогенности твёрдых растворов.
- В системах {La, Ce, Sm}-Ru-Al впервые синтезированы 10 новых тройных ИМС, для каждого из них определена кристаллическая структура.
- Установлено, что 5 новых ИМС кристаллизуются в структурах новых типов: 2 в системе La-Ru-Al и 3 в системе Ce-Ru-Al.
- Получены и структурно охарактеризованы четыре новых тройных интерметаллида, имеющих короткие и аномально короткие расстояния Ce-Ru.
- Выполнен кристаллохимический анализ ряда структур ИМС исследуемых систем.

- Впервые измерены физические свойства трех соединений из системы Ce-Ru-Al и одного из Sm-Ru-Al системы. Обнаружено, что три соединения системы Ce-Ru-Al демонстрируют флуктуации валентности атомов Ce.
- Определены температуры плавления десяти тройных ИМС.

Теоретическая и практическая значимость работы:

Полученные экспериментальные данные о взаимодействии компонентов в тройных системах РЗЭ-Ru-Al (РЗЭ = La, Ce, Sm), об условиях образования и кристаллических структурах тройных алюминидов представляют собой важные научные результаты, которые дополняют современные знания в области химии твердого тела. Они будут включены в справочники по диаграммам состояния тройных металлических систем и по кристаллохимии тройных ИМС, а также будут использоваться при создании новых материалов. Полученные в работе соединения на основе церия расширяют класс СКЭС, их изучение важно для развития теоретических представлений физики твердого состояния.

Кристаллографические характеристики соединения Ce₂Ru₂Al вошли в базу международного Центра дифракционных данных (ICDD, CША).

Основные результаты, выносимые на защиту

- Изотермические сечения диаграмм состояния {La, Ce, Sm}-Ru-Al при 550 °C;
- Данные о кристаллических структурах 16 соединений, образующихся в системах {La, Ce, Sm}-Ru-Al;
- Кристаллографические параметры пяти изученных новых структурных типов: La₃RuAl₃, La₂RuAl₂, Ce₄Ru₃Al₂, Ce₂RuAl, Ce₂Ru₂Al;
- Данные о кристаллохимических закономерностях строения изученных тройных интерметаллидов;
- Данные о физических свойствах четырех новых алюминидов.

Апробация результатов диссертационной работы

Полученные материалы представлены на XII Международной конференции по кристаллохимии интерметаллических соединений (IMC, г. Львов, Украина, 2013г.); 20 и 21 Международных конференциях по соединениям на основе переходных элементов (SCTE, г. Сарагоса, Испания, 2016г.; г. Вена, Австрия, 2018г.), Международном симпозиуме "Дифракционные методы в характеризации новых материалов" (г. Москва, Россия, 2017г.), 3-ем Международном симпозиуме «Наноматериалы и окружающая среда» (г. Москва, Россия, 2016г.), Всероссийской научной конференции с международным участием "II Байкальский материаловедческий форум" (г. Улан-Удэ, Россия, 2015г.), VII Национальной кристаллохимической конференции (NCCC2013; г. Суздаль, Россия,

2013г.), XXI Международной конференции студентов, аспирантов и молодых ученых «Ломоносов-2013» (г. Москва, Россия, 2013г.).

Публикации

По основным результатам диссертационной работы опубликовано 8 работ, в том числе 3 статьи в рецензируемых международных журналах и 5 тезисов докладов на международных конференциях и симпозиумах.

Личный вклад автора

Автор провел сбор и анализ литературных данных по теме диссертационной работы, выполнил синтез тройных интерметаллических соединений, при этом адаптировал методику синтеза для конкретных объектов, осуществил термическую обработку сплавов и подготовил их для исследований комплексом методов физикохимического анализа. Данные рентгеновской дифрактометрии, съемок микроструктур и локального рентгеноспектрального анализа, а также дифференциально-термического анализа получали на кафедре общей химии при непосредственном участии автора. На основании полученных результатов автором построены изотермические сечения систем {La, Ce, Sm}-Ru-Al при 550 °C. Диссертант определил ряд структур интерметаллических соединений по монокристальному эксперименту и полнопрофильному анализу дифракции на порошке, а также выполнил интерпретацию полученных структурных данных. Автор систематизировал результаты работы, подготовил материалы для публикации в международных журналах и для представления на международных и национальных конференциях, сформулировал выводы и положения, выносимые на защиту.

Магнитные и транспортные свойства новых тройных соединений измерены профессором Д. Качаровски (Институт низких температур и структурных исследований Польской Академии наук, г. Вроцлав, Польша). Работа по проведению рентгеновской спектроскопии поглощения выше L₃–края поглощения (XANES) выполнена младшим научным сотрудником А.А. Ярославцевым (МИФИ, г. Москва) на станции DESY/HASYLAB (Г. Гамбург, Германия). Результаты проведенных исследований интерпретированы и обсуждены совместно с автором данной диссертационной работы. *Структура и объем диссертационной работы*

Диссертационная работа состоит из введения, литературного обзора, экспериментальной части, результатов исследований, обсуждения результатов, выводов и списка литературы (129 источников). Работа изложена на 144 страницах печатного текста, содержит 102 рисунка и 57 таблиц.

2 Литературный обзор.

2.1 Физико-химические свойства исходных компонентов

Редкоземельные металлы лантан, церий и самарий – элементы периодической системы Д.И. Менделеева с порядковыми номерами 57, 58 и 62, соответственно. Они относятся к группе лантаноидов с электронными конфигурациями внешнего уровня $5s^25p^65d^16s^2$, $4f^25s^25p^66s^2$ и $4f^55s^25p^65d^16s^2$, соответственно [6, 7]. Благодаря энергетической близости внутреннего 4f- подуровня с внешними подуровнями 5d и 6s церий обладает большим разнообразием физических и химических свойств, как в простых, так и в сложных соединениях.

Соединения на основе лантана, как ближайшего немагнитного аналога церия, могут обладать классической сверхпроводимостью. В литературе представлены соединения $Ce_3Pd_4Si_4$ и $La_3Pd_4Si_4$ [6, 8], $Ce_5Ru_3Al_2$ и $La_5Ru_3Al_2$ [9], в которых атомы лантана обепечивают традиционные свойства, в то время как в цериевых соединениях наблюдается Кондо-эффект и переменная валентность атомов церия. Поэтому изучение соединений на основе лантана важно для сравнения их свойств со свойствами ИМС на основе церия.

Самарий также принадлежит к группе лантаноидов, а некоторые его соединения проявляют интересные физические свойства, такие как слабый магнетизм и флуктуации валентности (ФВ) [10], а в соединениях $SmOs_4Sb_{12}$ [11] и $SmTa_2Al_{20}$ [12] обнаружено тяжелофермионное (ТФ) состояние атомов самария. Именно поэтому система на основе самария стала третьей в списке исследуемых.

• Лантан – серебристо-белый металл, при обычных условиях химически активный, поэтому хранится под слоем керосина. Он имеет 3 аллотропические модификации [13], их характеристики и температуры превращений представлены в *таблице 1*.

	Тиолици Г. Полиморфною мобификиции миниции.								
α-La	Гексагональная	P6 ₃ /mmc	<i>a</i> = 3.770 Å <i>c</i> = 12.159Å	$T(\alpha \rightarrow \beta) = 310 \ ^{\circ}C$					
β -La	ГЦК	Fm3m	<i>a</i> = 5.296 Å	$T (\beta \rightarrow \gamma) = 864 $ °C					
γ-La	ОЦК	Im3m	<i>a</i> = 4.26 Å						

Таблица 1. Полиморфные модификации лантана.

Лантан имеет достаточно широкое применение. Например, в металлургии сплавы с его участием являются жаропрочными и коррозионностойкими, другие соединения применяются как анодный материал, в аккумуляторах, для поглощения или выделения водорода [7]. • Церий – металл серебристо-белого цвета, быстро окисляющийся в сухом и влажном воздухе с образованием пленки Ce₂O₃. В соединениях проявляет степень окисления +3 и +4 [6]. Церий имеет 4 аллотропические модификации (*таблица 2*).

	,	1	1 1 ,	, 1
α-Ce	ГЦК	Fm3m	a = 4.85 Å	
β-Ce	Гексагональная	P6 ₃ /mmc	a = 3.673 Å c = 11.802 Å	$T (\beta \rightarrow \gamma) = 168 \ ^{\circ}C$
γ-Ce	ГЦК	Fm3m	<i>a</i> = 5.160 Å	
σ-Ce	ГЦК	Im3m	a = 4.12 Å	

Таблица 1. Полиморфные модификации церия.

Основное использование церия – это добавки к различным сплавам металлов для повышения прочности, коррозионной устойчивости. Активно церий применяют как катализатор в нефтяной и химической промышленности, в стоматологии (керамика), в производстве стёкол и аккумуляторных батарей.

• Самарий – металл серого цвета, при обычной температуре на воздухе окисляется заметно медленнее лантана и церия. В сложных соединениях для самария характерны степени окисления +2 и +3 [6]. Он также имеет 3 аллотропические модификации (*таблица 3*).

α-Sm	Ромбоэдрическая	<i>R</i> -3 <i>m</i>	a = 8.996 Å $\alpha = 23^{\circ}13'$	
β-Sm	ОЦК	Im3m	a = 4.07 Å	$T(\alpha \rightarrow \beta) = 917 \ ^{\circ}C$
Фаза высокого давления	ГПУ	P6 ₃ /mmc	a = 3.618 Å c = 11.66 Å	

Таблица 2. Полиморфные модификации самария.

Соединения на основе самария, в том числе SmCo₅, используются в качестве постоянных магнитов, в электроламповой промышленности, в устройстве стартеров [7].

• Рутений – блестящий, серебристый металл. Характерные степени окисления: +3, +4, +6, +8. В водных растворах существует только в виде комплексных ионов. Компактный рутений не окисляется на воздухе до 930 °C; порошкообразный рутений при нагревании окисляется кислородом до RuO_2 [6, 7]. Рутений имеет ГПУ решетку типа Mg с параметрами a = 2.7057 Å, c = 4.2815 Å.

Основное применение рутения – сорбент водорода и катализатор химических реакций. Некоторые соединения рутения используют в качестве красителей в стеклах и эмалях.

 Алюминий – прочный серебристо-белый металл. На воздухе покрывается тонкой прочной оксидной плёнкой Al₂O₃, защищающей металл от дальнейшего окисления и обуславливающей его высокую коррозийную стойкость [7]. Алюминий кристаллизуется в ГЦК решетке с параметром *a* = 4.0495 Å.

Сплавы на основе алюминия обладают коррозионной стойкостью, прочностью при невысокой плотности. Они нашли широкое применение в энергетической, авиационной и космической отраслях, строительстве, транспортной, нефтяной и химической промышленности, металлургии и атомной энергетике, а также при изготовлении предметов широкого потребления.

Основные физико-химические характеристики используемых металлов представлены в **таблице 4**.

Химический элемент	La	Ce	Sm	Ru	Al
Атомный номер	57	58	62	44	13
Атомный вес	138.91	140.12	150.35	101.07	26.98
Металлический радиус, Å	1.88	1.83	1.802	1.34	1.43
Ковалентный радиус, Å	1.69	1.65	1.66	1.24	1.25
Ионный радиус, Å	1.22	$1.07 (Ce^{3+})$	$1.0 (\mathrm{Sm}^{3+})$	$0.77 (Ru^{3+})$	0.57
Электронная конфигурация внешних оболочек	$5s^25p^65d^1$ $6s^2$	$4f^25s^25p^66s^2$	$4f^{5}5s^{2}5p^{6}$ $5d^{1}6s^{2}$	$4d^{7}5s^{1}$	$3s^23p^1$
Пространственная группа	Fm-3m	Fm-3m	<i>R</i> -3 <i>m</i>	<i>P</i> 6 ₃ / <i>mmc</i>	Fm-3m
Структурный тип	Cu	Cu	Sm	Mg	Cu
Параметры элементарной ячейки, Å	<i>a</i> = 5.296	<i>a</i> = 5.160	a = 8.996, $\alpha = 23^{\circ}13^{\circ}$	a = 2.706, c = 4.281	<i>a</i> = 4.050
Плотность, г/см ³	6.145	6.70	7.537	12.37	2.7
Температура плавления, °С	921	799	1073	2310	660.52
Температура кипения, °С	3457	3426	1778	3900	2467
Электроотрицательность	1.10	1.12	1.3	2.2	1.61
Теплота плавления, кДж/моль	10.04	8.87	10.9	23.7	10.67
Теплота испарения, кДж/моль	399.6	313.8	191.6	567.8	293.72
Давление паров, Па	0.71*10 ⁻⁶ (1000 °C)	0.99*10 ⁻⁴ (1000 °C)	493 (1000 °C)	133.3*10 ⁻¹⁰ (1400 °C)	6.13*10 ⁻⁷ (627 °C)

Таблица 4. Основные физические и кристаллографические характеристики исходных элементов [6, 7].

2.2 Фазовые диаграммы двойных систем

2.2.1 Системы {La, Ce, Sm}-Ru

В литературе приводятся данные о существовании в системе La-Ru пяти соединений: La₃Ru, La₇Ru₃, La₅Ru₃, LaRu₂, La₅Ru₂ (**рис. 1**) [13-15]. Более поздняя работа автора [16] уточнила состав La₅Ru₃, назвав его LaRu_x. По данным работ [13-14, 17-18] в

системе Ce - Ru при температурах от 545 до 1573 °C образуется пять двойных соединений: Ce₃Ru, Ce₇Ru₃, Ce₁₆Ru₉, Ce₄Ru₃, CeRu₂. В сплавах системы Sm–Ru обнаружено шесть интерметаллических соединений [13, 19]: Sm₃Ru, Sm₅Ru₂, SmRu, Sm₅Ru₃, Sm₄₄Ru₂₅, SmRu₂. Для соединения Sm₅Ru₃ указан лишь структурный тип, и данное соединение, также как и SmRu не является равновесным, поэтому в итоговой фазовой диаграмме отсутствует.

Кристаллографические данные двойных соединений систем {La, Ce, Sm}–Ru приведены в таблице 5.

Согласно литературным данным в системе La-Ru взаимная растворимость компонентов в твердом состоянии пренебрежимо мала, а двойные фазы имеют постоянный состав [13]. Соединение LaRu₂ при 865 °C претерпевает полиморфное превращение, при котором наблюдается переход от гранецентрированной ячейки к объемоцентрированной. Максимальная растворимость церия в рутении составляет 2 ат.% и достигается при 1570 °C. Растворимость рутения в церии не наблюдается. В системе Sm-Ru соединения не обладают областями гомогенности, а для соединения SmRu₂ при 1400°C наблюдается полиморфное превращение от структурного типа MgCu₂ к типу MgZn₂ [20].

Рис. 1. Диаграммы состояния систем {La, Ce, Sm}-Ru [11].

		[13-19].				
Соотничание	Пространствен-	Структурный	Параметры ячейки, Å			
Соединение	ная группа	ТИП	а	b	С	
La ₃ Ru	Pnma	Fe ₃ C	7.465	10.016	6.570	
La ₅ Ru ₂	<i>C</i> 12/ <i>c</i> 1	Mn ₅ C ₂	16.806	6.693 (β=95,86°)	7.444	
La ₇ Ru ₃	Pnma	Sr_7Pt_3	7.422	23.562	6.732	
La ₅ Ru ₃	-	LaRu _x	19.134	16.00	16.00	
LaRu ₂ rt	Fd-3m	MgCu ₂	7.716	-	-	
LaRu ₂ lt*	-	-	5.433	-	7.775	
Ce ₃ Ru	Pnma	Fe ₃ C	7.242	9.863	6.419	
Ce ₇ Ru ₃	$P6_3mc$	Th ₇ Fe ₃	9.802	-	6.261	
Ce ₁₆ Ru ₉	<i>R</i> -3 <i>m</i>	Ce ₁₆ Ru ₉	13.645	-	22.742	
Ce ₄ Ru ₃	<i>C</i> 2/ <i>m</i>	Ce ₄ Ru ₃	8.400	13.837 β=117.90°	5.985	
CeRu ₂	Fd-3m	MgCu ₂	7.555	-	-	
Sm ₃ Ru	Pnma	FeC ₃	7.329	9.477	6.355	
Sm ₅ Ru ₂	C12/c1	Mn ₅ C ₂	16.045	6.435	7.298	
SmRu*	Pm-3m	CsCl	-	-	-	
Sm ₅ Ru ₃ *	-	Er_5Ru_3	-	-	-	
Sm ₄₄ Ru ₂₅	Pnna	$Y_{44}Ru_{25}$	28.339	15.451	-	
SmRu ₂ cub	Fd-3m	MgCu ₂	7.577	-	-	
SmRu ₂ hex	$P6_3/mmc$	MgZn ₂	5.289	-	8.946	

Таблица 5.Кристаллографические характеристики соединений систем {La, Ce, Sm}-Ru [13-19]

*Sm₅Ru₃, SmRu в конечной фазовой диаграмме отсутствуют.

2.2.2 Системы {La, Ce, Sm}-Al

Система La–Al подробно изучена в работах [21-22] с помощью методов микроструктурного и рентгеновского анализов. В системе La-Al образуются соединения: La₃Al₁₁, LaAl₃, La_{0.88}Al_{2.12}, LaAl₂, LaAl, La₃Al (**рис. 2**). Согласно литературным данным в системе Ce-Al существует 6 интерметаллических соединений: Ce₃Al₁₁, CeAl₄, CeAl₃, CeAl₂, CeAl, Ce₃Al (Ошибка! Источник ссылки не найден.) [23-24]. Взаимодействуя друг с другом в различных соотношениях самарий и алюминий образуют семь различных соединений: Sm₃Al, Sm₂Al, SmAl₃, SmAl₃, Sm₃Al₁₁, SmAl₄ [25].

Алюминий не растворяется в лантане [21]. Растворимость лантана в алюминии, согласно данным микроструктурного анализа, а также измерений электросопротивления и микротвердости при температурах 620, 600 и 500 °C составляет 0.006 ат. %, 0.002 ат.%, <0.002 ат.%, соответственно [21]. Максимальная растворимость лантана наблюдается при температуре 640 °C и равна 0.01 ат.% La [21].

Растворимость Се в Al составляет 0.01 % (ат.) Се при температуре 640 °С. Соединение Ce₃Al образует две полиморфные модификации α (гексагональная низкотемпературная) и β (кубическая высокотемпературная), температура полиморфного перехода равна 250 °С. Алюминий растворяется в самарии до 4 ат.% Al при 700 °C, и наоборот, самарий в алюминии не растворяется. Каждое из соединений Sm₂Al, SmAl и Sm₃Al₁₁ имеет две полиморфные модификации. Так, интерметаллид Sm₂Al при полиморфном переходе изменяет параметры элементарной ячейки и число атомов в ней с 12 на 30 [26], при этом сохраняя ромбическую сингонию. SmAl переходит из орторомбической ячейки (AlDy – тип) в кубическую (CsCl – тип) [27]. Соединения SmAl₄ и Sm₃Al₁₁ по атомному составу имеют разницу менее 1.5%, поэтому часто в сплавах на основе одного соединения имеются примеси другого интерметаллида. Так, в литературе устойчивой модификации Sm₃Al₁₁ приписывается структурный тип BaAl₄, в то время как метастабильная модификация кристаллизуется в α -La₃Al₁₁ структурном типе. Авторы [28] доказали, что соединение Sm₃Al является неустойчивым при обычных условиях, а для его стабилизации необходимо использование углерода, поэтому на итоговой фазовой диаграмме этот алюминид отсутствует.

Данные о кристаллической структуре соединений, образующихся в системе La-Al, Ce-Al и Sm-Al, приведены в *таблице 6*.

Рис. 1. Диаграммы состояния систем {La, Ce, Sm}-Al [13].

Соетинение	Пространственная	Структурный	Пар	аметры я	ичейки, Å			
Сосдинение	группа	ТИП	а	b	С			
α -La ₃ Al ₁₁	Immm	La_3Al_{11}	4.431	13.142	10.132			
β -La ₃ Al ₁₁	I4/mmm	BaAl ₄	4.405	-	10.140			
LaAl ₃	<i>P</i> 6 ₃ / <i>mmc</i>	SnNi ₃	6.662	-	4.609			
La _{0.88} Al _{2.12} =LaAl _x	P6/mmm	AlB ₂	4.478	-	4.347			
LaAl ₂	Fd-3m	MgCu ₂	8.145	-	-			
LaAl	Стст или Стс2	AlCe	9.531	7.34	5.809			
La ₃ Al ₂ *	-	-	9.26	-	11.20			
La ₃ Al fcc	<i>P</i> 6 ₃ / <i>mmc</i>	Mg ₃ Cd	7.195	-	5.503			
La ₃ Al hex	Pm-3m	Cu ₃ Au	5.093	-	-			
Ce ₃ Al ₁₁	Immm	La_3Al_{11}	4.392	13.018	10.082			
CeAl ₄	I4/mmm	BaAl ₄	4.380	-	10.030			
CeAl ₃	<i>P</i> 6 ₃ / <i>mmc</i>	SnNi ₃	6.543	-	4.610			
CeAl ₂	Fd-3m	MgCu ₂	8.054	-	-			
CeAl	Стст или Стс2	AlCe	9.270	7.680	5.760			
CeAl m1*	Pm-3m	CsCl	3.85	-	-			
CeAl m2*	-	-	3.65	-	20.87			
α-Ce ₃ Al	P6 ₃ /mmc	SnNi ₃	7.042	-	5.450			
β-Ce ₃ Al	Pm-3m	Cu ₃ Au	4.998	-	-			
CerAl lt*	$P\gamma_{\cdot}/m$	CerAl	6 824	12/158	5.336			
	1 21/11	CC3AI	0.024	12.430	$\gamma = 89.69^{\circ}$			
Sm ₃ Al ₁₁	I4/mmm	$BaAl_4$	4.284	-	9.90			
SmAl ₄ metast*	Ітта	UAl_4	4.44	6.38	13.62			
Sm ₃ Al ₁₁ metast	Immm	α -La ₃ Al ₁₁	4.333	12.81	9.97			
SmAl ₃	$P6_3/mmc$	SnNi ₃	6.382	-	4.60			
SmAl ₂	Fd-3m	MgCu ₂	7.940	-	-			
SmAl orto	Pbcm	AlDy	5.901	11.602	5.688			
SmAl cub*	Pm-3m	CsCl	3.739	-	-			
Sm ₂ Al	Pnma	Co ₂ Si	6.662	5.19	9.625			
Sm ₂ Al*	-	-	7.782	9.302	11.21			
Sm ₃ Al	Pm-3m	Cu ₃ Au	4.940	-	-			

Таблица 3. Кристаллографические характеристики соединений систем {La, Ce, Sm}–Al [21-28]

1.2.3. Система Ru–Al

В литературе есть сведения об образовании семи интерметаллических соединений в системе Ru-Al [13]: RuAl, Ru₂Al₃, RuAl₂, Ru₄Al₁₃, RuAl₃, RuAl₆, RuAl₁₂ (**рис. 3**). В диссертации В.Оброуски [29] приводятся данные об образовании RuAl₁₂ и RuAl₃, однако при дальнейших исследованиях авторам [30] ни одним из современных методов анализа не удалось подтвердить образование этих двойных ИМС.

В то время как алюминий не растворяется в рутении, рутений может растворять в себе до 4 ат.% Аl. Следует отметить, что фаза Ru₂Al₃ существует только в ограниченной области, при температурах от 1000 до 1600 °C. Она имеет две полиморфные модификации – тетрагональную и гексагональную, – и обладает протяженной областью гомогенности от

57 до 67.8 ат.% Al. Еще два двойных соединения имеют области гомогенности: RuAl от 49.5 до 55 ат.% Al и RuAl₂ от 67 до 68.5 ат.% Al. Кроме того сообщается, что для интерметаллида RuAl₂ существует две полиморфные модификации MoS₂-типа и TiSi₂-тип.

Данные о кристаллической структуре соединений, образующихся в системе Ru-Al, приведены в *таблице* 7.

Рис. 3. Диаграмма состояния систем Ru–Al [13]

Coorregion	Пространственная	Структурный	Параметры ячейки, Å			
Соединение	группа	ТИП	а	b	С	
RuAl	Pm3m	CsCl	3.03	-	-	
Ru ₂ Al ₃ hex	<i>P-3m</i>	Al ₃ Ni ₂	4.05	-	4.94	
Ru_2Al_3 tet	I4/mmm	Os_2Al_3	3.079	-	14.33	
RuAl ₂ tet	I4/mmm	MoS_2	4.40	-	6.38	
RuAl ₂ orth	Fddd	TiSi ₂	8.012	4.717	8.785	
RuAl ₃ *	P6 ₃ /mmc	TiNi ₃	4.81	-	7.84	
Rualia	$C^{2/m}$	AlizFer	15.86	8.188	12.74	
Ku 47 M 13	C2/m A131C4		15.00	(β=107.8°)	12.74	
RuAl ₆	Стст	Al ₆ Mn	7.489	6.556	8.961	
RuAl ₁₂ *	-	Куб.	8.12	_	-	

Таблица 7. Кристаллографические характеристики соединений системы Ru-Al [30].

1.2.4. Физические свойства двойных соединений систем {La, Ce,Sm} – Ru

Физические свойства двойных интерметаллидов в системе La-Ru изучались американскими [31] и итальянскими учеными [32]. Б.Т. Маттиас и его коллеги определили эффективный магнитный момент РЗЭ, а также температуры ферромагнитного упорядочения или сверхпроводящего перехода в фазах Лавеса состава РЗЭRu₂, где РЗЭ = Sc, Y, La, Ce, Pr, Nd, Er. Было установлено, что температура перехода в сверхпроводящее состояние для LaRu₂ равна 1.63 К. Чтобы найти новые сверхпроводящие фазы, А. Палензона с коллегами продолжили исследование системы La-Ru. Измерения электросопротивления двойных интерметаллидов La₃Ru, La₅Ru₂ и La₇Ru₃ показали сверхпроводящие переходы при 5.55, 3.35 и 1.75 К, соответственно. В нормальном состоянии для всех трех соединений характерен парамагнитизм Паули. Авторы отметили, что в ряду La₃Ru, La₅Ru₂, La₇Ru₃, LaRu₂ с последовательным уменьшением кратчайшего расстояния между атомами лантана (от 3.67 до 3.33 Å) температуры перехода в сверхпроводящее состояние уменьшаются.

Ф. Канепа и др. [33] исследовали температурные зависимости параметров решетки (в интервале 10 – 300 К), магнитной восприимчивости (1.5 – 300 К) и электросопротивления (0.3 – 300 К) интерметаллида $Ce_{16}Ru_{9}$. На основании анализа магнитных и структурных данных обнаружено, что в различных кристаллографических позициях атомы церия находятся в Ce^{3+} и Ce^{4+} валентном состояниях. При охлаждении до 0.3 К магнитное упорядочение у соединения не зарегистрировано.

В процессе изучения серии интерметаллидов состава Ce_7X_3 (X = Ni, Ru, Pd, Pt, Ir и Rh) [34], обнаружено, что при низких температурах соединение Ce_7Ru_3 переходит в T Φ состояние. Кроме того, установлено, из трех независимых кристаллографических позиций, которые занимают атомы церия, в двух происходит магнитное упорядочение.

Физические свойства соединения Ce₃Ru опубликовали раньше [35], чем была определена кристаллическая структура [18]. Установлено, что атомы церия в данном интерметаллиде, как и в соединении Ce₄Ru₃ [36], имеют переменную валентность, однако связь этого эффекта со структурой не выявлена.

Двойной интерметаллид CeRu₂ с кубической структурой типа MgCu₂ (фаза Лавеса) является сверхпроводником с $T_c = 6.1$ К [37], причем за сверхпроводящие свойства отвечают электроны 4*d*-подуровня атома рутения. К. Ягадский с коллегами [38] обнаружил аномальные явления в кривых намагничивания в сверхпроводящем состоянии. В магнитном поле с напряженностью менее 0.8 Т при 2.2 К соединение имеет обычный цикл гистерезиса, а затем демонстрирует вторую петлю гистерезиса в поле выше 3.6 Т. В процессе изучения удельной теплоемкости, магнитокалорического эффекта и модуля упругости авторы [37] установили, что соединение CeRu₂ является сверхпроводником II рода, а также обнаружили переход первого рода к новой фазе в сверхпроводящем состоянии.

Двойные интерметаллиды системы Sm-Ru не обладают сверхпроводимостью, и атомы самария не имеют флуктуации валентности [25-26].

2.3 Взаимодействие компонентов в системах {La, Ce, Sm}–Ru–Al

Системы {La, Ce, Sm}–Ru–Al в полном концентрационном интервале не изучены. Различными авторами исследовались кристаллические структуры и свойства ограниченного числа тройных интерметаллидов рассматриваемых систем.

2.3.1 Система La-Ru-Al

Для системы La-Ru-Al имеются сведения об образовании 6 тройных интерметаллидов. Соединения La₁₁Ru₂Al₆ [39], La₃Ru₄Al₁₂ [40], La₅Ru₃Al₂ [9] всесторонне изучены, подтверждены их составы и измерены свойства. Для ИМС La₂Ru₃Al₁₅ [41] и LaRu₂Al₁₀ [42] определен структурный тип и параметры элементарной ячейки, а для соединения La₄RuAl [43] указан только структурный тип. Кристаллографические данные для этих соединений приведены в **таблице 8**. Известные из литературы двойные и тройные интерметаллиды системы нанесены на концентрационном треугольнике на **рисунке 4**.

Рис. 4. Концентрационный треугольник с известными двойными и тройными соединениями системы La-Ru-Al.

Авторы работы [9] сообщают о существовании в системе La-Ru-Al тройного интерметаллида La₅Ru₃Al₂. Это соединение кристаллизуется в кубической объемоцентрированной структуре (пространственная группа $I2_13$, a = 9.9542(1) Å) нового типа. Однако им не удалось синтезировать La₅Ru₃Al₂ в однофазном виде и получить его

монокристалл, поэтому структура была решена по данным порошковой рентгеновской дифракции. В образце состава La₅₀Ru₃₀Al₂₀ наблюдаются 3 фазы, одной из которых и является La₅Ru₃Al_{2.} Две другие – это La₄RuAl и RuAl. Измерение электрического сопротивления данного соединения показало наличие простой металлической проводимости. Кроме того, соединение имеет малую магнитную восприимчивость, которая слабо зависит от температуры.

Структура интерметаллида La₁₁Ru₂Al₆ определена методом РСА монокристалла в работе [39], Алюминид кристаллизуется в новом структурном типе с симметрией пространственной группы *Pbam*. Параметры элементарной ячейки a = 14.619(2) Å, b = 15.705(3) и c = 4.4866(7) Å. Авторы сообщают, что расстояния между некоторыми атомами La и Ru равны 2.703 и 2.812 Å, то есть имеют заниженные значения, близкие к сумме ковалентных радиусов этих элементов. Физические свойства алюминида La₁₁Ru₂Al₆ не измерялись.

В работе [40] исследованы кристаллические структуры и магнитные свойства соединений $P33_3Ru_4Al_{12}$ (где P33 = La-Nd). Все соединения данного ряда кристаллизуются в гексагональной структуре типа Gd₃Ru₄Al₁₂ (Пр. гр. P6₃/mmc). Эта структура может быть представлена как последовательно чередующиеся вдоль оси с слои Ru₄Al₈ и P3Э₃Al₄. Все соединения были получены в чистом виде без примесей, что позволило изучить особенности их атомных упаковок по порошковым дифрактограммам через уточнение варьируемых параметров по методу Ритвельда. Для интерметаллида La₃Ru₄Al₁₂ (параметры ячейки: a = 8.9254 Å, c = 9.7015 Å и V =669.31 Å³) наблюдается линейная зависимость между магнитным полем и намагниченностью, что указывает на парамагнитном существование соединения В состоянии, которое объясняется способностью атома рутения обладать магнитным моментом. Более позднее исследование этих же авторов [44] дало возможность предположить еще одну причину такого поведения – существование аномалии, возникшей благодаря спиновому состоянию атомов рутения. Алюминид La₃Ru₄Al₁₂ обладает эффективным моментом 1.28 µ_B на формульную единицу. Для одного иона рутения эффективный момент оценивается в 0,64 µв. Следует отметить, что в ряду РЗЭ₃Ru₄Al₁₂ (РЗЭ = La-Nd) магнитный момент представляет собой суперпозицию ионов P3Э³⁺ и ионов Ru. Поэтому магнитный момент ионов редкоземельных элементов оценивается вычитанием магнитного вклада ионов Ru из общего магнитного момента каждого соединения. В соответствии с данными о намагниченности все ИМС РЗЭ₃Ru₄Al₁₂ показывают аномалию при 6 К. Эти факты указывают на то, что ионы Ru магнитно упорядочены ниже 6 К во всех соединениях ряда

 $P3\Im_3Ru_4Al_{12}$ (P3 \Im = La–Nd). Авторы также полагают, что соединение La₃Ru₄Al₁₂ обладает сверхпроводимостью, если приложено поле не более 6 Т.

Интерметаллид LaRu₂Al₁₀ обнаружен в работе [42] при синтезе серий соединений LnT₂Al₁₀ (Ln = Y, La-Nd, Sm, Gd-Lu и T = Fe, Ru, Os). Соединение кристаллизуется в ромбической структуре типа YbFe₂Al₁₀ (Пр. гр. *Стст*). Физические свойства LaRu₂Al₁₀ изучены не были.

Соединение La₂Ru₃Al₁₅ получено японскими учеными (К. Якота и соавторы) [41] при изучении физических свойств в ряду P3Э₂Ru₃Al₁₅, где P3Э = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm. Структуру алюминида с лантаном определяли по порошковым рентгеновским данным поликристаллического образца, полученного (после отжига) при 900 °C. Данный интерметаллид не обладает магнитными свойствами.

	Пространственная	Параме	гры ячеі		
Соединение	группа/ Структурный тип	а	b	С	Примечания
$La_5Ru_3Al_2$	$I2_13/$ La ₅ Ru ₃ Al ₂	9.95419	-	-	Данные РФА
La ₁₁ Ru ₂ Al ₆	PbamLa ₁₁ Ru ₂ Al ₆	14.619	15.705	4.487	Данные РСА
$La_3Ru_4Al_{12}$	$\frac{P6_{3}/mmc}{Gd_{3}Ru_{4}Al_{12}}$	8.9254	-	9.7015	Данные РФА
La ₄ RuAl	F-43m/Gd ₄ RhIn	-	-	-	Данные РФА
$LaRu_2Al_{10}$	<i>Cmcm</i> / YbFe ₂ Al ₁₀	9.214	10.3	9.156	Данные РФА
$La_2Ru_3Al_{15}$	$P6_3/mcm/Ce_2Ru_3Al_{15}$	13.157	-	9.109	Данные РФА

Таблица 8. Тройные соединения системы La-Ru-Al.

2.3.2 Система Ce-Ru-Al

В настоящее время тройные соединения системы Ce-Ru-Al можно разделить на две группы: богатые алюминием интерметаллиды Ce₃Ru₄Al₁₂ [40, 44-45], Ce₂Ru₃Al₁₅ [46, 47], CeRu₂Al₁₀ [48], CeRu_{3-x}Al_{10+x} (x=0.17) [49] и соединения с повышенным содержанием церия. У второй группы соединений наблюдаются аномально короткие связи Ce – Ru, среди них интерметаллиды Ce₅Ru₃Al₂ [9], CeRuAl [50, 51], Ce₁₁Ru₂Al₆ [39], Ce₂RuAl₃[52], Ce₄RuAl [43]. Кристаллографические параметры интерметаллидов данной системы представлены в *таблице 9*, а концентрационный треугольник с известными тройными соединениями – на **рисунке 5**.

Рис. 5. Концентрационный треугольник с известными двойными и тройными соединениями системы Ce-Ru-Al.

Соединение Ce₃Ru₄Al₁₂ является первым интерметаллидом, полученным в системе Ce-Ru-Al Г. Кордиером [53]. У соединения определена кристаллическая структура, однако координаты атомов не были опубликованы. Позднее, Н.Г. Буханько с коллегами [45] изучили структуру данного соединения, используя метод РСА монокристалла. Интерметаллид Ce₃Ru₄Al₁₂ кристаллизуется в гексагональной ячейке (Пр. гр. *P*6₃/*mmc*) с параметрами: a = 8.8652 Å и c = 9.5700 Å. Установлено, что это ИМС принадлежит к структурному типу Gd₃Ru₄Al₁₂. Структуру можно представить, как каркасную, образованную атомами Ru и Al, в пустотах которой находятся атомы Ce. Физические свойства Ce₃Ru₄Al₁₂ измерены в работе [54]. Магнитная восприимчивость данного соединения слабо зависит от температуры, что объясняется наличием флуктуаций валентности атомов церия.

Впервые интерметаллид Ce₂RuAl₃ получен группой авторов, которые установили его кристаллическую структуру по порошковым рентгеновским данным [54]. Позднее группе Т. Мишра [52] удалось получить и изучить монокристалл состава CeRu_{0.48}Al_{1.52}. Соединение Ce₂RuAl₃ кристаллизуется в гексагональном структурном типе, являющемся производным от двойного типа MgZn₂. Алюминид существует в протяженной области от состава Ce₂Ru_{1.75}Al_{2.30} до Ce₂RuAl₃. В сплавах области гомогенности наблюдается случайное заполнение позиций 2*a* и 6*h* атомами Al и Ru, что типично для фаз Лавеса. Однако, рентгеновская дифракция соединения с составом Ce₂RuAl₃ свидетельствует об упорядочении атомов алюминия и рутения, что приводит к структурному типу Mg₂Cu₃Si (пространственная группа $P6_3/mmc$). Параметры элементарной ячейки изменяются в пределах $5.505 \le a \le 5.663$ Å и $8.070 \le c \le 8.887$ Å [46]. Соединение Ce₂RuAl₃ претерпевает ферромагнитный фазовый переход при T_c = 8 K [42], хотя в более раннем исследовании установлена температура в 9 К [54]. Данный интерметаллид относят к редким примерам соединений церия с высокой температурой магнитного упорядочения. К таким соединениям относят, например, CeAuGe [55].

Интерметаллид CeRuAl принадлежит к LaNiAl-типу [54, 50, 51] и кристаллизуется в ромбической ячейке (пространственная группа *Pnma*) с параметрами: a = 7.2057 Å, b =4.0589 Å, c = 15.8728 Å, V = 464.24 Å³. Стоит отметить, что соединение CeRuAl является практически продолжением твердого раствора на основе Ce₂RuAl₃, это объясняет первоначальное отнесение авторами [54] алюминида CeRuAl к структурному типу MgZn₂. Позже В. Хермес и др. [51] подтвердили структурный тип, предложенный в работе А.В. Грибанова [50], изучив 2 образца разных составов 1Ce:1.15Ru:0.85Al и 1Ce:0.85Ru:1.15Al. Рентгеновская дифракция первого образца показала присутствие CeRuAl, кристаллизующегося в структурном типе LaNiAl, и примесей RuAl и CeRu2. Второй же образец показал наличие фазы Лавеса с параметрами, близкими к твердому раствору на основе Ce₂RuAl₃. Авторы [50] сообщают о наличии укороченных расстояний между атомами Се и Ru, равных 2.803 Å, что меньше суммы ковалентных радиусов этих элементов (2.89 Å). Исследование физических свойств CeRuAl показало нестабильное валентное состояние атомов церия в каждой из двух кристаллографической позиций.

Соединение Ce₅Ru₃Al₂ является первым соединением с аномально короткими расстояниями Ce-Ru, полученным в системе Ce-Ru-Al [9]. Его структуру определили по монокристальным данным. Интерметаллид Ce₅Ru₃Al₂ кристаллизуется в новом структурном типе с тригональной симметрией (пространственная группа R3), параметры элементарной ячейки a = 13.910(3) Å, c = 8.314(3) Å. Обнаружено, что в этом соединении только одна позиция атома церия имеет расстояния Ce-Ru, которые короче суммы ковалентных радиусов элементов (2.597 Å, 2.530 Å). Е.В. Мурашова [9] объясняет это нестабильностью 4*f*-оболочки атомов церия, которая подтверждается малым значением эффективного магнитного момента 1.76 μ_B (для ионов Ce³⁺ $\mu_{эф\phi} = 2.54 \mu_B$) и большим отрицательным значением парамагнитной температуры Кюри. Позднее установлено, что на образование укороченных связей Ce-Ru в соединении Ce₅Ru₃Al₂ влияет частичное окисление атомами рутения соседних атомов церия, что приводит к сильному направленному ковалентному связыванию Ce-Ru [52].

Авторы [56] обнаружили модификацию соединения $Ce_5Ru_3Al_2$, кристаллизующуюся в кубической структуре, определенной по порошку с последующим уточнением методом Ритвельда. В качестве исходной модели использовали структуру соединения $La_5Ru_3Al_2$. Координация атомов и полиэдры одинаковы в обеих модификациях $Ce_5Ru_3Al_2$, при этом расстояния Ce-Ru возрастают, начиная от 2.738 Å.

Тройное соединение Ce₂Ru₃Al₁₅ описано авторами работы [46]. Установлено, что структура этого интерметаллида не относится ни к одному из ранее известных типов. По данным рентгеноструктурного анализа монокристалла параметры гексагональной элементарной ячейки (Пр. гр. *P*6₃/*mcm*) составляют: a = 13.122 (3) Å и c = 9.096 (18) Å, V = 1356.4 (5) Å³. Позднее авторами работы [47] также получен и структурно изучен монокристалл идентичного состава. Структура представляет собой чередование сеток из атомов рутения и алюминия с включением внутри неё атомов церия. Соединение Ce₂Ru₃Al₁₅ [47] имеет два низкотемпературных магнитных перехода при 3.7 и 3.1 К, первый из которых является антиферромагнитным упорядочением.

Кристаллическая структура соединения CeRu_{3-x}Al_{10+x} (x = 0.17) изучена и описана в работе [49]. Результаты рентгеноструктурного анализа монокристалла показали, что это соединение кристаллизуется в ромбической элементарной ячейке с параметрами: a =4.2213(1) Å, b = 12.5014(3) Å, c = 17.6689(4) Å и V = 923.43(3) Å³, пространственная группа *Imma*. Данное соединение является родоначальником нового структурного типа. Авторы отмечают, что в позиции 4е наблюдается статистическое распределение атомов рутения и алюминия: 0.83Ru + 0.17Al, а заселенность атомных позиций Al1 и Al3 равна 0.5. Такое распределение атомов делает структуру подобной структуре NdCo₃Ga₉ [57].

Авторы [47] сообщают о синтезе в системе Ce-Ru-Al тройного интерметаллида CeRu₂Al₁₀, изоструктурного соединению YbFe₂Al₁₀. Более полно кристаллическая структура CeRu₂Al₁₀ определена позже авторами [48] методом PCA монокристалла. Параметры элементарной ячейки CeRu₂Al₁₀ составляют: a = 9.1772(16) Å, b = 10.282(2) Å, c = 9.1902(14) Å, V = 862.5(3) Å³, пространственная группа *Стст.* Этот материал представляет интерес, так как демонстрирует тяжелофермионное состояние с наличием аномального фазового перехода при T₀ = 27 K [58].

Тройное интерметаллическое соединение Ce₁₁Ru₂Al₆ [39] принадлежит к новому структурному типу: ромбическая ячейка (Пр. гр. *Pbam*) с параметрами: a = 14.0799(14) Å, b = 15.4879(16) Å, c = 4.4685(4) Å, V = 974.44(16) Å³. У данного алюминида обнаружены аномально короткие межатомные расстояния Ce – Ru 2.440 Å. Авторы [39] объясняют наличие таких контактов флуктуациями валентности атомов церия в некоторых кристаллографичеких позициях.

Соединение Ce₄RuAl представлено на международной конференции в 2010 году [45]. Алюминид относится к кубическому структурному типу Gd₄RhIn, пространственная группа *F*-43*m*, параметр ячейки a = 13.771 Å, Z = 16. Физические свойства этого интерметаллида исследовались в работах [59, 60]. Это соединение характеризуется нестабильным валентным состоянием атомов церия и антиферромагнитным упорядочением при температуре 0.95 К.

	Пространственная	Пар						
Соединение	группа/ Структурный				Примечания			
	тип	а	b	С				
$Ce_3Ru_4Al_{12}$	P6 ₃ /mmc/ Gd ₃ Ru ₄ Al ₁₂	8.8652	-	9.570	Данные РСА			
$Ce_2Ru_3Al_{15}$	P6 ₃ /mcm/ Ce ₂ Ru ₃ Al ₁₅	13.122(3)	-	9.0964(18)	Данные РСА			
CeRu _{3-x} Al _{10+x}	Imma/	4 2212(1)	12 5014(3)	17 6680(4)	Данные РСА			
(x=0.17)	$CeRu_2(Ru_{0.83}Al_{0.17})Al_{10}$	4.2213(1)	12.3014(3)	17.0089(4)				
CeRu ₂ Al ₁₀	Cmcm/ YbFe ₂ Al ₁₀	9.1272(16)	10.282(2)	9.1902(14)	Данные РСА			
$Ce_5Ru_3Al_2$	$R3/Ce_5Ru_3Al_2$	13.9270(3)	-	8.3260(2)	Данные РСА			
CeRuAl	Pnma/ LaNiAl	7.2057(2)	4.0589(1)	15.8728(5)	Данные РСА			
$Ce_{11}Ru_2Al_6$	Pbam/ La ₁₁ Ru ₂ Al ₆	14.0799(14)	15.4879(16)	4.4685(4)	Данные РСА			
Ce ₄ RuAl	F-43m/Gd4RhIn	13.771	-	-	Данные РСА			
$\overline{Ce_2RuAl_3}$	P6 ₃ /mmc/Mg ₂ Cu ₃ Si	5.6538(9)	-	8.883(1)	Данные РСА			

Таблица 9. Тройные соединения в системе Ce-Ru-Al.

Особенности физических свойств изученных интерметаллидов системы Ce-Ru-Al приведены в *таблице 10*.

Таблица	10.	Физические	свойства	известных	тройных	соединений	системы	Ce-Ru-A	l
,					1				

Соединение	Свойства
$Ce_3Ru_4Al_{12}$	ФВ
$Ce_2Ru_3Al_{15}$	2 магнитных перехода, 1-АФУ
$CeRu_{3-x}Al_{10+x} (x=0.17)$	Не изучались
CeRu ₂ Al ₁₀	АФУ, КС, диэлектрик
Ce ₅ Ru ₃ Al ₂	ФВ
CeRuAl	ФВ
$Ce_{11}Ru_2Al_6$	ФВ
Ce ₄ RuAl	АФУ при 0.95 К, ФВ
Ce ₂ RuAl ₃	ФУ, Тс=8К

2.3.3 Система Sm-Ru-Al

В широком интервале концентраий система Sm-Ru-Al не изучалась. В литературе есть сведения о четырех тройных соединениях: Sm₄RuAl [59], Sm₃Ru₄Al₁₂ [61] и SmRu₂Al₁₀ [42], Sm₂Ru₃Al₁₅ [41] (**рис. 6**).

Рис. 6. Концентрационный треугольник с известными двойными и тройными соединениями системы Sm-Ru-Al.

Эти соединения были найдены в рамках исследования соответствующих изоконценрационных рядов ИМС $R_xT_yX_z$. Структуры первых трех соединений решены по порошку. Для соединения $Sm_2Ru_3Al_{15}$ есть сведения только о его химическом составе. Кристаллографические характеристики тройных соединений системы Sm-Ru-Al представлены в *таблице 11*.

	Пространственная	Парат	метры ячей		
Соединение	группа/				Примечания
	Структурный тип	а	b	С	
Sm ₄ RuAl	<i>F</i> -43 <i>m</i> /Gd ₄ RhIn	13.609	-	-	Данные РФА
SmRu ₂ Al ₁₀	Cmcm/ YbFe ₂ Al ₁₀	9.1440	10.2380	9.0950	Данные РФА
$Sm_3Ru_4Al_{12}$	P6 ₃ /mmc/	8.8300	-	9.5730	Данные РФА

Таблица 11. Тройные соединения в системе Sm-Ru-Al.

	$Gd_3Ru_4Al_{12}$				
Sm ₂ Ru ₃ Al ₁₅	-	-	-	-	-

Данные о чистоте полученных сплавов в публикациях отсутстуют. Тем не менее для тройных соединений $Sm_2Ru_3Al_{15}$ и $SmRu_2Al_{10}$ были измерены физические свойства. Первый алюминид имеет антиферромагнитное упорядочение при $T_N = 9.2$ K [41], магнитные моменты самария в нем незначительны.

При изучении электросопротивления, магнитной восприимчивости и теплоемкости монокристаллического образца SmRu₂Al₁₀ [62, 63] обнаружены два фазовых перехода. Авторы подтвердили последовательные магнитные переходы при $T_N = 12.3$ К и $T_M = 5.6$ К. При нулевом магнитном поле ρ (T) проявляет слабое увеличение и излом при $T_N = 12.3$ К, что соответствует антиферромагнитному упорядочению, при $T_M = 5.6$ К наблюдается переход первого рода.

2.4 Короткие расстояния между атомами церия и рутения

Ещё в 90-х годах прошлого столетия ученые обнаружили интересную особенность двойных интерметаллидов на основе церия и рутения – образовывать короткие контакты. Так расстояния Ce-Ru равны 2.61 Å в Ce₃Ru, 2.56 – 2.62 Å в Ce₁₆Ru₉ и 2.75 Å в Ce₄Ru₃ [36], при этом атомы рутения в соединениях Ce₃Ru (Fe₃C – структурный тип) [18], Ce₇Ru₃ (Th₇Fe₃ – структурный тип) [34] и Ce₁₆Ru₉ (собственный структурный тип) [33] имеют

схожее кристаллохимическое окружение: тригональные призмы и квадратные антипризмы. В этих соединениях наблюдается сокращение межатомных рассояний от 13 до 19 % по сравнению с суммой металлических радиусов атомов церия и рутения.

Первыми тройными соединениями, характеризующимися наличием аномальных контактов Ce и Ru, стала пара индидов Ce₂Ru₂In₃ и Ce₃Ru₂In₂ [3]. Эти соединения кристаллизуются в одном структурном типе, но различаются одной кристаллографической позицией. При переходе от Ce₂Ru₂In₃ к

Рис. 7. Проекции структур Ce₂Ru₂In₃ и Ce₃Ru₂In₂ на плоскость *ac*, атомы Ce обозначены светло-серым цветом, Ru - темно-серым цветом, In - белым цветом.

соединению Ce₃Ru₂In₂ (рис. 7) одна позиция In (In1) меняется на позицию церия (Ce1).

Остальные кристаллографические позиции атомов сохраняются. Замена атома индия на атом церия вызывает значительное уменьшение расстояния Ce-Ru. Так в структуре межатомные расстояния Ce2-Ru1 и Ce2-Ru2 равны 2.323 Å и 2.368 Å, $Ce_2Ru_2In_3$ соответственно. Они намного короче, чем сумма металлических радиусов атомов Се и Ru. В структуре интерметаллида Ce₃Ru₂In₂ атом Ce₃ имеет один короткий контакт с атомом Ru2, равный 2.281 Å. Другие расстояния Ce-Ru равны 2.978 Å и 3.334 Å. Полиэдры атомов Се2 и Се3 сильно искажены, что сопровождается большим разбросом значений межатомных расстояний (более 1 Å) от 2.323 до 3.661 Å для Ce2 и от 2.281 до 3.613 Å для Ce3. В структуре в $Ce_2Ru_2In_3$ атом индия In1 имеет кубоктаэдрическое окружение, и такое же окружение имеет атом церия Ce1 в структуре Ce₃Ru₂In₂. Однако для атомов редкоземельных элементов такое окружение с низким координационным числом не характерно.

соединением Третьим с аномально короткими расстояниями между атомами церия и рутения стало Ce₁₆Ru₈In₃₇ -[64]. Интерметаллид кристаллизуется в ромбической структуре (Пр. гр. *Immm*), производной от CeIn₃, с параметрами элементарной ячейки a = 4.745 Å, b = 9.352 Å, c = 32.616 Å. Структура представлена чередующимися слоями составов $Ce_4In_{14.5}$ и $Ce_4Ru_4In_4$ (рис. 8). В данном соединении атомы церия и рутения, расположенные на границах этих слоев, образуют аномально короткие Ce-Ru расстояния, равные 2.374 Å.

В 2007 году авторы [65] опубликовали данные по соединению Ce₃Ru₂In₃, которое кристаллизуется в собственном структурном типе (рис. 9). Атомы церия находятся в двух

независимых

кристаллографических

Ce_Ru_I Ce,lr Рис. 8. Проекция кристаллической структуры Ce₁₆Ru₈In₃₇ вдоль оси а.

позициях. Для атомов церия в одной из позиций наблюдаются аномальные расстояния с атомами рутения – 2.375 Å и 2.731 Å. По мнению авторов такая структурная особенность может быть связана с проявлением атомами церия валентности больше 3. Для другой позиции церия расстояния между атомами являются типичными для интерметаллических соединений (3.0 – 3.2 Å).

Продолжая изучение системы Ce-Ru-In, авторы [66] обнаружили ещё один интерметаллид CeRu_{0.88}In₂ (структурный тип MgCuAl₂) с укороченными Ce-Ru контактами. Это соединение представлено двумя видами чередующихся гексагональных слоёв (рис. 10). Один из слоёв является плоским и состоит из атомов церия и рутения, а другой – гофрированным и включает в себя только атомы In. В первом слое расстояние между атомами Се и Ru равно 2.530 Å и 3.361 Å. Сами атомы церия окружены искаженными пятиугольными призмами из восьми атомов индия и двух атомов рутения с 5 дополнительными атомами (2Ce, 2In и Ru) над каждой боковой гранью. Именно атом рутения, расположенный над одной из боковых граней, образует короткий контакт с центральным атомом Ce, равный 2.530 Å. Это расстояние на 12.5 % меньше, чем сумма

ковалентных радиусов церия и рутения, и в серии соединений со структурным типом MgCuAl₂ оно является кратчайшим. Авторы полагают, что такое расстояние между церием и рутением может быть связано с флуктуацией валентности атомов церия и/или с частичным заселением атомов рутения своей кристаллографической позиции.

Авторы [2] в качестве третьего компонента использовали цинк. В результате получили соединение Ce₂RuZn₄ (рис. 11), кристаллизующееся в новом структуном типе с симметрией пространственной группы Р4/пт. В структуре атомы церия занимают

две независимые кристаллографические позиции. Атомы Се1 окружен атомами, находящимися на расстояниях, характерных для металлов, его координационное число равно 12. В противоположность ему атомы Ce2 (КЧ = 10) имеют короткие контакты с двумя Ru, равные ~2.60 Å. Авторы [2] на основе данных о расстояниях между Ce2 и Ru, а также данных о среднем значении контактов Ce-Zn (3.21 Å для Ce1 и 3.03 Å для Ce2), что атомы Се2 проявляют установили, флуктуацию валентности, а атомы Cel являются трехвалентными.

Среди 20 известных к 2007 году структурных типов эквиатомных соединений, интерметаллид CeRuSn занимал особое место в изучении укороченных контактов Ce-Ru [67]. Структурный тип CeRuSn является производным от моноклинного CeCoAl с удвоением ячейки вдоль оси *с* (**рис. 12**). В сверхструктуре атомы церия занимают две независимые кристаллографические позиции. Причем кратчайшие межатомные

расстояния в соединении CeRuSn образуют Ce1 и Ru1, равные 2.330 Å, и Ce1-Ru2, равные 2.464 Å. Как и другие авторы, Ж. Риекен и коллеги [67], связывают присутствие таких контактов с нестабильной валентностью атомов церия. Анализируя средние межатомные расстояния Ce-Ru – 3.00 Å для Ce1 и 3.27 Å для Ce2, а также контакты Ce-Ce – 3.80 Å для Ce1 и 3.89 Å для Ce2, авторы [67] установили, что атомы Ce1 имеют флуктуации валентности, а атомы Ce2

являются трехвалентными. Они также отметили, что особенно короткие расстояния церий – переходный металл встречаются в интерметаллидах на основе рутения. В соединениях с родием эта структурная особенность выражена слабее: в соединениях CeRhGe [68] и CeRhGa [69] контакты Ce-Rh равны 3.02 и 2.81 Å, соответственно. Проведя анализ магнитной восприимчивости соединения CeRuSn, авторы [67] предположили, что атомы церия, находящиеся в разных кристаллографических позициях, имеют разные электронные конфигурации. Процентное содержание трехвалентного церия, равное 47 %, что практически аналогично содержанию атома Ce2 (50%) на моль CeRuSn.

В соединения, где третьим элементом является магний, также встречаются укороченные контакты Се-Ru. Например, в интерметаллиде СеRu₂Mg₅ (рис. 13) (собственный структурный тип) расстояния между церием и рутением достигают особо малых значений, 2.317 Å [70]. Атомы церия в данной структуре лишь занимают одну кристаллографическую позицию, и такие короткие расстояния Ce-Ru авторы объясняют нестабильностью валентной *f*-оболочки атомов церия, что подтверждают магнитные измерения. Авторы [70] также отмечают, что большинство соединений с

предельно короткими расстояниями Ce-Ru кристаллизуются в собственных структурных

типах. Очень короткие расстояния Ce-Ru, обусловленные флуктуациями валентности атомов церия, усложняют образование изоструктурных ИМС при замене церия на другие P3Э. В качестве примера авторы приводят соединение CeRuSn [67], которое кристаллизуется с надстройкой моноклинного типа CeCoAl, в то время как PrRuSn [71] кристаллизуется в ромбической структуре типа TiNiSi.

В литературе описаны 5 интерметаллидов системы Ce-Ru-Al, имеющих короткие и

аномально короткие расстояния между атомами церия и рутения. Первым в этом списке стало соединение CeRuAl [50]. Его кристаллическая структура может быть представлена как комбинация тригональных Ce_2Al_4 призм составов И Ce_6 , переходных центрированных атомами 14). Бесконечный металлов (рис. ряд

тригональных призм Ce₆Ru, соединенных общим ребром, вытянут вдоль оси *a*. К каждому звену цепи также через общее ребро присоединена тригональная призма состава Ce₂Al₄Ru. В структуре каждый сорт атомов занимает по 2 независимые кристаллографические позиции. Каждый атом Ce образует укороченный контакт со своим атомом рутения, так расстояния Ce1-Ru1 и Ce2-Ru2 равны 2.803 Å и 2.855 Å, соответственно.

Еще одно соединение с нетипичными Се-Ru расстояниями – это Ce₅Ru₃Al₂ [9]. Оно кристаллизуется В собственной структуре тригонального типа. Атомы рутения И алюминия образуют трехмерную структуру, в обширных пустотах которой расположены атомы церия (рис. 15). В структуре атомы церия занимают 4 независимые кристаллографические

позиции, однако только одна из них (Ce1) образует аномально короткие контакты Ce-Ru – 2.530 и 2.597 Å. Авторы полагают, что значительная близость атомов Ce и Ru может быть вызвана смешанно-валентным состоянием отомов Ce1. Другая кристаллографическая позиция церия – Ce4 – тоже имеет расстояния до атомов рутения (2.766 Å), меньшие чем сумма ковалентных радиусов этих элементов (2.89 Å). Авторы объясняют эту особенность валентным состоянием атомов Ce4, которое превышает значение 3. Атомы церия, занимающие две оставшиеся позиции (Ce2 и Ce3), находятся от атомов рутения на расстояниях более 2.91 Å, типичных для ИМС.

В соединении $Ce_{11}Ru_2Al_6$ [39] атомы Се и Ru обрауют рекордно короткие расстояния в системе Ce-Ru-Al. Структура этого интерметаллида образована бесконечными цепочками CeRuAl₂, направленными вдоль оси *с* (**рис. 16**). Межатомные расстояния Ce-Ru имеют аномальные значения именно в такой цепочке. Атомы Ru1 находятся в контакте с двумя Al1, одним Al3 и одним Ce4 на расстояниях 2.598, 2.627 и 2.440 Å, соответственно. Рассмотрев координационные полиэдры атомов рутения, авторы установили, что Ru1

смещен из центра тригональной призмы в сторону атома Ce4, в следствие этого расстояние Ce4-Ru1 уменьшается, а расстояние Ce5-Ru1 увеличивается, но его значение 2.914 Å остается близким к сумме ковалентных радиусов церия и рутения. Оставшиеся четыре независимые кристаллографические позиции атомов церия – Ce1, Ce2, Ce3, Ce6 – характеризуются расстояниями с другими элементами типичными для трехвалентного церия (от 3.086 до 3.775 Å).

О существовании аномальных расстояний в структуре соединения Ce₄RuAl впервые сообщилось в 2010 году на конференции [43], однако кристаллографические данные не опубликованы.

Описанная выше группа соединений $Ce_xRu_yX_z$ с короткими межатомными расстояниями Ce-Ru представляет большой интерес для будущих исследований, так как объединяющая их структурная аномалия в литературе не имеет удовлетворительного объяснения. В некоторых работах образование укороченных межатомных расстояний связывается с промежуточным валентным состоянием атомов церия [58, 123].

В ряде случаев для соединений, имеющих несколько кристаллографических позиций атомов церия, ученые связывают определенное физическое свойство с атомами церия с конкретной кристаллографической позицией, при этом данные о межатомных расстояниях играют ключевую роль.

Большинство авторов связывает такие расстояния с флуктуациями валентности атомов церия. В случае, когда в соединении атомы церия занимают только одну кристаллографическую позицию, магнитное поведение интерметаллида имеет более простое объяснение. В большинстве случаев атомы церия занимают несколько позиций с разными межатомными расстояниями. В этом случае объяснение магнитных свойств материала затруднено. В случае присутствия в структуре коротких расстояний Се-Ru и флуктуаций валентности атомов церия эти два фактора для упрощения интерпретации

наблюдаемых эффектов рассматривают совместно, привязывая наблюдаемое свойство к структурной аномалии. В системе Ce-Ru-Al большинство найденных соединений обладает этой структурной особенностью, однако, послностью эта система не исследована, что делает её перспективной для систематического изучения.

2.5 Сильно коррелированные электронные системы

Ряд элементов в составе веществ, используемых в современных технологиях, обладает свойствами, для понимания которых можно пренебречь отталкивающим кулоновским взаимодействиям между электронами. Так, с точки зрения невзаимодействующих электронов хорошо понятны электрические, механические и термодинамические свойства элементов 13 – 15 групп. Принцип исключения Паули и делокализованный характер электронных состояний *s*- и *p*-орбиталей, приводят к тому, что в этих элементах кинетическая энергия электронов преобладает над энергией межэлектронного взаимодействия [72].

Однако, встречаются случаи, когда центральную роль в определении электронных, магнитных, оптических, а иногда и механических свойств играют электрон-электронные взаимодействия. Системы, В которых кулоновская и/или обменная энергия взаимодействия частиц оказывает влияние на нахождение электронов в кристалле, называются сильно коррелированными [73]. К таким системам принято относить Кондосоединения, ТФ системы, ТФ сверхпроводники и даже соединения с флуктуациями валентности. Одним из важных условий образования таких систем является наличие локализованного магнитного момента, поэтому СКЭС в первую очередь образуют атомы с незаполненными 3*d*- и 4*f*- оболочками – переходные металлы и РЗЭ. Поведение сильно коррелированных материалов иллюстрирует диаграмма Дониаха (рис. 17). На этой диаграмме, первоначально построенной Дониахом [74], рассматривается зависимость свойств материала от силы обменного взаимодействия магнитных моментов между собой и с электронами проводимости. Оба взаимодействия, РККИ и Кондо (см. пояснение ниже), приводят к понижению энергии, характеризующейся температурой магнитного упорядочения T_C . Если $T_C > T_K$, то происходит магнитное упорядочение (**рис. 17.1**). Такая ситуация характерна для соединений с глубоко расположенным f-уровнем, когда температура Кондо, изменяющаяся по экспоненциальному закону, мала и таким взаимодействием можно пренебречь; соединение является магнитным металлом с локализованными магнитными моментами и с ферро- или антиферромагнитным упорядочением. При сближении f уровня и уровня Ферми T_K ~ T_{РККИ}, и здесь возможно экранировка спина. Система переходит в режим Кондо, который при охлаждении может

сопровождаться магнитным упорядочением (**рис. 17.2a**) или немагнитным режимом (**рис.** 17.26). При незначительном превышении f уровня над уровнем Ферми (**рис. 17.3**) заполнение f уровня является не целым и получается фаза с переменной валентностью. Если разница между f уровнем и уровнем Ферми достаточна велика (**рис. 17.0**), то получается немагнитнй металл.

Рис. 17. Диаграмма Дониаха [74] и её связь с расположением *f* уровня и уровня Ферми (J – энергия эффективного обменного взаимодействия, W – ширина зоны проводимости).QCR – квантово-критический режим, NFL – не ферми-жидкостное поведение

В области, когда взаимодействия электрон-электрон становятся значительными, как это часто бывает в *d*- и *f*-электронных системах, количество применимых теоретических методов резко сокращается. За исключением одномерных систем, для которых разработаны очень специализированные аналитические и вычислительные методы, проблема остается не решенной. Из-за конкуренции фаз с резко отличающимися

Рис. 18. Взаимосвязь теоретических и практических методов получения и изучения материалов.

свойствами, а также больших скоростей перехода и высокой чувствительности к температуре, электрическим и магнитным полям, свету, сильно коррелированные материалы имеют огромный потенциал в технологических процессах, в частности для хранения магнитных данных [72].

Конечная цель исследования веществ – это получение «материалов по дизайну» (**рис. 18**), включая теоретическое обоснование, вычислительное моделирование, синтез и обнаружение новых материалов, а

также характеристики материалов в энергетических и временных масштабах.

2.6 Особенности строения и физические свойства соединений на основе РЗЭ

Заполняющаяся в ряду лантаноидов 4*f* оболочка характеризуется близостью своей энергии к энергиям 5*d* и 6*s* орбиталей, а также, что существенно, значительной локализацией в пространстве. Электроны, расположенные на 4*f* подуровне, не участвуют в образовании связей с другими атомами. В случаях, когда атом РЗЭ имеет неспаренные 4*f* электроны, (например, у церия, самария), они отвечают за магнитные свойства, такие как магнитное упорядочение, Кондо-эффект и ТФ сверхпроводимость [75].

Особенно важной причиной изменения поведения подвижных электронов является то, что они взаимодействуют с магнитными моментами атомов РЗЭ по двум разным механизмам, которые действуют одновременно, но приводят к противоположным последствиям, и поэтому конкурируют между собой. Один из них – это механизм РККИ (Рудермана-Киттеля-Касуя-Йосиды). По этому механизму взаимодействие электронов

проводимости с магнитными моментами приводит к формированию в кристалле дальнего магнитного порядка при температурах ниже температуры упорядочения.

2.6.1 Магнитные упорядочения: ферромагнетизм и антиферромагнетизм

Магнитные моменты атомов при понижении температуры могут ориентироваться в определенном порядке путем обменных взаимодействий с электронами проводимости по механизму РККИ. В ферромагнитных материалах все моменты выстраиваются параллельно, в результате появляется намагниченность при отсутствии внешнего поля. Температура, при которой наблюдается ферромагнитное упорядочение, называется температурой Кюри (T_C). В антиферромагнитно упорядоченных веществах магнитные моменты соседних атомов направлены противоположно, поэтому антиферромагнетик не имеет собственного магнетизма, а приобретает магнитные свойства лишь под влиянием внешнего поля, как и парамагнетик. Отличительной чертой антиферромагнитного материала является сильная анизотропия, то есть влияние ориентации магнитного поля к решеток на магнитным моментам магнитные характеристики материала. При перпендикулярном приложении внешнего поля к этим моментам намагниченность значительно больше, чем при параллельном направлении. Температура, при которой наблюдается антиферромагнитное упорядочение, называется температурой Нееля (T_N).

2.6.2 Сверхпроводимость.

Некоторые материалы ниже определенной «критической» температуры переходят в сверхпроводящее состояние, характеризующееся двумя основными свойствами: 1) не оказывают сопротивления при прохождении электрического тока; 2) внешние магнитные поля, если они недостаточно сильны, не могут проникать в сверхпроводник, а останутся на его поверхности. Это явление вытеснения поля известно как эффект Мейсснера – физика, который впервые наблюдал его в 1933 году [76]. Данное явление объясняется микроскопической теорией сверхпроводимости БКШ (в честь трех американских исследователей, открывших явление: Джон Бардин, Леон Купер и Джон Шриффер). Согласно теории БКШ, электроны проводимости через взаимодействие с колебаниями решетки (фононами), группируются в «куперовские пары», которые движутся внутри твердого тела без трения. Твердое тело можно рассматривать как решетку положительных ионов, погруженных в облако электронов. По мере прохождения электрона через эту решетку ионы слегка движутся, притягиваясь отрицательным зарядом электрона. Это движение генерирует электрически положительную область, которая, в свою очередь, привлекает другой электрон. Энергия электронного взаимодействия довольно слабая, и
пары легко расщепляются тепловой энергией - поэтому сверхпроводимость по механизму теории БКШ обычно возникает при очень низкой температуре.

2.6.3 Кондо-эффект

В ряду редкоземельных элементов при переходе от одного элемента к следующему происходит заполнение предшествующей внешним уровням 4f-оболочки. Эта оболочка на энергетической шкале близка внешнему уровню, однако имеет существенно меньший эффективный радиус. В интерметаллидах эта особенность играет важную роль, так как именно она ответственна за возникновение широкого ряда эффектов, приводящих к необычным свойствам. Если электронные оболочки с неспаренными электронами имеют небольшой эффективный радиус (как у атомов РЗЭ, r ~ 0.4 Å), то их магнитные моменты сильно локализованы, и перекрывания этих оболочек не происходит даже при значительной концентрации магнитных ионов, поэтому они в кристалле остаются магнитными [75]. 4f-электроны в силу отсутствия компенсации угловых моментов (орбитального и спинового) определяют магнитные свойства соединений. Из-за взаимодействия с этими «магнитиками» и с электрическим полем всего кристалла поведение электронов проводимости сильно меняется.

В конце 50-х годов прошлого века было экспериментально установлено, что поведение металлических сплавов, содержащих магнитные примеси, может отличаться от типично металлического. Сопротивление таких материалов с уменьшением температуры сначала – как у металлов – падает, но начиная с некоторого значения вдруг начинает расти. Объяснение этого экспериментального факта было предложено физиком Кондо [77]. В дальнейшем было установлено, что механизм Кондо носит общий характер и проявляется не только в сплавах с магнитными примесями, но и в интерметаллидах с магнитной подрешеткой. Электроны проводимости, перемещаясь по кристаллу, взаимодействуют с локализованными моментами и рассеиваются на них. Стремясь погасить локализованный спин, электроны проводимости выстраиваются антипарралельно ему. При понижении температуры такое взаимодействие И соответствующее сечение рассеяния электронов проводимости растёт, значит растёт и сопротивление образца. Поэтому при измерении сопротивления имеется минимум на графиках.

Другое следствие эффекта Кондо проявляется при измерении магнитной восприимчивости. При стремлении температуры к 0 наблюдается постепенное подавление магнитного момента до 0, т.е. до полного его экранирования. При высоких температурах вещество ведет себя как парамагнетик, магнитная восприимчивость которого хорошо

описывается законом Кюри-Вейсса. При некоторой температуре, называемой температурой Кондо, отклонение от закона Кюри-Вейсса уже явно заметно, и чем ниже температура, тем сильнее отклонение. То есть происходит непрерывный переход от обычного для локализованных магнитных моментов при высокой температуре парамагнитного режима типа Кюри-Вейсса к другому парамагнитному режиму, который называют режимом Кондо. Температура Кондо - это некий энергетический (температурный) масштаб, проявляющийся в аномалиях физических свойств, отклонениях от законов, описывающих обычное парамагнитной состояние системы с локальными магнитными моментами.

Чем ниже температура Кондо, тем больших значений может достигать магнитная восприимчивость. Ниже характеристической температуры Кондо-эффект сначала наблюдается на каждом отдельном магнитном ионе независимо от других Кондо-центров. При наличии в кристалле магнитной периодической подсистемы, когда атомы *f*-элемента занимают хотя бы одну независимую кристаллографическую позицию, может возникнуть такое состояние, в котором все Кондо-центры действуют согласованно, когерентно, образуя так называемую Кондо-решетку.

Следствиями эффекта Кондо являются такие необычные феномены как тяжелофермионное (ТФ) состояние, тяжелофермионная сверхпроводимость, флуктуации валентности атомов РЗЭ.

2.6.4 Тяжелофермионные системы

Материалы, в которых электроны (фермионы) приобретают большую эффективную массу, называют тяжелофермионными системами. Физические свойства таких материалов заметно отличаются от физических свойств металлов и сплавов. Это показано схематически на **рисунке 19**. Учитывая выбор важных физических величин, таких как электросопротивление $\rho(T)$, магнитная восприимчивость $\chi(T)$ и низкотемпературная удельная теплоемкость C(T), можно увидеть что их характерные температурные зависимости в обычных металлах и материалах тяжелых фермионов существенно различаются.

По графикам **рисунка 19** видно, что в теплоемкость С ~ γ T, причем γ показывает насколько «тяжелые» электроны присутствуют в системе. Для обычных металлических систем γ около 1 мДж/моль*K², в то время как в системах с тяжелыми фермионами приобретает значения на 2-3 порядка больше (10²- 10³ мДж/моль*K²).

Рис. 19. Температурные зависимости удельного электросопротивления, магнитной восприимчивости и теплоемкости для обычных металлов и ТФ соединений

Магнитная восприимчивость χ в обычных металлах и ТФ соединениях при низких температурах практически не зависит от температуры (но значения вновь различаются на несколько порядков), однако при высокой температуре система с ТФ подчиняется закону Кюри, $\chi \sim 1/T$, вследствие этого часто наблюдается магнитное упорядочение. Электросопротивление ρ в обычных металлических системах увеличивается с ростом температуры (**рис. 19**). В системах с ТФ при повышении температуры сопротивление сначала растет, как и у металлических систем, затем падает, как у полупроводников. Это качественное отличие систем с ТФ от обычных металлических.

Тяжело-фермионные явления чаще всего наблюдаются в соединениях и сплавах, содержащих редкоземельные элементы или актиноиды в качестве одного из химических составляющих. В большинстве случаев ионы этих элементов имеют локализованный момент из-за не заполненной электронной оболочки, что обеспечивает магнитные степени свободы. В обычных редкоземельных или актиноидных соединениях при низких температурах это приводит к возникновению магнитного порядка по механизму РККИ [78]. Однако конкурирующее с механизмом РККИ взаимодействие между локализованными моментами и электронами проводимости по механизму Кондо [78] стремится экранировать магнитные моменты и, следовательно, подавлять образование магнитоупорядоченного основного состояния. Таким образом, часть магнитной энтропии переносится в электронную систему проводимости, что приводит к усилению эффективной массы электрона. Согласно этим аргументам формирование состояния тяжелых электронов возможно, если энергия взаимодействия по механизму Кондо больше энергии взаимодействия по мезанизму РККИ.

2.6.5 Тяжелофермионная сверхпроводимость

Согласно теории БКШ в традиционных сверхпроводниках состояние сверхпроводимости возникает при спаривании электронов, расположенных на *s*-подуровне. Такая сверхпроводимость разрушается любыми магнитными примесями из-за взаимодействия магниных моментов примеси со спинами электронов Куперовской пары.

В случае тяжелофермионных сверхпроводников теория БКШ не согласуется со свойствами таких материалов. Явление тяжелофермионной сверхпроводимости активно изучается с момента открытия первого ТФ сверхпроводника, интерметаллида на основе церия CeCu₂Si₂ [79]. Однако, всеобъемлющая теория, способная достоверно объяснить механизм возникновения ТФ сверхпроводимости, еще не создана. В 2000-х годах вышло несколько обзорных статьей, посвященных ТФ сверхпроводимости [80-82. В настоящее время выделяют несколько групп ТФ сверхпроводников:

«канонические» сверхпроводники с тяжелыми фермионами, такие как как CeCu₂Si₂
[79] и UPt₃ [83]. В них сверхпроводимость развивается из парамагнитной жидкости Ландау – Ферми.

• «Предварительно упорядоченные» сверхпроводники, такие как UPd₂Al₃ [84], CePt₃Si [85-86] и URu₂Si₂ [87]. При охлаждении они уже имеют начальное магнитное упорядочение до образования сверхпроводимости. Например, соединения UPt₂Al₃ и CePt₃Si имеют антиферромагнитный порядок перед переходом системы в сверхпроводящее состояние.

«Квантово-критические» сверхпроводники, такие как CeIn₃ [88] и CeCu₂(Si_{1-x}Ge_x)₂
[89]. Сверхпроводимость в этих соединениях возникает при давлении, близком к квантово-критической точке.

• «Странные» сверхпроводники, например, UBe₁₃ [90], CeCoIn₅ [91] и PuCoGa₅ [92]. В этих материалах сверхпроводящее состояние возникает из неферми-жидкостного состояния. Например, PuCoGa₅ переходит напрямую в сверхпроводник из парамагнетика Кюри посредством неспаренных *f*-электронов.

2.6.6 Флуктуации валентности

Хорошо известно, что некоторые редкоземельные металлы проявляют аномальное поведение, соответствующее необычной электронной конфигурации. Из

экспериментальных данных об атомном объеме, электронной теплоемкости и магнитном моменте следует, что валентность металлического церия, определяемая как число электронов, перешедших в зону проводимости, изменяется от трех до четырех, то есть имеют место флуктуации валентности. Это явление наблюдается и при образовании некоторых ИМС с участием церия. Кроме соединений церия флуктуации валентности могут демонстрировать интерметаллиды европия (например, EuRh₂ [93]), иттербия (YbPdBi [94]), самарий (SmS), тулий (TmSe) или празеодим (PrSn₃) [73].

С точки зрения теории атома стабильностью обладает атом или ион, у которого электронная оболочка либо пуста, либо полностью заполнена, либо заполнена наполовину. Этим объясняется образование атомами РЗЭ соединений с разным валентным состоянием. В Ce^{3+} на 4*f* орбитали находится один электрон, для которого в некоторых ситуациях энергетически выгоднее оказывается перейти в зону проводимости (4*f* оболочка станет незаполненной), что переводит церий в состяние Ce^{4+} . При этом незначительные изменения в системе приводят к обратному переходу любого электрона из зоны проводимости на 4*f* орбиталь, восстанавливая состояние атомов церия Ce^{3+} .

Явление, когда один и тот же атом в веществе меняет свое валентное состояние в разные моменты времени, называется флуктуацией валентности. Актуальной задачей является определение в структуре положения атомов с различной валентностью. В настоящее время принято, что атомные центры РЗЭ в соединении эквивалентны, но на каждом из них происходят флуктуации валентности (переход электрона с f подуровня в зону проводимости и обратно), в результате получается нецелое заполнение 4f подуровня [75].

В системе Ce-Ru-Al соединения Ce₅Ru₃Al₂ [52], CeRuAl [50-51], Ce₁₁Ru₂Al₆ [39], Ce₄RuAl [43, 60] характеризуются флуктуацией валентности атомов церия.

2.6.7 Особенности строения и физические свойства соединений на основе РЗЭ

Системы на основе редкоземельных элементов имеют основное магнитное состояние с целым числом 4f-электронов, локализованных на f-подуровне редкоземельного элемента. 4f-электронные состояния обладают пренебрежимо малой гибридизацией с состояниями электронов проводимости. Однако некоторые специальные системы на основе редкоземельных элементов, особенно на основе Ce, Sm, Eu, Tm и Yb, являются немагнитными в их основных состояниях. Такое поведение является аномальным, поскольку незначительное перекрытие между 4f-орбиталями соседних атомов предполагает, что эти соединения должны быть сильно магнитными. Вместо этого

основное состояние имеет либо малый магнитный момент, либо является парамагнетиком, а иногда и сверхпроводником. Это означает, что степень делокализации или неподвижности 4*f*-электронов в этих системах возникает из гибридизации с *s*, *p* или *d* состояниями на соседнем ионе [75]. Эта гибридизация «4*f*-лиганда» может привести к широкому спектру интересных физических явлений, некоторые из которых перечислены ниже.

≻ Проблема связи между локальным моментом изолированной редкоземельной примеси и электронами проводимости, которая приводит к аномальным термодинамическим и транспортным свойствам, т. е. эффекту Кондо [77].

≻ Задача Кондо решетки, в которой редкоземельные атомы с локальными моментами и связанными (электронами проводимости) поляризационными облаками упорядочены на узлах решетки, а другие узлы заняты не атомами 4*f*-элементов [77]. Такое расположение обычно называют «решеткой Кондо» и иногда приводит к созданию уникального высококоррелированного электронного основного состояния при низких температурах, известного как «тяжелое фермионное» состояние [95].

> «Состояние промежуточной валентности», в котором электроны 4*f*-элементов сохраняют свою подвижность в различных соединениях в основном состоянии. В результате у атома во времени есть два электронных состояния, которые отличаются системах, рассматриваемых с точки одним 4*f*-электроном. B таких зрения квантовомеханической гибридизации, каждый ион имеет одинаковую нецелую валентность. Помимо систем с промежуточно-валентным состоянием некоторых атомов, существуют также системы со статической смесью различных интегральных валентностей [75], Эти системы последнего типа часто называют «статической смешанной валентностью» или просто «смешанными валентными» системами.

≻ Связь локальных 4*f*-моментов через поляризацию, которую они индуцируют в электронах проводимости, т. е. взаимодействие РККИ [96].

≻ Конкуренция между взаимодействием РККИ и Кондо и дальним магнитным упорядочением с уменьшенным моментом [95].

≻ Врожденная тенденция к неустойчивости состояния ферми-жидкости (из-за остаточных взаимодействий между тяжелыми квазичастицами), что приводит либо к магнетизму тяжелых фермионов, либо к сверхпроводимости [81-82, 84].

> Долгосрочная проблема того, могут ли альтернативы взаимодействию с фононами связывать электроны, чтобы обеспечить сверхпроводимость, и должны ли связанные таким образом электроны иметь противоположные спины, т. е. сформировать синглетные

пары Бардина-Купера-Шриффера, или другими словами, возможность нетрадиционной сверхпроводимости [72-73].

Из анализа литературных данных были сделаны следующие заключения, которые стали основой для проведения экспериментальных исследований в настоящей работе.

- В рассмотренных двойных системах {La, Ce, Sm}-Ru и {La, Ce, Sm}-Al образуется большое число соединений. Многие из них имеют одинаковые стехиометрические составы и одинаковые типы кристаллических структур. Это следствие химического подобия элементов La, Ce и Sm.
- Взаимодействие компонентов в тройных системах {La, Ce, Sm}-Ru-Al изучалось в рамках ограниченного набора определенных химических составов. Установлено, что соединения составов 4-1-1, 3-4-12, 2-3-15 и 1-2-10 образуются во всех трех системах.
- Описанные в литературе тройные соединения систем {La, Ce, Sm}-Ru-Al обладают рядом аномальных физических свойств, таких как состояние Конда-решетки, ТФ состояние, сверхпроводимость при низких температурах, флуктуации валентности атомов Ce и Sm.
- 4. С позиций фундаментальной науки о конденсированном состоянии вещества тройные системы {La, Ce, Sm}–Ru–Al являются перспективными в аспектах поиска новых ИМС, изучения их кристаллических структур и физических свойств.

3 Экспериментальная часть

3.1 Методика приготовления сплавов

3.1.1 Исходные материалы

Для приготовления сплавов использовались чистые металлы: лантан (99.8 масс.% La), церий (99.8 масс.% Ce), самарий (99.51 масс.% Sm), рутений (99.96 масс.% Ru), алюминий (99.999 масс.% Al).

3.1.2 Синтез сплавов

Для получения образцов в системах {La, Ce, Sm} – Ru - Al использован метод высокотемпературного жидкофазного синтеза в электрической дуге в инертной атмосфере аргона.

Навески массой до 1 г, взвешенные с точностью до 0.0001 г на электронных аналитических весах, сплавляли в электродуговой печи "MAM 1" фирмы Edmund Bühler с нерасходуемым вольфрамовым электродом на водоохлаждаемом медном поддоне.

В связи с высокой химической активностью редкоземельных элементов, навески этих металлов брали непосредственно перед плавкой, сначала механически удалив оксидную пленку с поверхности. Предварительная откачка печи проводилась до остаточного давления 2 Па. Жидкофазный синтез осуществлялся в атмосфере очищенного аргона под давлением примерно 10⁵ Па в момент плавления элементов. В качестве геттера, поглощающего остаточные количества кислорода и азота, использовался цирконий. Мощность нагрева регулировали варьированием стартового напряжения постоянного тока и путем изменения расстояния между электродами. Для достижения однородности сплавов образцы неоднократно (до семи раз) переворачивали и переплавляли. Из-за того, что самарий имеет невысокие температуры плавления и кипения, при синтезе образцов наблюдали потерю массы сплавов порядка 3-6 % в зависимости от концентрации самария. Поэтому между стадиями плавления в каждый из образцов дополнительно добавлялись навески самария для компенсации потерь. После плавления для дальнейшей работы использовали те сплавы, потери массы которых не превышали 0.5 % от расчетной.

3.1.3 Термическая обработка сплавов

Литые образцы закристаллизовывались в течение нескольких секунд в условиях сильного температурного градиента. Поэтому для достижения равновесного состояния сплавов, их подвергали отжигу. Образцы запаивали в кварцевых ампулах,

вакуумированных до давления 2 Па. Отжиг проводили в электрических трубчатых печах при температуре 550 °C в течение 30 суток. Температура отжига регулировалась автоматическими электронными блоками управления с точностью до ±5 °C. Отжиг заканчивался быстрой закалкой ампул в холодной воде. После отжига стенки ампул оставались прозрачными и чистыми, что свидетельствовало об отсутствии взаимодействия сплавов с материалом ампулы.

3.2 Исследование полученных образцов методами физико-химического

анализа

В настоящей работе проводились исследования сплавов комплексом методов физико-химического анализа: рентгенофазового, рентгеноструктурного, локального рентгеноспектрального, дифференциального термического.

3.2.1 Рентгенофазовый анализ и метод порошка

Исследование синтезированных образцов начинали с установления фазового состава. Для этого использовали метод рентгенофазового анализа порошка. Метод РФА позволяет установить присутствие тех или иных фаз в сплаве, а также определить и уточнить их кристаллические структуры, если они принадлежат известным структурным типам. Для получения порошка сплава образцы растирали в агатовой ступке. Затем их смешивали с клеем ПВА и наносили на рентгеноаморфную пластиковую пленку или кальку. Подготовленные образцы закрепляли в металлической кювете, которую помещали в специальный держатель, установленный на автодифрактометре.

Для съемки рентгенограмм полученных сплавов использовался порошковый автодифрактометр STOE STADI P (Ge-монохроматор, CuK α_1 -излучение, длина волны $\lambda = 1.54059$ Å, линейный координатный детектор). Съемку проводили в диапазоне углов $2\theta = 5(10)^{\circ}$ - 90° с шагом 0.01° при комнатной температуре. Время выдержки в каждой точке составляло не менее 10 секунд. Расшифровка, интерпретация и рентгенофазовый анализ полученных рентгенограмм сплавов проводили с использованием программного пакета STOE WinXpow v.2.20 [97].

Уточнение кристаллических структур обнаруженных фаз выполняли по порошковым рентгенограммам методом Ритвельда [98] с применением программы FULLPROF [99] под оболочкой WinPLOTR [100]. Качество уточнения оценивали по значениям профильных и структурных *R*-факторов, а также статистических показателей *GOF* и χ^2 .

3.2.2 Метод локального рентгеноспектрального анализа

Локальный рентгеноспектральный анализ проводился на сканирующем электронном микроскопе Carl Zeiss LEO EVO 50XVP, оснащенном детектором INCA – energy 450. Анализ проводили в вакууме с остаточным давлением 4.9-5*10⁻³ Па, при ускоряющем напряжении 20 кВ. Относительная точность определения составов – порядка 1-2 %, глубина отражающего слоя 5-50 нм [101].

Для получения шлифов часть образцов прессовали в таблетки, используя термопластичную электропроводящую смолу, остальные заливали сплавом Вуда в алюминиевые обоймы. Затем все образцы шлифовали последовательно на наждачных бумагах различной зернистости, полировали на синтетической ткани с применением алмазной пасты или оксида алюминия. В качестве эталонов использовали тройные соединения, содержащие определяемые химические элементы при фиксированных составах (не имеющие области гомогенности).

3.2.3 Метод рентгеновской дифракции на монокристалле

Кристаллическую структуру ряда ИМС определяли методом рентгеноструктурного анализа монокристалла, который проводили на автодифрактометре CAD-4 (Mo (или Ag) Кα-излучение, графитовый монохроматор) или STOE STADI VARY (MoKα-излучение) при комнатной температуре. Монокристалл для анализа отбирали вручную из частично разрушенного образца с использованием оптического микроскопа и клеили на специальный держатель. Качество всех кристаллов проверяли на первом этапе PCA по быстрой съемке.

Кристаллической структуры решались прямыми методами или методом Патерсона с помощью комплекса программ SHELXS-97 [102], а уточнение полученных решений проводили с помощью программы SHELXL-97 [103] в оболочке Oscail [104]. Достоверность полученного решения и уточнения структуры оценивали по отсутствию дополнительных максимумов на заключительных разностных синтезах Фурье, а также по величинам фактора расходимости и межатомных расстояний. Для графического представления кристаллических структур использовали программу Diamond 3.2i [105].

3.2.4 Порошковая диффракция высокого разрешения

Для решения структуры некоторых соединений использовалось синхротронное излучение, которое позволяет получить рентгенограммы высокого разрешения [106]. Съемки образцов проводились на синхротроне ESRF (г. Гренобль, Франция) на линии высокого резрешения порошковой диффракции (стация ID22). Измеряемые образцы

первоначально механически перетирались в порошок, которым наполняли капилляры диаметром 0.5 - 0.7 мм. Капилляры запаивали и устанавливали в специальный держатель. Съемка образцов производилась в автоматическом режиме в диапазоне $2\theta = 0.502 - 38(43)^{\circ}$ при комнатной температуре. На станции использовалась энергия 31.1 кэВ, длина волны $\lambda = 0.399927(2)$ Å. Во время измерений капилляры автоматически вращались со скоростью 1200 об/мин для достижения лучшей статистики счета. Калибровку гониометра и уточнение рентгеновской длины волны проводили на стандартном кремниевом образце NIST Si 640с.

Выделение пиков и индицирование фаз проводили с использованием программы MRIA [107]. Полнопрофильный анализ рентгенограмм, полученных с использованием синхротронного излучения, проведен методом Ритвельда [98] с использованием программы Jana2006 [108].

3.2.5 Метод дифференциального термического анализа

Дифференциальный термический анализ использовался для получения информации о температурах плавления новых интерметаллидов. ДТА проводили на небольших (до 30 мг) кусочках образца с использованием прибора NEITZCH STA 449 F1 с платиновым анализатором. Образцы нагревали от 25 °C до 900 °C со скоростью 20 °C/мин в атмосфере чистого гелия (марки 6.0).

Данный метод также применяли для увеличения размеров кристаллитов в материале. Для этого нагревали образец до температуры плавления, уменьшая скорость нагрева около точки плавления, затем медленно охлаждали.

3.3 Измерение физических свойств.

Физические свойства полученных в работе практически однофазных образцов изучались профессором Д. Качаровски (Институт низких температур и структурных исследований, г. Вроцлав, Польша). Результаты данных исследований интерпретированы и обсуждены совместно с автором диссертации.

Магнитные исследования проводились в диапазоне температур 4.2 – 400 К в магнитных полях до 9 Т для разных образцов с использованием магнетометра сверхпроводящего интерференционного устройства Quantum Design MPMS. Электрическое удельное сопротивление измерялось в интервале 1.72 – 300 К с использованием стандартного четырехзондового метода переменного тока. Эксперимент проводился на платформе Quantum Design PPMS-9. Токовые и выходные напряжения

прикреплялись к образцу в форме стержня с использованием серебряной эпоксидной пасты.

3.4 Рентгеновская спектроскопия поглощения выше L₃ – края поглощения (XANES)

ХАNES спектроскопия, позволяющая изучать электронную структуру соединений, выполнена м.н.с. А. Ярославцевым (МИФИ, г. Москва) на станции DESY/HASYLAB (г. Гамбург, Германия). Данный метод использовался только для образцов, содержащих атомы церия. Спектры края поглощения L_3 – Се собирались на пучке A1 накопительного кольца DORIS III в режиме передачи при комнатной температуре. Энергетическое разрешение Si (111) монохроматора с двойным кристаллом (построенного таким образом, чтобы отсекать 50 % падающего сигнала для минимизации гармонического загрязнения) с щелью 0.3 мм при 6 кэВ составляло около 1.2 эВ.

ХАNES спектроскопия позволяет определить валентность церия в соединениях. Для этого полученные спектры раскладывают по реперным функциям для различных валентных состояний атома Ce³⁺ и Ce⁴⁺. Оценка экспериментальных спектров проводилась с учетом пиков поглощения с комбинациями лоренцевых, гауссовских и арктангенских кривых, ограниченных полушириной и энергетическим положением.

4 Результаты экспериментальных исследований

Изотермические сечения диаграмм состояния тройных систем {La, Ce, Sm}-Ru-Al построены по результатам исследования комплексом методов физико-химического анализа сплавов, отожженных при 550°C в течение 30 суток.

Температура отжига подбиралась с учетом температур плавления двойных легкоплавких эвтектик и компонентов, образующих исследуемые тройные системы. Для температуры сплавы из системы Sm-Ru-Al отжигались при выбора оптимальной температурах 700°С и 550°С, затем исследовались методами физико-химического анализа. При 700°С образцы с высоким содержанием самария плавились, а также незначительно теряли массу из-за повышенного парциального давления паров самария. Эти эффекты приводили к изменению формы сплавов и к потемнение стенок ампул. При температуре 550°С таких эффектов практически не наблюдалось. Пробные сплавы в системах La-Ru-Al и Ce-Ru-Al отжигались при температурах 500, 530, 550, 600°С. При 600°С образцы, содержащие более 40 ат. % РЗЭ, плавились. Как показали предварительные данные ЛРСА, отжиги при температурах 500 и 530°С не приводили к состоянию полного равновесия фаз. Как следствие, нами выбрана температура отжига 550°С. При этом следует отметить, что при этой температуре образцы с большим содержанием редкоземельного элемента все равно переходили в жидкое состояние и поэтому сплавы в этих концентрационных областях не исследовались, тем более что в воздушной среде они достаточно быстро окислялись.

Для определения оптимального времени для установления твердофазного равновесия часть синтезированных образцов системы La-Ru-Al подверглась отжигу разной длительности. Вакуумированные ампулы отжигались в течение 120, 168, 336, 720, 1200 часов. После 720 часов отжига данные ЛРСА и рентгенофазового анализов практически не менялись. Поэтому для изучения фазовых равновесий систем {La, Ce, Sm}–Ru–Al сплавы подвергали термической обработке в течение 720 часов. Сплавы с большим содержанием рутения из-за его высокой температуры плавления и малой подвижности атомов подвергались дополнительной термообработке. Для этого образцы перетирали в ступке до состояния порошка, который запрессовывали в таблетки и отжигали в течение 240 часов при температуре 550°С.

Исследование трех тройных систем {La, Ce, Sm}–Ru–Al выполнено на 221 приготовленном сплаве. Подтверждено существование 15 соединений: 4 в системе La-Ru-Al, 7 в системе Ce-Ru-Al и 4 в системе Sm -Ru-Al. Образование четырех соединений в системах с лантаном (2) и церием (2) нами не подтверждено. В фазовой диаграмме La-Ru-

Al установлено 24 равновесия, в системе с церием – 36, а в системе с самарием – 22 устойчивых равновесия.

4.1 Cucmema La-Ru-Al

Тройная система La-Ru-Al изучена на 93 сплавах. Составы синтезированных образцов представлены на **рисунке 20**. В работе установлено, что простые вещества алюминий и рутений при 550 °C практически не растворяют другие компоненты. При исследовании образцов в области с содержанием лантана более 70 ат.% наблюдалось плавление образцов при отжиге, поэтому эта часть тройной системы не изучалась.

Рис. 20. Концентрационный треугольник системы La-Ru-Al с исследуемыми образцами различных составов в ат.%. Темные точки – синтезированные сплавы. Желтые точки – известные двойные соединения при 550°С.

В нашем исследовании тройной диаграммы La-Ru-Al описанные в литературе двойные соединения систем La-Ru, La-Al и Ru-Al были подтверждены, за исключением интерметаллида LaRu_x, который не был обнаружен при 550°C. Двойные соединения при этой температуре плохо растворяют третий компонент. Заметная растворимость третьего

компонента обнаружена только у двойного LaRu₂ (9 ат.% Al). Согласно данным РФА в твердом растворе на основе LaRu₂ параметр кубической элементарной ячейки с увеличением содержания алюминия увеличивается.

В тройной системе La-Ru-Al при 550 °C наблюдается сложный характер взаимодействия компонентов, что проявляется в образовании большого количества тройных ИМС. В результате исследования сплавов в системе La-Ru-Al подтверждено существование 4-х ранее известных тройных соединений: La₄RuAl, La₅Ru₃Al₂, La₃Ru₄Al₁₂ и LaRu₂Al₁₀. Кристаллические структуры известных тройных соединений La₅Ru₃Al₂ и La₃Ru₄Al₁₂ определены методом по порошку методом РФА и уточнены методом Ритвельда. Полученные значения параметров a, b, c и координат атомов хорошо согласуются с литературными данными. Для тройного соединения La₄RuAl кристаллическая структура определена методом РСА монокристалла и подтверждена РФА порошка (таблицы 13-15). Соединение $La_2Ru_3Al_{15}$, описанное в работе [41], в настоящем исследовании не обнаружено. Возможно, это связано с тем, что ранее [41] этот алюминид отжигали при температуре 900 °C, а в настоящей работе проводился отжиг образцов при температурах, не превышающих 600 °С. Вблизи области существования тройного ИМС La11Ru2Al6 при 550 °C наблюдалась жидкая фаза, поэтому это соединение нами не обнаружено. В литературе этот интерметаллид получен при 540°C, но в виде нескольких кристаллов [39].

Кроме шести известных из литературы ИМС, при температуре 550°С образуются еще 4 новых тройных алюминида: La₃RuAl₃, La₂RuAl₃, La₂RuAl₂, LaRu₂Al₈. Следует отметить, что из четырех новых интерметаллидов два кристаллизуются в собственных структурных типах. Таким образом, всего при исследовании системы La-Ru-Al обнаружено три новых структурных типа.

По результатам исследования тройной системы La-Ru-Al установлены 24 трехфазных равновесия (**рис. 21** и таблица 55 приложения). Для этого приготовленные равновесные образцы изучены методами порошковой рентгеновской дифракции, сканирующей электронной микроскопии и локального рентгеноспектрального анализа. В результате исследования построено сечение диаграммы состояния La-Ru-Al при 550°C (Рис. 20). Установленные фазовые равновесия обозначены чёрными сплошными линиями. Пунктирными линиями обозначены предполагаемые равновесия, которые требуют дополнительной проверки.

Рис. 21. Изотермическое сечение диаграммы состояния La-Ru-Al при 550°С.

Данные порошковых рентгенограмм и локального рентгеноспектрального анализа показали, что все соединения системы La-Ru-Al не обладают заметными областями гомогенности.

Для изучения физических свойств ИМС необходимо получить однофазные образцы. Получение таких сплавов в системе La-Ru-Al является проблематичным в связи с большим числом образующихся тройных соединений. Тем не менее, 2 соединения La₄RuAl и La₂RuAl₂ уже получены практически в однофазном виде, что позволит в ближайшем будущем приступить к изучению их физических свойств.

Полученные кристаллографические характеристики тройных интерметаллидов системы La–Ru–Al, а также примененные методы получения структурных данных представлены в *таблице 12*.

Соелинение	Пространственная	Пар	Метол			
Соединение	Структурный тип	а	b	С	метод	
La ₅ Ru ₃ Al ₂	I2 ₁ 3/ La ₅ Ru ₃ Al ₂	9.9543(1)	-	-	РДП**	
$La_3Ru_4Al_{12}$	$P6_{3}/mmc/$ Gd ₃ Ru ₄ Al ₁₂	8.9401(5)	-	9.7132(9)	РДП	
LaRu ₂ Al ₁₀	<i>Cmcm/</i> YbFe ₂ Al ₁₀	9.1471(2)	10. 2987(3)	9.2094(2)	РДП	
Lo Du Al	F-43m/	14.0639(9)	-	-	РДМ***	
La4KuAI	Gd ₄ RhIn	14.0756(1)	-	-	РДП	
Lo. Du Al.	Pbcm/	15.017(5)	7.731(3)	5.8296(20)	РДМ	
La3KuA13	La ₃ RuAl ₃	15.0708(7)	7.7434(4)	5.8410(2)	РДП	
La ₂ RuAl ₃	P6 ₃ /mmc/ Mg ₂ Cu ₃ Si	5.7348(1)	-	8.9424(2)	РДП	
LaRu ₂ Al ₈	Pbam/ CaCo ₂ Al ₈	12.6685(10)	14.7351(11)	4.1104(3)	РДП	
La ₂ RuAl ₂	Cmcm/ La ₂ RuAl ₂	20.76488(8)	7.70744(3)	5.88825(2)	РДП(СИ)	

Таблица 12. Тройные соединения системы La-Ru-Al при 550 °C*

*Серым фоном отмечены ИМС, которые структурно охарактеризованы в настоящей работе. На белом фоне – соединения, охарактеризованные в литературе. Структурные типы, отмеченные голубым фоном, имеют первых представителей в изучаемой системе. **РДП – ренгеновская диффракция на порошке, ***РДМ – рентгеновская диффракция на монокристалле.

4.1.1 Тройной интерметаллид La₄RuAl

В литературе [43] сообщалось об образовании нового тройного соединения La₄RuAl, однако его структура не была представлена.

В настоящей работе это соединение было получено в поликристаллическом виде в двухфазном образце, в котором она выступает в качестве матрицы (**рис. 22**). Из другого

Рис. 22. Данные ЛРСА образца La₆₀Ru₂₀Al₂₀ светло-серая фаза – La₆₆Ru₁₇Al₁₇, тёмно-серая фаза – La₄₄Ru₁₅Al₄₁

образца состава La₆₆Ru₁₇Al₁₇ был отобран монокристалл, который исследовали методом РДМ. Интерметаллид La₄RuAl кристаллизуется в кубической сингонии (пространственная группа *F*-43*m*) с параметром элементарной ячейки а =14.0639(9) Å. Условия проведения эксперимента, кристаллографические и результаты характеристики уточнения структуры соединения La₄RuAl представлены в *таблицах 13* и 14.

⁷	
Параметр	Значение
Формула	La ₄ RuAl
Температура, °С	-90(2)
Излучение, λ, Å	ΜοΚ _α , 0.71073
Сингония	Кубическая
Пространственная группа	<i>F</i> -43 <i>m</i>
Параметры элементарной ячейки, Å	a = 14.0639(9)
Объем элементарной ячейки, $Å^3$	2781.7(5)
Число формульных единиц, Z	16
Структурный тип	Gd ₄ RhIn
Плотность, г/см ³	6.53
μ , mm ⁻¹	26.153
Размеры кристалла, мм	0.08*0.10*0.15
θ, град	2.897-34.989
Область съемки h, k, l	-22≤h≤22, -22≤k≤22, -22≤l≤22
Число измеренных независимых рефлексов (R _{int})	658 (0.070)
Число рефлексов в уточнении с I > $2\sigma(I)$ (R_{σ})	657 (0.026)
Число уточняемых параметров	20
F(000)	4560
R1, wR2 (I $\geq 2\sigma$)	0.023, 0.070
R1, wR2 (все отражения)	0.023, 0.070

Таблица 13. Основные кристаллографические параметры, условия съемки и результаты уточнения структуры La₄RuAl

	140	inique i mitoope		empyranype Lat		
Атом	Позиция	x/a	y/b	z/c	U _{eq} (Å ²)	
La1	16e	0.34842(3)	0.34842(3)	0.34842(3)	0.0064(2)	
La2	24 <i>g</i>	0.56069(5)	1/4	1/4	0.00906(19)	
La3	24f	0.19454(5)	0	0	0.00746(19)	
Ru1	16e	0.13731(5)	0.13731(5)	0.13731(5)	0.0093(2)	
Al1	16e	0.5753(2)	0.5753(2)	0.5753(2)	0.0064(7)	

Таблица 14. Координаты атомов в структуре La₄RuAl

На рисунке 23 представлена кристаллическая структура соединения La₄RuAl.

Структурные данные, полученные методом РДМ для La₄RuAl, были подтверждены методом Ритвельда по порошковой рентгенограмме двухфазного образца состава La₆₆Ru₁₆Al₁₇ (**рис. 24**). Порошковая рентгенограмма сплава кроме рефлексов основной фазы La₄RuAl содержала дополнительные пики, которые были проиндицированы в кубической объемноцентрированной ячейке с параметром a = 9.9543(1) Å, что соответсвовало литературным данным для тройной фазы La₅Ru₃Al₂. Результат уточнения для второй фазы La₅Ru₃Al₂ хорошо согласуется с данными работы [9].

Рис. 23. Кристаллическая структура соединения La₄RuAl.

Параметры уточнения структурной модели методом Ритвельда тройного интерметаллида La₄RuAl приведены в *таблице 15*. На **рисунке 24** представлен результат уточнения структуры методом Ритвельда по рентгенограмме двухфазного образца.

Таблица 15. Основные кристаллографические данные и параметры уточнения структуры La₄RuAl по порошковым данным.

Сингония	Кубическая
Пространственная группа	<i>F</i> -43 <i>m</i> (№ 216)
<i>a</i> , Å	14.0756(1)
Объём ячейки, $Å^3$	1368.43(9)
Интервал 2 <i>0</i> , °	10.0-90.0
Шаг сканирования	0.01
Число уточняемых	20
параметров	23
Число отражений	89
R _{exp}	0.0585
R _p , R _{wp}	0.058/0.076
R _F	0.069
R _B	0.090
χ^2	1.59

Рис. 24. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная кривая (нижняя синяя линия) для сплава La₆₇Ru₁₆Al₁₆. Полосками зеленого цвета обозначены позиции Брегга: 1 – фаза La₅Ru₃Al₂, 2 – La₄RuAl.

Как видно из **таблиц 13, 15** и **рисунка 24**, данные монокристального и порошкового структурных экспериментов соединения La₄RuAl хорошо согласуются между собой. О качестве уточнения свидетельствует хорошее соответствие интенсивностей наблюдаемых и рассчитанных отражений, что количественно проявилось в низких значениях факторов достоверности R_F , R_B и χ^2 .

темно-серая фаза – La43Ru14Al43,

светло-серая фаза – La₄₀Ru₂₀Al₄₀,

темная фаза – La₃₃Ru₁₇Al₅₀

Рис. 25. Данные ЛРСА образца

 $La_{41}Ru_{18}Al_{41}$.

4.1.2 Новый тройной интерметаллид La₃RuAl₃

Данные ЛРСА свидетельствуют о существовании в системе La-Ru-Al соединения состава La₄₃Ru₁₄Al₄₃ (ат. %) (рис. 25). При синтезе образца этого состава обнаружены кристаллы нового тройного интерметаллида, пригодные монокристального для рентгеноструктурного анализа. Кристаллы извлекали ИЗ скола разрушенного образца, наклеивали на держатель И исследовали. Условия рентгеновского эксперимента И структурные характеристики соединения таблице La₃RuAl₃ представлены *16*. В Установлено, соединение La₃RuAl₃ что

кристаллизуется в новом структурном типе. Атомные координаты и тепловые параметры приведены в *таблице 17*. Структура La₃RuAl₃ полностью упорядочена, так как все независимые кристаллографические позиции заполнены на 100 % атомами одного сорта.

T C	1	-	T 7										
Lannin	ia I	n	V	DUGONO	noumpouroevan	CLOMVII	11 1	mnwm	nnuula	va	navmo	nuc	ทาเบาเ
raonai	uı	υ.		ловил	ρεπικεπυθεκυμ	COCMAN	uι	πργκπ	νρποιε	ли	υακπε	puc	тики
	,				1			1 2 2	· I				

Соединение	La ₃ RuAl ₃
Молярная масса, г/моль	598.74
Структурный тип	Новый
Пространственная группа, Z	<i>Pbcm</i> (№ 57), 4
T, °C	20(2)
Параметры элементарной ячейки, Å	a = 15.017(5), b = 7.731(3), c = 5.8296(20)
Объем элементарной ячейки, Å ³	676.8(4)
Рассчитанная плотность, г/см ³	5.9(1)
Размер кристалла, мм	0.1*0.03*0.02
Излучение, λ, Å дифрактометр	AgKα; 0.56087, CAD-4
Коэффициент абсорбции, мм ⁻¹	11.074
F(000)	1016.0
Пределы измерений, θ , °	5.83 - 31.56
Область <i>h</i> , <i>k</i> , <i>l</i>	0÷20, -10÷10, 0÷7
Общее число рефлексов	1727
Число измеренных независимых рефлексов (R _{int})	925 (0.088)
Число рефлексов в уточнении с I > 2σ(I) (R _σ)	544 (0.121)
Число уточняемых параметров	42,00
$R1, wR2 (I > 2\sigma(I))$	0.041, 0.103
R1, wR2	0.113, 0.140

соединения La₃RuAl₃

Таблица 17. Координаты атомов и тепловые параметры соединения La₃RuAl₃

Атом	Позиция	x/a	<i>y/b</i>	z/c	$U_{eq}(\text{\AA}^2)$
La1	4d	0.04700(10)	0.09040(17)	1/4	0.0093 (3)
La2	4d	0.26986(10)	0.08240(17)	1/4	0.0095(4)
La3	4d	0.63505(10)	0.11139(18)	1/4	0.0104(4)
Ru	4d	0.55101(16)	0.4798(3)	1/4	0.0096(5)
Al1	4d	0.1570(5)	0.4500(9)	1/4	0.0090(13)
Al2	4c	0.4587(5)	1/4	0	0.0098(13)
Al3	4c	0.8471(5)	1/4	0	0.0137(15)

Данные РСА для соединения La₃RuAl₃ были подтверждены порошковыми данными, уточненными методом Ритвельда. На **рисунке 26** приведены экспериментальная и теоретическая рентгенограммы сплава состава La₄₃Ru₁₃Al₄₄, в котором кроме основной матрицы La₃RuAl₃ было обнаружено около 10 % второй фазы LaAl.

Рис. 26. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная диаграмма (нижняя синяя линия) для сплава La₄₃Ru₁₃Al₄₄. Полосками зеленого цвета обозначены позиции Брегга: 1 – фаза La₃RuAl₃, 2 – LaAl. $R_F = 0.067$, $R_B = 0.108$, $\chi^2 = 3.24$.

На **рисунке 27** представлена проекция структуры соединения La₃RuAl₃ на плоскость *ab*.

Рис. 27. Проекция кристаллической структуры и элементарной ячейки соединения La₃RuAl₃ на плоскость *ab*.

Новое соединение La₃RuAl₃ кристаллизуется в структуре нового типа. Межатомные расстояния и координационные полиэдры этого соединения представлены в *таблице 18* и на **рисунке 28**.

Рис. 28. Координационные полиэдры атомов в соединении La₃RuAl₃: (a) La1; (б) La2; (в) La3; (г) Ru; (д) Al1; (е) Al2; (ж) Al3.

Таблица 18. Основные межатомные	расстояния в структуре	соединения La ₃ Ru	ıAl
---------------------------------	------------------------	-------------------------------	-----

Атом 1	Атом 2	d, Å	Атом 1	Атом 2	d, Å	Атом 1	Атом 2	d, Å
	Al1	3.234(7)		Ru	2.973(3)		2A13	2.740(6)
	Al1	3.251(7)		Ru	3.115(3)		La1	3.234(7)
	La2	3.347(2)		2A12	3.207(6)	Al1	La1	3.251(7)
La1	2A11	3.365(4)	La3	2Ru	3.2535(15)	К.Ч. 10	La2	3.309(7) 3.362(7)
К.Ч.13	2A13	3.403(4)	К.Ч. 13	Al1	3.362(7)		2La1	3.365(4)
	2La1	3.5274(18)		2A12	3.451(3)		2La2	3.381(4)
	2A13	3.558(6)		2La2	3.5749(15)		2Ru	2.551(2)
	2La1	3.8191(19)		2La3	3.6179(19)		2Ru	2.663(4)
	Ru	2.805(3)		2A12	2.551(2)	A12	2A12	2.9148(10)
	Al1	3.309(7)		2A12	2.683(4)	К.Ч. 12	2La3	3.207(6)
	La1	3.347(2)	Ru	La2	2.805(3)		2La2	3.442(6)
La2	2A11	3.381(4)	К.Ч. 9	La3	2.974(3)		2La3	3.451(3)
К.Ч.13	2A13	3.437(4)		La3	3.115(3)		2A11	2.740(6)
	2A12	3.442(6)		2La3	3.2535(15)	A13	2A13	2.9148(10)
	2La3	3.5749(15)					2La1	3.403(4)
	2La2	3.900(2)				К.Ч. 10	2La2	3.437(4)
	•	•					2La1	3.558(6)

Используя метод ДТА, для соединения La₃RuAl₃ определена температура плавления, которая составляет 782(1) °С. Ниже этой температуры никаких тепловых эффектов не наблюдалось.

4.1.3 Новый тройной интерметаллид La₂RuAl₂

На рентгенограмме образца состава $La_{40}Ru_{20}Al_{40}$ обнаружены линии, принадлежащие неизвестной фазе. Её состав установлен методом локального рентгеноспектрального анализа как $La_{40}Ru_{21}Al_{39}$. Измеренные концентрации близки к номинальному составу соединения La_2RuAl_2 ($La_{40}Ru_{20}Al_{40}$) и находятся в пределах погрешности метода ЛРСА. На **рисунке 29** показаны микроструктуры образцов, содержащих данное соединение.

белая фаза – Lа₄₉Ru₃₃Al₁₈, серая фаза – Lа₄₀Ru₂₁Al₃₉, темно-серая фаза – Ru₅₂Al₄₈ чёрная фаза – Ru₅₁Al₄₉ белая фаза: – La₆₆Ru₁₇Al₁₇, серая фаза – La₄₀Ru₂₁Al₃₉

Рис. 29. Микроструктуры образцов составов: a – La₃₃Ru₃₃Al₃₄; б – La₄₂Ru₁₈Al₄₀.

Монокристалл соединения La₄₀Ru₂₀Al₄₀ найти не удалось. Для решения структуры использовали данные синхротроного измерения порошкового образца состава La₄₀Ru₂₀Al₄₀, которые проводили на станции высокого разрешения ID22 в Европейском Центре синхротронного излучения ESRF. Образец измеряли в области углов $2\theta = 0.514 - 0.514$ 43.000° с шагом 0.002°. С помощью программы MRIA, исключив пики, принадлежащие фазе проиндицировали рентгенограмму В ромбической La_3RuAl_3 , ячейке с пространственной группой Стст. Далее с помощью программ SHELXS-97 и SHELXL-97 полученный набор отражений от плоскостей, характеризующиеся индексами hkl. Этот набор использовали для получения стартовой структурной модели распределения разных типов атомов по кристаллографическим позициям, выбранным в рамках данной пространственной группы. Уточнение методом Ритвельда с учетом небольшого вклада в интенсивности от второй фазы La₃RuAl₃ (не более 23 %) проводили с применением программы Jana2006 (рис. 30). Достоверность проведенного уточнения оценивалась следующими критериями: профильный и весовой факторы и χ^2 величины которых приведены в *таблице 19*. Установлено, что химический состав нового интерметаллида соответствует формуле La₂RuAl₂.

По результатам анализа обнаружено, что соединение La₂RuAl₂ относится к новому ромбическому структурному типу, пространственная группа *Стст*, параметры элементарной ячейки a = 20.76488(8) Å, b = 7.70744(3) Å, c = 5.88825(2) Å, Z = 8. В литературе других ИМС с соответствующей формулой и аналогичным распределением атомов в ячейке обнаружено не было, поэтому нами сделан вывод о том, что это соединение кристаллизуется в новом структурном типе.

	· · Z
Метол	Диффракция высокого
метод	разрешения
Сингония	Ромбическая
Пространственная группа	Новый
Структурный тип	<i>Cmcm</i> (№ 63)
<i>a</i> , Å	20.76488(8)
b, Å	7.70744(3)
<i>c</i> , Å	5.88825(2)
Объём ячейки, $Å^3$	942.38(1), Z = 8.
Интервал 2 $ heta$, °	0.514 - 43.000
Шаг сканирования	0.002
Число уточняемых параметров	27
Число отражений	21250
R _{exp}	0.029
R_p, R_{wp}	0.077, 0.119
R_F	0.029
R _B	0.040
χ^2	6.52

Таблица 19. Условия рентгеновской съемки и структурные характеристики соединения La2RuAl2

Рис. 30. (а) Результат уточнения рентгенограммы, полученной методом высокого разрешения. Экспериментальные и теоретические рентгенограмм и их разностные кривые для образца La₄₀Ru₂₀Al₄₀. Полосками обозначены позиции Брегга: 1 – фаза La₂RuAl₂, 2 – La₃RuAl₃.

Кристаллическая структура интерметаллида La₂RuAl₂ представлена на **рисунке 31**. Данное соединение имеет 6 независимых кристаллографических позиций: 3 из них заняты атомами алюминия, 2 – атомами лантана и одна позиция – рутением (*таблица 20*).

Рис. 31. Проекция фрагмента структуры и элементарная ячейка La₂RuAl₂ на плоскость *ab*.

	,				
Атом	Позиция	x/a	y/b	z/c	U _{iso} , (Å ²)
La1	8q	0.15198(4)	0.36258(12)	1/4	0.0096(3)
La2	8q	0.08146(4)	0.16790(12)	3/4	0.0084(3)
Ru	8q	0.71407(7)	0.22894(14)	1/4	0.0106(4)
Al1	4b	0	1/2	0	0.0072(15)
Al2	8e	0.2173(2)	0	0	0.0064(10)
A13	4 <i>c</i>	0	0.1977(8)	1/4	0.0079(17)

Таблица 20. Координаты атомов в структуре La₂RuAl₂

Методом ДТА определили температуру плавления образца La₂RuAl₂, которая составила 707(1) °C. Наблюдаемый на термограмме пик при 673 °C соответствует температуре плавления примесной фазы. Результат представлен на **рисунке 32**.

Рис. 32. Кривая ДТА образца состава La₄₀Ru₂₀Al₄₀.

4.1.4 Новый тройной интерметаллид La₂RuAl₃

Методом локального рентгеноспектрального анализа в процессе исследования системы La-Ru-Al обнаружен новый тройной интерметаллид La₂RuAl₃. Данные ЛРСА показали существование фазы состава La₃₄Ru₁₇Al₄₉ (**рис. 33**). С учетом данных РФА установлена формула соединения – La₂RuAl₃.

Temho-cepaя фаза – La₁₆Ru₂₃Al₆₁,cepaя фаза – La₁₆Ru₂₃Al₆₁,cepaя фаза – La₃₄Ru₁₇Al₄₉,<math>Eenas φasa – La₃₄Ru₁₇Al₄₉,<math>Eenas φasa – La₅₁Al₄₉;

Рис. 33. Микроструктуры образцов: (а) La₃₃Ru₁₇Al₅₀, (б) La₃₄Ru₁₆Al₅₀.

Кристаллы, пригодные для рентгеноструктурного анализа, получить не удалось. Кристаллическую структуру La₂RuAl₃ определили по порошковым данным с уточнением методом Ритвельда. В качестве исходной модели использовали структуру аналога по составу Ce₂RuAl₃ [52], структурного типа Mg₂Cu₃Si. Показатели R_F, R_B и χ^2 свидетельствуют о правильно подобранной модели и верных параметрах элементарной ячейки для нового ИМС. Результат уточнения структуры La₂RuAl₃ представлен на **рисунке 34** и в *таблице 21*.

Таблица 21. Ос	сновные кристаллограф	бические да	інные и пс	араметры у	точнения	структуры
		$I_{a}, R_{u}\Lambda$	1.			

Lu ₂ NuAt ₃				
Сингония	Гексагональная			
Пространственная группа	<i>P</i> 6 ₃ / <i>mmc</i> (№ 194)			
<i>a</i> , Å	5.7348(1)			
<i>c</i> , Å	8.9424(2)			
Объём ячейки, $Å^3$	254.70(1), Z = 2			
Интервал 2 <i>0</i> , °	10.000-90.095			
Шаг сканирования	0.005			
Число уточняемых параметров	11			
Число отражений	60			
R _{exp}	0.035			
R _p , R _{wp}	0.030, 0.038			
R _F	0.140			
R _B	0.180			
χ^2	1.22			

Интерметаллид La₂RuAl₃ кристаллизуется в гексагональной ячейке с пространственной группой $P6_3/mmc$ с параметрами: a = 5.7348(1) Å, c = 8.9424(2) Å.

Рис. 34. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная кривая (нижняя синяя линия) для фаз La₂RuAl₃ и La₃Ru₄Al₁₂. Полосками зеленого цвета обозначены позиции Брегга: 1 – фаза La₂RuAl₃, 2 – La₃Ru₄Al₁₂.

Проекция кристаллической структуры La₂RuAl₃ на плоскость *ab* представлена на **рисунке 35а**, а проекция на плоскость *ac* – на **рисунке 35б**. Координаты атомов приведены в *таблице 22*.

Рис. 35. Проекция элементарной ячейки La_2RuAl_3 : (а) на плоскость *ab*, (б) на плоскость *ac*.

Таблица 22. Координаты атомов в структуре La₂RuAl₃

Атом	Позиция	x/a	y/b	z/c	U_{iso} , (Å ²)
La1	4f	1/3	2/3	0.54987(15)	0.0051(8)
Ru2	2a	0	0	0	0.0132(14)
Al3	6 <i>h</i>	0.1584(9)	0.3168(9)	1/4	0.0051(16)

Рис. 36. Кривая ДТА образца La₂RuAl₃.

Температура плавления La₂RuAl₃ составляет 852(1) °С (**рис. 36**). Характер термограммы плавления также свидетельствует о том, что в сплаве возможно присутствие нескольких фаз.

Структура соединения La₂RuAl₃ полностью упорядочена, поэтому его химический состав зафиксирован в отличие от аналога с церием Ce₂RuAl₃.

4.1.5 Тройной интерметаллид LaRu₂Al₁₀

В литературе [42] сообщалось о существовании ИМС LaRu₂Al₁₀, но его структура

не была представлена. В настоящей работе нами ЛРСА обнаружено образование методом соединения состава $La_8Ru_{16}Al_{76}$ (рис. 37) и методом РДП определена и уточнена его кристаллическая структура, используя структурную модель прототипа $YbFe_2Al_{10}$. Тройной интерметаллид $LaRu_2Al_{10}$ кристаллизуется в ромбической структуре (Пр. гр. Стст) с параметрами элементарной ячейки а = 9.1471(2) Å, b = 10.2987(3) Å и c = 9.2094(2) Å. В качестве примесей в образце обнаружена фаза $LaRu_2Al_8$ в количестве 7.8 %, а также следовые количества фаз LaAl₂, Ru₃Al₁₄.

белая фаза – La₂₁Al₇₉, серая фаза – La₈Ru₁₆Al₇₆; темно-серая фаза – Ru₂₄Al₇₆ Рис. 37. Микроструктура образца состава La₈Ru₁₅Al₇₇.

На правильность выбранной модели указывают низкие значения R_F , R_B ($R_F = 0.054$, $R_B = 0.078$). Кристаллографические параметры и результаты уточнения представлены в *таблицах 23* и *24*. На **рисунке 38** приведены экспериментальная, теоретическая рентгенограммы и их разностное значение.

$LaRu_2Al_{10}$				
Сингония	Ромбическая			
Пространственная группа	<i>Cmcm</i> (№ 63)			
Структурный тип	YbFe ₂ Al ₁₀			
<i>a</i> , Å	9.1471(2)			
$b, \mathrm{\AA}$	10.2987(3)			
$c, \mathrm{\AA}$	9.2094(2)			
Объём ячейки, $Å^3$	867.55(4)			
Интервал 2 θ , °	10.0-90.09			
Шаг сканирования	0.01			
Число уточняемых параметров	24			
Число отражений	617			
R _{exp}	0.052			
R_p, R_{wp}	0.065, 0.092			
R _F	0.037			
R _B	0.056			
χ^2	3.11			

Таблица 23. Условия рентгеновской съемки и структурные характеристики соединения LaRusAlso

Таблица 24. Координаты атомов в структуре LaRu₂Al₁₀

Атом	Позиция	x/a	y/b	z/c	U_{iso} , (Å ²)
La1	4 <i>c</i>	0	0.12281(18)	1/4	0.0079(5)
Ru1	8 <i>d</i>	1/4	1/4	0	0.0091(4)
Al1	8 <i>g</i>	0.2290(6)	0.3621(7)	1/4	0.0061(13)
Al2	8 <i>g</i>	0.3548(6)	0.1284(7)	1/4	0.0075(16)
Al3	8 <i>f</i>	0	0.1622(6)	0.6012(6)	0.0059(18)
Al4	8 <i>f</i>	0	0.3795(7)	0.0524(6)	0.0092(16)
Al5	8e	0.2309 (6)	0	0	0.0034(13)

Рис. 38. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная диаграмма (нижняя синяя линия) для фаз LaRu₂Al₁₀ и LaRu₂Al₈. Полосками зеленого цвета обозначены позиции Брегга: 1 – фаза LaRu₂Al₁₀, 2 – LaRu₂Al₈.

На рисунке **39** представлена проекция элементарной ячейки LaRu₂Al₁₀ на плоскость *ab*.

Рис. 39. Проекция элементарной ячейки соединения LaRu₂Al₁₀ на плоскость *ab*.

4.1.6 Новый тройной интерметаллид LaRu₂Al₈

В образцах с большим содержанием алюминия методом рентгенофазового анализа обнаружена новая фаза неизвестного состава. Методом ЛРСА обнаружена фаза состава La₉Ru₂₀Al₇₁ (**рис. 40**). Отражения на порошковой рентгенограмме, отнесенные к данной фазе, проиндицированы в ромбической ячейке с параметрами a = 12.6470 Å, b = 14.7110 Å, c = 4.1170 Å, V = 765.97 Å³, Z = 4.

белая фаза – La34Al66;
серая фаза – La26Al74;светло-серая фаза – La22Al78,
серая фаза – La26Al74;
темно-серая фаза – La9Ru20Al71Рис. 40. Микроструктуры образцов составов: (а) La18Ru9Al72, (б) La9Ru18Al73.

Кристаллов, пригодных для рентгеноструктурного анализа, не обнаружено. Структуру данного соединения установили по данным порошковой рентгенограммы.

Результат уточнения методом Ритвельда представлен в *таблице 25* и на **рисунке 41**. В качестве исходной модели взяли изоформульный аналог этого соединения с галлием - LaRu₂Ga₈ [109]. Было установлено, что новое соединение действительно изоструктурно тройному галлиду LaRu₂Ga₈, кристаллизующемуся в структуре типа CaCo₂Al₈. Параметры ромбической элементарной ячейки соединения LaRu₂Al₈ *a*, *b*, *c* равны 12.6685(10) Å, 14.7351(11) Å и 4.1104(3) Å, соответственно. Координаты атомов представлены в *таблице* **26**, а проекция элементарной ячейки на плоскости *ab* и *bc* – на **рисунке 42**.

Сингония	Ромбическая			
Пространственная группа	<i>Pbam</i> (№ 55)			
Структурный тип	CaCo ₂ Al ₈			
<i>a</i> , Å	12.6685(10)			
b, Å	14.7351(11)			
<i>c</i> , Å	4.1104(3)			
Объём ячейки, Å ³	767.30(10)			
Интервал 2 θ , °	10.0-90.19			
Шаг сканирования	0.01			
Число уточняемых параметров	51			
Число отражений	401			
R _{exp}	0.036			
R _p , R _{wp}	0.065, 0.081			
R _F	0.181			
R _B	0.303			
χ^2	5.18			

Таблица 25. Условия рентгеновской съемки и структурные характеристики соединения LaRu>Al₈

Рис. 41. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная диаграмма (нижняя синяя линия) для фаз LaRu₂Al₈, LaAl₂ и RuAl₂. Полосками зеленого цвета обозначены позиции Брегга: 1 – фаза LaRu₂Al₈, 2 – RuAl₂, 3 - LaAl₂.

В структуре LaRu₂Al₈ 9 независимых кристаллографических позиций атомов алюминия и 2 независимые позиции атомов рутения, атом лантана занимает всего 1 позицию.

Рис. 42. Проекции элементарной ячейки LaRu₂Al₈: (а) на плоскость ab, (б) на плоскость bc.

Таблица 26. Координаты атомов в структуре LaRu₂Al₈.

Атом*	Позиция	x/a y/b		<i>z,</i> / <i>c</i>
La1	4 <i>g</i>	0.3439(10)	0.3159(9)	0
Ru1	4 <i>g</i>	0.0294(11)	0.4122(9)	0
Ru2	4g	0.1500(15)	0.0997(9)	0
Al1	4h	0.035(4)	0.137(4)	1/2
Al2	4h	0.157(5)	0.383(3)	1/2
Al3	4h	0.203(3)	0.143(3)	1/2
Al4	4h	0.342(4)	0.496(3)	1/2
Al5	4h	0.408(4)	0.223(3)	1/2
Al6	4g	0.053(4)	0.251(3)	0
Al7	4g	0.324(4)	0.035(3)	0
Al8	2d	0	1/2	1/2
Al9	2a	0	0	0

* Тепловые параметры атомов зафиксированы, В = 0.8.

4.2 Система Ce-Ru-Al

Изучение тройной системы Ce-Ru-Al проводилось на 78 синтезированных образцах. Составы полученных сплавов представлены на **рисунке 43**. В области с содержанием церия >70 ат.% наблюдалось плавление образцов при отжиге, что делало невозможным получение корректных данных в этой части диаграммы. Поэтому область с большим содержанием церия не исследовалась. Установлено, что алюминий и рутений не растворяют другие элементы в тройной системе Ce-Ru-Al.

Рис. 43. Концентрационный треугольник системы Ce-Ru-Al с исследуемыми образцами различных составов в ат.%. Темные точки – синтезированные сплавы. Желтые точки – известные из литературы двойные соединения при 550°С.

В процессе исследования тройной диаграммы Ce-Ru-Al подтверждены практически все двойные интерметаллиды систем Ce-Ru, Ce-Al и Ru-Al. Нам не удалось обнаружить только соединение Ce₃Ru с наибольшим содержанием церия, так как синтезированные образцы из этой области плавились в процессе отжига при 550°C. Кроме соединений CeAl₂, CeRu₂, Ce₄Ru₃ и Ce₇Ru₃ обладающих значительными областями гомогенности, большинство других двойных соединений имеют фиксированный состав. По результатам исследования системы установлено, что CeAl₂ растворяет до 9 ат.% Ru, а двойые

соединения системы Ce-Ru могут растворять до 6 ат.%, 7 ат.% и 11 ат.% алюминия для соединений Ce₇Ru₃, Ce₄Ru₃ и CeRu₂, соответственно.

Взаимодействие компонентов в тройной системе Ce-Ru-Al при 550 °C носит сложный характер. Это связано как с образованием большого количества двойных интерметаллидов в системах Ce-Ru, Ce-Al и Ru-Al, так и с образованием значительного количества тройных соединений в системе Ce-Ru-Al.

В результате исследования сплавов в системе Ce-Ru-Al при 550 °C подтверждены 7 из 9 ранее обнаруженных тройных интерметаллических соединений: CeRu₂Al₁₀, Ce₂Ru₃Al₁₅, Ce₂RuAl₃, Ce₅Ru₃Al₂, Ce₃Ru₄Al₁₂, CeRuAl и Ce₄RuAl. Полученные данные о кристаллических структурах этих соединений хорошо согласуются с литературными. Кроме того, соединение Ce₄RuAl получено в однофазном виде, что позволит в дальнейшем изучить его свойства. Также нам удалось подтвердить литературные данные [49] о существовании интерметаллида CeRu₃Al₁₀, который наблюдался в синтезированных сплавах, но отсутствовал после 30 дней отжига при 550 °C. Такое поведение соединения говорит о том, что для образования CeRu₃Al₁₀ необходимы более высокие температуры отжига и он не является устойчивой при данной температуре фазой. При 550 °C также не существует описанное ранее соединение Ce₁₁Ru₂Al₆, что согласуется с литературными данными [39], в соответствии с которыми температура плавления этого алюминида – 540 °C.

Помимо описанных в литературе тройных интерметаллидов нам удалось обнаружить при температуре 550 °C еще 4 новых соединения в области с большим содержанием церия – Ce₂Ru₂Al, Ce₂RuAl, Ce₂₃Ru_{7+x}Al_{4-x} и Ce₄Ru₃Al₂. Следует отметить, что из четырех новых соединений три кристаллизуются в структурах нового типа.

Методами порошковой рентгеновской дифракции и рентгеноспектрального микроанализа в системе Ce-Ru-Al установлены 36 устойчивых равновесия (табл. 56 приложения). Полученные результаты представлены на **рисунке 44** в виде изотермического сечения диаграммы состояния при 550 °C. Пунктирными линиями обозначены равновесия, которые в дальнейшем могут потребовать дополнительного уточнения. Данные тройных соединений системы представлены в *таблице 27*.

Рис. 44. Изотермическое сечение диаграммы состояния Ce-Ru-Al при 550°C.

Coorresponde	Пространственная группа/ Структурный тип	Параметры ячейки, Å			Мотол
Соединение		а	b	С	меюд
$Ce_3Ru_4Al_{12}$	P6 ₃ /mmc/ Gd ₃ Ru ₄ Al ₁₂	8.8694(4)	-	9.576(3)	РДП
Ce ₂ Ru ₃ Al ₁₅	P6 ₃ /mcm/ Ce ₂ Ru ₃ Al ₁₅	13.119(3)	-	9.1026(25)	РДП
CeRu ₂ Al ₁₀	Cmcm/ YbFe ₂ Al ₁₀	9.1167(22)	10.273(3)	9.1771(12)	РДП
$Ce_5Ru_3Al_2$	R3/ Ce ₅ Ru ₃ Al ₂	13.846(1)	-	8.296(5)	РДП
CeRuAl	Pnma/ LaNiAl	7.203(4)	4.049(4)	15.875(5)	РДП
Ce ₄ RuAl	<i>F</i> -43 <i>m</i> / Gd ₄ RhIn	13.7578(1)	-	-	РДП
Ce ₂ RuAl ₃	P6 ₃ /mmc/Mg ₂ Cu ₃ Si	5.655(3)	-	8.878(3)	РДП
Ce ₂ RuAl	P6 ₃ mc/ Ce ₂ RuAl	7.8362(7)	-	9.7510(9)	РДМ
		7.88320(2)	-	9.7450(2)	РДП
Ce ₂ Ru ₂ Al	Cmce/ Ce ₂ Ru ₂ Al	5.8914(4)	9.9603(6)	6.9551(4)	РДМ
		5.8812(3)	9.9418(5)	6.9546(4)	РДП

Таблица 27. Тройные соединения в системе Ce-Ru-Al*
$Ce_{23}Ru_{7+x}Al_{4-x}$ при $x = 0.4$	P6 ₃ mc/ Pr ₂₃ Ir ₇ Mg ₄	9.8137(4)	-	22.2010(13)	РДП
$Ce_4Ru_3Al_2$	Pnma/ Ce ₄ Ru ₃ Al ₂	22.05927(11)	4.62213(2)	7.54308(4)	РДП(СИ)

*Серым фоном отмечены ИМС, которые структурно охарактеризованы в настоящей работе. На белом фоне – соединения, охарактеризованные в литературе. Структурные типы, отмеченные голубым фоном, имеют первых представителей в изучаемой системе.

4.2.1 Новый тройной интерметаллид Ce₂Ru₂Al

В процессе исследования системы Ce-Ru-Al в области с повышенным содержанием церия обнаружен новый тройной интерметаллид Ce₂Ru₂Al. Алюминид Ce₂Ru₂Al кристаллизуется в ромбической структуре с симметрией пространственной группы *Cmce* и параметрами элементарной ячейки a = 5.8914(4) Å, b = 9.9603(6) Å, c = 6.9551(4) Å. Это соединение принадлежит к новому структурному типу, который можно рассмтаривать как упорядоченный вариант структуры двойного интерметаллида La₂Ni₃, в котором атомы лантана расположены в 8*f* позиции, а никель занимает две позиции 8*e* и 4*a*. В структуре тройного Ce₂Ru₂Al атомы церия занимают позицию лантана, в позиции 8*e* расположены рутениевые атомы, а алюминий полностью находится в позиции 4*a*.

Кристаллическая структура определена методом рентгеноструктурного анализа монокристалла, который отобран из образца Ce₄₀Ru₄₀Al₂₀. Условия проведения эксперимента и полученные кристаллографические характеристики соединения Ce₂Ru₂Al представлены в *таблицах 28* и *29*.

Соединение	Ce ₂ Ru ₂ Al
Молярная масса, г/моль	509.36
Структурный тип	Новый, производный от La ₂ Ni ₃
Пространственная группа, Z	<i>Cmce</i> (№ 64), 4
Параметры элементарной ячейки, Å	a = 5.8914(4), b = 9.9603(6), c = 6.9551(4)
Объем элементарной ячейки, Å ³	408.13(4)
Рассчитанная плотность, г/см ³	8.29
Размер кристалла, мм	0.05*0.08*0.18
T, °C	23(2)
Излучение, λ, Å	ΜοΚα; 0.71073
Коэффициент абсорбции, мм ⁻¹	29.117
F(000)	868
Пределы измерений, $ heta$, °	4.09-37.84
Область <i>h</i> , <i>k</i> , <i>l</i>	-10÷9, -17÷16, -11÷10
Общее число рефлексов	952
Число измеренных независимых рефлексов (R _{int})	581 (0.024)
Число рефлексов в уточнении с I > $2\sigma(I)$ (R_{σ})	456 (0.033)
Число уточняемых параметров	16
R1, wR2 (I > $2\sigma(I)$)	0.026, 0.061
R1, wR2	0.035, 0.064

Таблица 28. Условия съемки, основные кристаллографические параметры и результаты уточнения структуры Ce₂Ru₂Al

Таблица 29. Координаты атомов и параметры атомного смещения в структуре Ce₂Ru₂Al

Атом	Позиция	x/a	<i>y/b</i>	z/c	U _{eq} (Å ²)
Ce1	8f	0	0.3399(3)	0.0813(3)	0.02706(11)
Ru2	8 <i>e</i>	1/4	0.1144(3)	1/4	0.03223(15)
Al3	4a	0	0	0	0.0212(5)

Методом Ритвельда уточнена структура соединения Ce₂Ru₂Al по порошковым данным образца Ce₄₀Ru₄₀Al₂₀: a = 5.8812(3) Å, b = 9.9418(5) Å, c = 6.9546(4) Å. В этом образце обнаружено две фазы, одна из которых Ce₂Ru₂Al, а другая RuAl содержится в следовых количествах (около 1%). Результат уточнения представлен на **рисунке 45**.

Рис. 45. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная диаграмма (нижняя синяя линия) для фаз Ce₂Ru₂Al, CeRu₂. Полосками зеленого цвета обозначены позиции Брегга: 1 – фаза Ce₂Ru₂Al, 2 – RuAl.

На рисунке 46 представлена проекция элементарной ячейки Ce₂Ru₂Al на плоскость *cb*.

Рис. 46. Проекция кристаллической структуры Ce₂Ru₂Al в трехмерном виде вдоль оси *а*.

В кристаллической структуре нового алюминида Ce₂Ru₂Al с новым структурным типом каждый сорт атомов занимает только одну независимую кристаллографическую позицию. Кристаллохимической особенностью Ce₂Ru₂Al является наличие укороченных контактов Ce-Ru, отмеченных в *таблице 30* голубым цветом. Эти данные будут обсуждаться далее.

Атом 1	Атом 2	d, Å
	2Ru	2.782(1)
	2Ru	2.920(1)
G	Al	3.302(1)
	2Ru	3.320(1)
К.Ч. 13	Ce	3.379(1)
15	2Al	3.396(1)
	Al	3.443(1)
	2Ce	3.646(1)

Таблица 30. Основные межатомные расстояния в структуре Ce₂Ru₂Al

Атом 2	$d, \mathrm{\AA}$
2Al	2.555(1)
2Ce	2.782(1)
2Ce	2.920(1)
2Ru	2.946(1)
2Ce	3.320(1)
4Ru	2.555(1)
2Ce	3.302(1)
4Ce	3.396(1)
2Ce	3.443(1)
	Атом 2 2Al 2Ce 2Ce 2Ru 2Ce 4Ru 2Ce 4Ce 2Ce

Рис. 47. Кривая ДТА для соединения Ce₂Ru₂Al.

Для соединения Ce₂Ru₂Al установлена температура плавления (**рис. 47**). На кривой ДТА наблюдаются два пика. Это объясняется наличием в сплаве примесной фазы. Температура 764(1) °C соответствует плавлению Ce₂Ru₂Al.

4.2.2 Новый тройной интерметаллид Ce₂₃Ru_{7+x}Al_{4-x}

В процессе исследования системы Ce-Ru-Al методами локального рентгеноспектрального анализа (**рис. 48**) и РФА порошка обнаружен новый тройной интерметаллид Ce₂₃Ru_{7+x}Al_{4-x} с протяженной областью гомогенности $0 \le x \le 2.9$, что соответствует изменению содержания алюминия с 11.4 до 3 ат.%. Интерметаллид Ce₂₃Ru_{7+x}Al_{4-x} кристаллизуется в гексагональной ячейке с пространственной группой *P*6₃*mc*. Изменение параметров элементарной ячейки Ce₂₃Ru_{7+x}Al_{4-x} в области гомогенности подчиняется правилу Вегарда, что проиллюстрировано на **рисунке 49** и в *mаблице 31*.

Рис. 49. Изменение параметров элементарной ячейки от содержания алюминия для соединения Ce₂₃Ru_{7+x}Al_{4-x}.

Таблица 31. Изменение параметров элементарной ячейки для соединения Ce₂₃Ru_{7+x}Al_{4-x}

<i>a</i> , Å	<i>c</i> , Å	V, Å ³	Al, ат.%	x
9.8309(16)	22.197(5)	1857.9(4)	11.4	0.1
9.8137(4)	22.2010(13)	1858.7(2)	10.6	0.4
9.7946(16)	22.226(4)	1846.6(4)	8.6	1.1
9.7708(17)	22.257(4)	1840.2(4)	5.0	2.2
9.7541(16)	22.261(4)	1834.2(4)	3.0	2.9
9.7533(12)	22.271(3)	1834.8(3)	1.5*	3.5

*сплав за границей области гомогенности.

Так как монокристаллы, пригодные для рентгеноструктурного анализа, получить не удалось, то кристаллическую структуру Ce₂₃Ru_{7+x}Al_{4-x} установили с использованием рентгеновской дифракции на порошке с последующим уточнением по методу Ритвельда. В качестве исходной модели использована структура изоформульного интерметаллида Ce₂₃Ru₇Mg₄ [110] (структурный тип Pr₂₃Ir₇Mg₄). Интерметаллид Ce₂₃Ru_{7+x}Al_{4-x} кристаллизуется в гексагональной ячейке с пространственной группой *P*6₃*mc* с параметрами: *a* = 9.8137 (4) Å, *c* = 22.2010(13) Å (при содержании алюминия 10.6 ат.%). Для соединения Ce₂₃Ru_{7+x}Al_{4-x} рассчитаны теоретические интенсивности (**рис. 50**) и уточнены параметры элементарной ячейки (*таблица 32*). Значения критериев R_F, R_B и χ^2 свидетельствуют о правильно подобранной модели и верных параметрах элементарной ячейки для нового ИМС.

Сингония	Гексагональная
Пространственная группа	<i>P</i> 6 ₃ <i>mc</i> (№ 186)
Структурный тип	$Pr_{23}Ir_7Mg_4$
<i>a</i> , Å	9.8137(4)
<i>c</i> , Å	22.2010(13)
Объём ячейки, Å ³ , Z	1858.7(2), 2
Интервал 2 θ , °	10.0-90.095
Шаг сканирования	0.005
Число уточняемых параметров	16
Число отражений	448
R _{exp}	0.029
R_p, R_{wp}	0.021, 0.026
R_F	0.027
R _B	0.048
χ^2	0.825

Таблица 32. Условия рентгеновской съемки и структурные характеристики $Ce_{23}Ru_{7+x}Al_{4-x}$ при x = 0.4

Рис. 50. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная диаграмма (нижняя синяя линия) для фаз Ce₂₃Ru_{7+x}Al_{4-x}, Ce₄RuAl. Полосками зеленого цвета обозначены позиции Брегга: 1 – фаза Ce₂₃Ru_{7+x}Al_{4-x}, 2 – Ce₄RuAl.

Элементарная ячейка $Ce_{23}Ru_{7+x}Al_{4-x}$ представлена на рисунке 51, а координаты атомов в *таблице 33*.

Рис. 51. Проекция элементарной ячейки $Ce_{23}Ru_{7+x}Al_{4-x}$ при x = 0 на плоскость *ab* (a) и кристаллическая структура этого соединения (б).

Атом	Позиция	x/a	y/b	z/c	B _{iso} (Å ²)*
Ce1	6 <i>c</i>	0.1263(1)	0.8737(1)	0.3610(2)	0.5
Ce2	6 <i>c</i>	0.2016(0)	0.7984(0)	0.2109(1)	0.5
Ce3	6 <i>c</i>	0.2079(17)	0.7921(2)	0.0480(1)	0.5
Ce4	6 <i>c</i>	0.7934(17)	0.2066(17)	0.0052(1)	0.5
Ce5	6 <i>c</i>	0.5411(3)	0.4589(3)	0.4150(1)	0.5
Ce6	6 <i>c</i>	0.5400(7)	0.4600(7)	0.1422(11)	0.5
Ce7	2b	1/3	2/3	0.3472(3)	0.5
Ce8	2 <i>a</i>	0	0	0	0.5
Ce9	6 <i>c</i>	0.7935(1)	0.2065(1)	0.2767(1)	0.5
Ru1	6 <i>c</i>	0.4775(8)	0.5225(8)	0.2920(3)	0.6
Ru2	6 <i>c</i>	0.8537(15)	0.1463(15)	0.4501(5)	0.6
Ru3	2b	1/3	2/3	0.1149(10)	0.6
Al1	6 <i>c</i>	0.875(6)	0.125(6)	0.1383(16)	0.7
Al2	2 <i>a</i>	0	0	0.2354(12)	0.7

Таблица 33. Координаты атомов и параметры атомного смещения в структуре $Ce_{22}Ru_7$, Al, при r = 0.4

* Тепловые параметры атомов зафиксированы.

Используя ДТА, установлено, что соединение $Ce_{23}Ru_{7+x}Al_{4-x}$ при x = 0 плавится при 558 °C. Термические эффекты до этой температуры не наблюдались.

4.2.3 Новый тройной интерметаллид Ce₄Ru₃Al₂

В системе Ce-Ru-Al обнаружена новая фаза состава Ce₄₄Ru₃₃Al₂₃. Этот состав определен из данных локального рентгеноспектрального анализа (**рис. 52**). Обнаруженная в ЛРСА фаза является упорядоченной и соответствует соединению Ce₄Ru₃Al₂.

серая фаза– Се₄₄Ru₃₄Al₂₂ Рис. 52. Микроструктура образца состава Се₄₄Ru₃₃Al₂₃.

Для получения тройного инетерметаллида Ce₄Ru₃Al₂ в однофазном виде синтезирован образец этого состава. Ha кривой ДТА обнаружен эндотермический эффект при 646(1) °С, плавлению отнесенный к соединения состава $Ce_4Ru_3Al_2$. По данным РФА образца после плавления эта фаза на рентгенограмме наблюдается. не Монокристаллов для рентгеноструктурного анализа вырастить кристаллическая не удалось, поэтому

структура соединения Ce₄Ru₃Al₂ определена по порошку с помощью дифракционного эксперимента высокого качества с последующим уточнением методом Ритвельда.

Уточнение с использованием программы JANA с учетом только одной основной фазы показало, что соединение Ce₄Ru₃Al₂ кристаллизуется в ромбической структуре нового типа, которая тесно связана со структурным типом YbAuGe [111]. Инетерметаллид Ce₄Ru₃Al₂ имеет симметрию пространственнуой группы *Pnma* и параметры элементарной ячейки a = 22.05927(11) Å, b = 4.62213(2) Å, c = 7.54308(4) Å, Z = 4. Уточнение методом Ритвельда привело к следующим показателям качества процедуры $\chi^2 = 7.38$, R_p =0.095 (**рис. 53**).

Условия съемки, координаты атомов и величины межатомных расстояний для нового соединения $Ce_4Ru_3Al_2$ приведены в *таблицах 34 - 36*. Проекция элементарной ячейки $Ce_4Ru_3Al_2$ на координатную плоскость *ас* показана на **рисунке 54**, а координационные полиэдры нового структурного типа представлены на **рисунке 55**.

Рис. 54. Проекция кристаллической структуры Ce₄Ru₃Al₂ на плоскость *ac*.

Формула	Ce ₄ Ru ₃ Al ₂
Структурный тип	Новый, Ce ₄ Ru ₃ Al ₂
Пр. группа	<i>Pnma</i> (№ 62)
	a = 22.05927(11)
Поромотри о помонторной дной $(\dot{\lambda})$	<i>b</i> = 4.62213(2)
параметры элементарной ячейки, (А)	c = 7.54308(4)
	Z = 4
Длина волны, λ (Å)	0.399927 (ID22)
Диапазон $ heta$	0.514° - 30.000°
Шаг сканирования	0.002
Число уточняемых параметров	43
Общее число рефлексов	978
R_p, R_{wp}	0.095, 0.155
R _F	0.034
R _B	0.049
χ^2	7.38

Таблица 34. Детали рентгенофазового анализа для соединения Ce₄Ru₃Al₂

Таблица 35. Координаты атомов и параметры атомного смещения в структуре *Ce*₄*Ru*₃*Al*₂

Атом	Позиция	x/a	у/b	z/c	U _{iso} (Å ²)
Ce1	4 <i>c</i>	0.00345(9)	1/4	0.81933(24)	0.0058(5)
Ce2	4c	0.19047(9)	1/4	0.55008(26)	0.072(5)
Ce3	4 <i>c</i>	0.34107(9)	1/4	0.71830(25)	0.0059(5)
Ce4	4 <i>c</i>	0.38183(8)	1/4	0.27580(25)	0.0053(5)
Ru1	4c	0.08284(11)	1/4	0.0159(3)	0.0027(7)
Ru2	4c	0.26600(11)	1/4	0.2872(3)	0.0092(7)
Ru3	4c	0.44913(11)	1/4	0.0235(3)	0.0051(7)
Al1	4 <i>c</i>	0.0596(4)	1/4	0.3781(11)	0.0039(27)
Al2	4 <i>c</i>	0.7128(5)	1/4	0.5470(12)	0.0092(26)

В кристаллической структуре нового алюминида $Ce_4Ru_3Al_2$ с новым структурным типом атомы Ce распределены по четырем кристаллографически независимым позициям, атомы Ru занимают три позиции, а атомы Al имеют две независимые позиции. Кристаллохимической особенностью $Ce_4Ru_3Al_2$ является наличие чрезвычайно малых значений некоторых расстояний Ce-Ru, отмеченных в *таблице 36* голубым цветом. Эти данные будут обсуждаться далее.

Рис. 55. Координационные пооолллиэдры атомов в структуре Ce₄Ru₃Al₂.

Таблица 36.	Основные межатомные	расстояния е	в структуре	Ce_4Ru_3Al
-------------	---------------------	--------------	-------------	--------------

3(4)9(2) 6(2) 8(2)2(1)5(4)2(4) (4)8(3)3(4)0(1)1(4)1(1)5(4) 6(4) 2(4)2(1)3(2)8(4) 7(3) 9(4) 5(4)2(4)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 и Ол	ици 30. Осн	106001	емежи	томные р	uccme
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ru1	2.300(1)			2Ce2	3.47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ru3	2.839(3)		Ce3	Ce2	3.55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2Al1	3.075(4)			Ce1	3.59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ce1	2Ru1	3.252(4)			Ru3	2.40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	К.Ч.	2Ru3	3.364(4)			Ru2	2.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	2Ce4	3.428(3)		Ce4	2Ru1	3.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Al1	3.570(4)		К.Ч.	2Ce2	3.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2Ce1	3.596(4)		11	2A12	3.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ce3	3.596(2)			2Ce1	3.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ru2	2.583(2)			Ce3	3.46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2Ru2	3.079(4)			Ce1	2.30
$\begin{array}{c ccccc} K.{\rm H} & Al1 & 3.157(1) \\ \hline X.{\rm H} & 2Al2 & 3.216(4) \\ \hline 12 & 2Ce4 & 3.292(4) \\ \hline 2Ce3 & 3.473(4) \\ \hline Ce3 & 3.559(2) \\ \hline 2Al2 & 3.244(4) \\ \hline Ce3 & Ru3 & 3.322(2) \\ K.{\rm H} & 2Ru2 & 3.345(4) \\ \hline 15 & Al2 & 3.373(2) \\ \hline 2Al1 & 3.381(4) \\ \hline Ce4 & 3.463(4) \\ \hline \end{array}$	Ce2	Al2	3.143(4)		D.1	Al1	2.75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Al1	3.157(1)		KUI VU	Al2	2.89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 12	2A12	3.216(4)		К. Ч. 0	2Ce4	3.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2Ce4	3.292(4))	2Ce3	3.23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2Ce3	3.473(4)			2Ce1	3.25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ce3	3.559(2)			Ce4	2.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2Ru1	3.236(4)			Ce2	2.58
Ce3 Ru3 3.322(2) K.Ч. 2Ru2 3.345(4) 15 Al2 3.373(2) 2Al1 3.381(4) Ce3		2A12	3.244(4)		Ru2	2A12	2.69
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ce3 K.Ч. 15	Ru3	3.322(2)		К.Ч.	Al2	2.72
15 Al2 3.373(2) 2Ce3 3 2Al1 3.381(4) Ce3 3 Ce4 3.463(4) Ce3 3		2Ru2	3.345(4)		10	2Ce2	3.07
2Al1 3.381(4) Ce3 3 Ce4 3.463(4) <		Al2	3.373(2)			2Ce3	3.34
Ce4 3.463(4)		2Al1	3.381(4)			Ce3	3.65
		Ce4	3.463(4)				

	Ce4	2.408(2)
	Al1	2.563(1)
Ru3	2Al1	2.581(5)
К.Ч.	Ce1	2.839(3)
10	2Ru3	3.226(4)
	Ce3	3.322(2)
	2Ce1	3.364(4)
	Ru3	2.563(1)
	2Ru3	2.581(5)
Al1	Ru1	2.751(4)
К.Ч.	2Ce1	3.075(4)
10	Ce2	3.157(1)
	2Ce3	3.381(4)
	Ce1	3.570(4)
	2Ru2	2.698(4)
	Ru2	2.727(3)
Al2	Ru1	2.891(1)
К.Ч.	Ce2	3.143(4)
10	2Ce2	3.216(4)
	2Ce3	3.244(4)
	Ce3	3.373(2)

4.2.4 Соединение Се₂RuAl

В процессе исследования системы Ce-Ru-Al обнаружен новый интерметалид Ce₂RuAl. Нам удалось синтезировать образец с преимущественным содержанием фазы состава Ce₅₁Ru₂₆Al₂₃ (**рис. 56**), что позволило определить его температуру плавления ($T_{пл} = 624(1)$ °C), кристаллическую структуру, а также физические свойства.

серая фаза – Ce₃₆Ru₂₀Al₄₄, белая фаза – Ce₅₁Ru₂₆Al₂₃ Рис. 56. Микроструктура образца состава Ce₄₀Ru₃₃Al₂₇.

алюминида Ce₂RuAl Структура решена монокристальному по эксперименту И уточнена по порошковым данны методом Ритвельда, результаты представлены в *таблице* 37 и **57**. Интерметаллид на рисунке кристаллизуется в собственном структурном типе, производном ОТ двойного LaF₃, пространственной группы Р63ст с параметрами элементарной ячейки: a = 7.88320 (2) Å, c = 9.7450 (2) Å. Качество уточнения оценивали по значениям профильных и структурных *R*-

факторов: $R_B = 0.068$, $R_F = 0.046$, $wR_P = 0.033$, $R_{exp} = 0.017$ для 138 неэквивалентных отражений, а также статистическому $\chi^2 = 3.77$.

Таблица 37. Условия съемки,	основные кристаллографически	е параметры и результаты
	уточнения структуры Ce ₂ RuAl	

Соединение	Ce ₂ RuAl
Молярная масса, г/моль	408.29
Структурный тип	Ce ₂ RuAl
Пространственная группа, Z	<i>P</i> 6 ₃ <i>cm</i> (№185), 6
Параметры элементарной ячейки, Å	a = 7.8362(7), c = 9.7510(9)
объем элементарной ячейки, Å	518.55(8)
Рассчитанная плотность, г/см ³	7.85
Размер кристалла, мм	0.15 imes 0.12 imes 0.08
T, °C	20(2)
Излучение, λ, Å	ΜοΚ _α , 0.71073
Коэффициент абсорбции, мм ⁻¹	30.164
F(000)	1038
Пределы измерений, θ , °	3, 37.47
Область h, k, l	-11÷ 13; -12÷5; -16÷15
Общее число рефлексов	4943

Число измеренных независимых рефлексов (R _{int})	987 (0.033)
Число рефлексов в уточнении с I > 2σ(I) (R _σ)	952 (0.027)
Число уточняемых параметров	26
R1, wR2 (I > $2\sigma(I)$)	0.017, 0.035
R1, wR2	0.019, 0.036

Рис. 57. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная диаграмма (нижняя синяя линия) для образца Ce₅₀Ru₂₅Al₂₅. Полосками зеленого цвета обозначены позиции Брегга для фазы Ce₂RuAl

В кристаллической структуре нового интерметаллида Ce₂RuAl с новым структурным типом атомы занимают 5 кристаллографических позиций (*таблица 38*), как и в соединении LaF₃. Атомы рутения занимают позицию 6*c*, принадлежавшую атомам лантана. Атомы Ce и Al распределены по четырем позициям (двум 6*c*, одной 4*f* и одной 4*a*). Особенностью кристаллохимического строания алюминида Ce₂RuAl является наличие чрезвычайно малых значений некоторых расстояний Ce-Ru, отмеченных в *таблице 39* голубым цветом. Эти данные будут обсуждаться далее.

Атом	Позиция	x/a	у/b	z/c	U_{eq}
Ce1	6 <i>c</i>	0	0.41161(4)	0.00000(2)	0.01003(6)
Ce2	6 <i>c</i>	0	0.26137(4)	0.32406(3)	0.01032(6)
Ru	6 <i>c</i>	0	0.65869(5)	0.15928(6)	0.00892(7)
Al1	4 <i>b</i>	1/3	2/3	0.2294(2)	0.0097(3)
Al2	2 <i>a</i>	0	0	0.0769(3)	0.0092(4)

Таблица 38. Координаты атомов и параметры атомного смещения в структуре Ce₂RuAl

,			I I I I I I I I I I I I I I I I I I I	· · · · · · · · · · · · · · · · · · ·		- 2
Атом 1	Атом 2	d, Å		Атом 1	Атом 2	d, Å
Ce1	Ru	2.482(6)		Ru	Ce1	2.482
	Ce2	3.084(4)			2A11	2.670
	2A11	3.256(14)			Al2	2.793
	2Ce2	3.307(3)			2Ce2	2.907
	Al2	3.311(8)			Ce1	3.368
	3Ru	3.368(7)			2Ce1	3.368
	Ce2	3.372(4)			Ce2	3.504
Ce2	2Ru	2.907(5)		Al1	3Ru	2.670
	2A11	3.077(7)			3Ce2	3.077
	Ce1	3.084(4)			3Ce1	3.256
	Al2	3.163(2)				
	Al2	3.205(2)		A12	3Ru	2.793
	2Ce1	3.307(3)			3Ce2	3.163
	Ru	3.328(7)			3Ce2	3.205
	Ce1	3.372(4)				2.200
	1				1	

Таблица 39. Основные межатомные расстояния в структуре Ce₂RuAl

Проекция кристаллической структуры соединения Ce₂RuAl вдоль оси *b* показана на **рисунке 58**.

Рис. 58. Проекция кристаллической структуры Ce₂RuAl в трехмерном виде вдоль оси *b*.

4.3 Система Sm-Ru-Al

В настоящей работе впервые исследовалось взаимодействие компонентов тройной системы Sm-Ru-Al при 550 °C. Для этого было приготовлено и изучено 50 сплавов, составы которых представлены на **рисунке 59**. Область с большим содержанием самария (>73 ат.%) не исследовалась из-за больших потерь самария при плавке, высокой способности к окислению и легкоплавкости приготовляемых образцов. Установлено, что алюминий и рутений при 550 °C не растворяют другие компоненты.

Рис. 59. Концентрационный треугольник системы Sm-Ru-Al с составами исследованных образцов (в ат. %). Желтым цветом обозначены известные двойные соединения, существующие при 550°С.

В системе Sm-Ru-Al подтверждено существование всех двойных интерметаллидов систем Sm-Ru, Sm-Al и Ru-Al, описанных в литературе при 550 °C. Все двойные ИМС тройной системы не растворяют третий компонент за исключением фаз SmAl₂ и SmRu₂, которые обладают значительными областями гомогенности. Так, интерметаллид SmAl₂ растворяет 10 ат.% Ru, а SmRu₂ образует твердый раствор с максимальным содержанием алюминия 12 ат.%.

В тройной системе Sm-Ru-Al при 550 °C обнаружено существование шести тройных алюминидов. Полученные данные о трех описанных ранее соединениях – $Sm_3Ru_4Al_{12}$, $Sm_2Ru_3Al_{15}$, $SmRu_2Al_{10}$ – хорошо согласуются с литературными данными. Образование известного ранее интерметаллида Sm_4RuAl нами подтверждено методом ЛРСА, но уточнить его кристаллическую структуру не удалось из-за большого фона полученных рентгенограмм.

Методом ЛРСА образцов определен химический состав двух ранее неизвестных тройных интерметаллидов – Sm₂RuAl₃ и SmRu₃Al₁₀. Кристаллическая структура первого ИМС определена методом порошковой рентгеновской дифракции, а структура алюминида

86

SmRu₃Al₁₀ определена по монокристаллу. Полученная информация о кристаллохимических данных тройных соединений, образующихся в системе Sm-Ru-Al, приведены в **таблице 40**.

Соединение	Пространственная группа/	Пара	Метод		
	Структурный тип	а	b	С	
Sm ₄ RuAl	$F-43m/\operatorname{Gd}_4\operatorname{RhIn}$	13.609	-	-	РДП
$SmRu_2Al_{10}$	Cmcm/ YbFe ₂ Al ₁₀	9.0934(3)	10.2287(3)	9.1418(3)	РДП
Sm. Du. Al.	P6 ₃ /mmc/	8.834(3)	-	9.566(3)	РДМ
51113Ku4A112	$Gd_3Ru_4Al_{12}$	8.8396(3)	-	9.5685(3)	РДП
$Sm_2Ru_{1+x}Al_{3-x}$ при $x = 0.3$	P6 ₃ /mmc/ Mg ₂ Cu ₃ Si	5.5554(1)	-	8.7904(1)	РДП
SmRu ₃ Al ₁₀	Imma/ CeRu ₃ Al ₁₀	4.1748(2)	12.3974(3)	17.6065(5)	РДМ
$Sm_2Ru_3Al_{15}$	$P6_3/mcm/Ce_2Ru_3Al_{15}$	13.0393(2)	-	9.0432(2)	РДП

Таблица 40. Тройные соединения в системе Sm-Ru-Al*

*Серым фоном отмечены ИМС, которые структурно охарактеризованы в настоящей работе. На блом фоне – соединения, охарактеризованные в литературе.

Результаты ЛРСА образцов и РФА порошковых данных, представленных в таблице 57 приложения, позволили построить изотермическое сечение диаграммы состояния (**рис.**

57 приложения, позволили построить изотермическое сечение диаграммы состояния (**рис. 60**).

Рис. 60. Изотермическое сечение Т-х диаграммы тройной системы Sm-Ru-Al при 550 °C.

4.3.1 Новое соединение SmRu₃Al₁₀

В процессе исследования неотожженного образца состава Sm₁₀Ru₁₅Al₇₅ обнаружен монокристалл, который исследовали методом PCA на автодифрактометре CAD-4. Полученный экспериментальный массив интенсивностей отражений проиндицировался в моноклинной ячейке с параметрами a = 12.3974(3) Å, b = 17.6065(4) Å, c = 4.1748(2) Å и β = 108.55(5)°. Систематические погасания соответствовали пространственной группе С2/с (№ 15). После изучения литературных данных, используя соответствующую матрицу перехода, пространственная группа преобразована в Ітта (№74). В процессе решения структуры прямыми методами установлено, что атомы Al6 и Al7 находятся в позиции 8h с заполнением 0.5, что означает чередование присутствия атомов алюминия в данных положениях. Условия рентгеновского эксперимента и структурные характеристики соединения SmRu₃Al₁₀ представлены в *таблице 41*. Атомные координаты и тепловые параметры приведены в *таблице* 42.

	r 7)
	$V \circ \pi \circ \circ \circ \circ \pi \circ $	110 11 11111111111000	INALLIOCIMIC VANALMANICMALIC	11 ^^^^
100/1000 41.	условия уточнен	απ α κιλας παπ.πολι	мические лириктеристик	и соеоинения
			Γ	

Соединение	SmRu ₃ Al ₁₀
Структурный тип	CeRu ₃ Al ₁₀
Пространственная группа	Imma
	a = 4.1748(2)
Параметры элементарной ячейки, Å	b = 12.3974(3)
	c = 17.6065(5)
Объем, Å ³	911.3(6)
Число формульных единиц	4
Рассчитанная плотность, г/см ³	5.273
Угол сканирования θ, °	0-39.94
Коэффициент абсорбции, мм ⁻¹	6.4
	$-5 \le h \le 4$
Интервал <i>hkl</i>	$-4 \le k \le 15$
	$-21 \le l \le 5$
Количество независимых рефлексов	522
Количество рефлексов с $F_o > 4\sigma F_o$	384
Число уточняемых параметров	54
Качество уточнения (goodness of fit)	1.073
R	0.033
R _w	0.075

SmRu₃Al₁₀.

Таблица 42. Координаты и тепловые параметры атомов в структуре SmRu₃Al₁₀.

Атом	Позиция	Заселенность	<i>x/a</i>	y/b	z/c	$U_{eq}, Å^2$
Sm	4 <i>e</i>	1	0	1/4	0.96742(7)	0.0071(3)
Ru1	8h	1	0	0.05442(9)	0.13400(8)	0.0048(3)
Ru2	4 <i>e</i>	1	0	1/4	0.68657(11)	0.0072(4)
Al1	8h	1	0	0.1356(3)	0.4335(3)	0.0082(9)
Al2	8h	1	0	0.0821(3)	0.6020(3)	0.0145(11)
Al3	4a	1	0	0	0	0.0096(13)

Al4	8h	1	0	0.6344(3)	0.1937(3)	0.0091(9)
Al5	4 <i>e</i>	1	0	1/4	0.1556(4)	0.0086(13)
Al6	8h	0.5	0	0.1180(6)	0.2839(6)	0.0103(18)
Al7	8h	0.5	0	0.0410(6)	0.2830(5)	0.0089(18)

Соединение SmRu₃Al₁₀ (номинальный состав Sm₇Ru₂₁Al₇₂ в ат.%) наблюдали как в литых, так и в отожженных образцах с использованием методов РФА порошка и ЛРСА поверхности образца (**рис. 61**). Следует отметить, что монокристаллы этой фазы обнаруживались при изучении других сплавов близкого состава. Возможно, что эта фаза

конгруэнтно плавится при высокой температуре.

Ha рисунке 62 представлена элементарная ячейка структуры SmRu₃Al₁₀. По направлению оси а структура является слоистой, причем слои расположены с периодом 1/2a. Структура образована центрированными самарием пятиугольными призмами ИЗ атомов алюминия и рутения и расположенными между ними треугольными призмами из тех же атомов. Эти геометрические фигуры симметричны относительно сдвига на (1/2a, 0, 1/2c).

белая фаза — $Sm_{25}Al_{75}$ светло-серая фаза — $Sm_7Ru_{24}Al_{69}$ серая фаза — $Sm_8Ru_{16}Al_{74}$ Рис. 61. Микроструктура образца состава $Sm_{10}Ru_{15}Al_{75}$.

Рис. 62. Кристаллическая структура и элементарная ячейка соединения $SmRu_3Al_{10}$. (a) проекция структуры на плоскость *bc*, (б) проекция структуры на плоскость *ac*.

4.3.2 Тройное соединение Sm₄RuAl

Ранее в литературе сообщалось об образовании тройного соединения Sm₄RuAl [59], кристаллизующегося в кубической сингонии с параметром a = 13.609 Å (структурный тип Gd₄RhIn, Пр. гр. *F*-43*m*). Для подтверждения существования этого соединения нами синтезированы два образца состава Sm₆₇Ru₁₇Al₁₆. Первый образец при отжиге 700 °C расплавился. ЛРСА провести не удалось, однако РФА порошка показал присутствие фазы Sm₂RuAl₃ и других посторонних фаз. Соединение Sm₄RuAl на рентгенограмме этого образца отсутствовало (**рис. 63a**). Другой образец исследован в литом состоянии и после отжига при температуре 550 °C. В неотоженном образце в элетронном микроскопе наблюдали две основные фазы с близкими составами (измерения ЛРСА 68-16-16 и 70-16-14 ат.%), а также небольшие количества двойного соединения Sm₂Al (**рис. 63в**). РФА показал также присутствие фазы Sm₂RuAl₃. После отжига образец стал практически однофазным. При РФА порошковых данных обнаружено соответствие остновных пиков соединению Sm₄RuAl (**рис. 636**). Все полученные рентгенограммы в области с большим содержанием самария имеют высокий фон и нечеткие пики отражений, поэтому уточнение фазы Sm₄RuAl методом Ритвельда не представляется возможным.

Дополнительно синтезирован образец $Sm_{62}Ru_{22}Al_{16}$, который по данным ЛРСА оказался практически однофазным (**рис. 63г**). Этот образец исследован с помощью синхротронного излучения. Однако модель, описанная в литературе, не подошла для уточнения Ритвельдом. Таким образом, подтвердить структуру соединения Sm₄RuAl нам не удалось, хотя достоверно можно утверждать существование фазы $Sm_{66.6}Ru_{16.7}Al_{16.7}$ с областью гомогенности.

Рис. 63. (а) Рентгенограмма образца $Sm_{66.7}Ru_{16.7}Al_{16.6}$, отоженного при 700 °С – синий цвет, фаза Sm_2RuAl_3 – зеленый цвет, фаза Sm_4RuAl – красный цвет. (б) Рентгеногрмма образца $Sm_{67}Ru_{17}Al_{16}$, отоженного при 550 °С – синий цвет, фазы Sm_4RuAl , Sm_2RuAl_3 и Sm_5Ru_2 отмечены зеленым, желтым и красным цветом, соттветственно. (в, г) ЛРСА образцов $Sm_{67}Ru_{17}Al_{16}$, отоженных при 700 и 550 °С, соответственно.

4.3.3 Тройное соединение $Sm_3Ru_4Al_{12}$

О существовании тройного алюминида Sm₃Ru₄Al₁₂ со структурой типа Gd₃Ru₄Al₁₂ сообщалось в статье Ж. Неирманна и др. [61], где были приведены только параметры элементарной ячейки по данным РДП. Нами определена и изучена структура этого интерметаллида методом РДМ. Монокристалл для рентгеноструктурного эксперимента был найден после механической фрагментации сплава состава Sm₂₀Ru₁₅Al₆₅. Структура соединения Sm₃Ru₄Al₁₂ расшифрована методом Патерсона в пространственной группе $P6_3/mmc$ и уточнена методом порошковой диффракции (**рис. 64**). Параметры элементарной ячейки составляют a = 8.834(3) Å, c = 9.566(3) Å. Полученные результаты решения структуры, а также координаты атомов и тепловые параметры представлены в *таблице 43* и *44*. Комплексом методов физико-химического анализа установлено, что соединение Sm₃Ru₄Al₁₂ имеет фиксированный состав (**рис. 65**).

Соединение	$Sm_3Ru_4Al_{12}$
Структурный тип	$Gd_3Ru_4Al_{12}$
Пространственная группа	<i>P</i> 6 ₃ / <i>mmc</i> (194)
	a = 8.834(3)
Парамстры элементарной яченки, А	c = 9.566(3)
Объем, Å ³	646.5(5)
Число формульных единиц	2
Рассчитанная плотность, г/см ³	6.06(1)
Угол сканирования θ, °	2.662 - 34.938
Коэффициент абсорбции, мм ⁻¹	18.7
Интервал <i>h</i> , <i>k</i> , <i>l</i>	$0 \le h \le 14, -5 \le k \le 12, 0 \le l \le 15$
Количество независимых рефлексов	576
Количество рефлексов с $F_o > 4\sigma F_o$	499
Число уточняемых параметров	26
Качество уточнения (goodness of fit)	1.134
R	0.027
R _w	0.036

Таблица 43. Условия исследования кристаллической структуры соединения Sm₃Ru₄Al₁₂ и её кристаллографические характеристики.

Таблица 44. Координаты и тепловые параметры атомов в структуре Sm₃Ru₄Al₁₂.

Атом	Позиция	x/a	y/b	z/c	$U_{eq}, Å^2$
Sm	6 <i>h</i>	0.19162(3)	0.38324(6)	1/4	0.00605(12)
Ru1	6 <i>g</i>	1/2	0	0	0.00608(15)
Ru2	2a	0	0	0	0.00398(20)
Al1	12k	0.16225(13)	0.32450(25)	0.57616(20)	0.0066(3)
Al2	2b	0	0	1/4	0.0075(8)
Al3	6 <i>h</i>	0.56154(19)	0.1231(4)	1/4	0.0059(5)
Al4	4f	1/3	2/3	0.0132(4)	0.0089(3)

 $\label{eq:constraint} \begin{array}{l} {\mbox{Темносерая φa3a-Sm_2Ru_3Al_{15}$} \\ {\mbox{Серая φa3a-Sm_3Ru_4Al_{12}$} \\ {\mbox{Рис. 65. Микроструктура образца} \\ {\mbox{состава $Sm_{20}Ru_{15}Al_{65}$}. \end{array}$

Рис. 64. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная кривая (нижняя синяя линия) для сплава Sm₂₀Ru₁₅Al₆₅. Полосками зеленого цвета обозначены позиции Брегга: 1 – фаза Sm₃Ru₄Al₁₂, 2 – SmAl₂.

Структуру алюминида можно представить как слоистую, где слой из атомов самария и алюминия чередуется со слоем из атомов Ru и Al. В этом слое рутений находится в центре неплоского шестиугольника из атомов алюминия (**рис. 666**), в свою очередь атомы самария и алюминия образуют плоские треугольники (**рис. 66в**).

Рис. 66. (а) структура соединения Sm₃Ru₄Al₁₂, (б) слой атомов рутения и алюминия, (в) слой атомов самария и алюминия.

4.3.4 Тройное соединение Sm₂Ru₃Al₁₅

При изучении системы Sm-Ru-Al в области с большим содержанием алюминия подтверждено образование соединения, близкого по составу к Sm₁₀Ru₁₇Al₇₃ (рис. 67а). Основные рефлексы на рентгенограмме сплава проиндицировали в гексагональной сингонии с параметрами ячейки a = 13.0405(24) Å и c = 9.0427(15)Å. Поиск по базе известных соединений ICDD [112] с учетом данных ЛРСА привел к Ce₂Ru₃Al₁₅-типу как наиболее подходящему. Рассчитанная теоретическая рентгенограмма хорошо согласовывалась с рефлексами, присутствующими на ренгенограмме порошка, что подтвердило наше предположение. Для более точного определения кристаллохимических данных соединения Sm₂Ru₃Al₁₅ неотоженный образец Sm₁₀Ru₁₀Al₈₀ уточнили методом Ритвельда (рис. 676). Основной фазой данного образца является соединение Sm₂Ru₃Al₁₅, количественное содержание которого равно 63.7 вес. В качестве примесей наблюдали фазы Al и Sm₃Al₁₁. Результаты уточнения представлены в *таблице 45*, а координаты атомов – в таблице 46.

Рис. 67. (а) ЛРСА неотоженного образца $Sm_{10}Ru_{10}Al_{80}$, (б) Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная диаграмма (нижняя синяя линия) для сплава $Sm_{10}Ru_{10}Al_{80}$. Полосками зеленого цвета обозначены позиции Брегга: 1 – фаза $Sm_2Ru_3Al_{15}$, 2 – Al и 3 – Sm_3Al_{11} .

Таблица 45.	Основные	кристалле	ографические	г данные и	параметры	уточнения	структуры
			Sm_2Ri	u ₃ Al ₁₅ .			

Сингония	Гексагональная		
Пространственная группа	<i>P</i> 6 ₃ / <i>mcm</i> (№193)		
<i>a</i> , Å	13.0393(2)		
<i>c</i> , Å	9.0432(2)		
Объём ячейки, Å ³	1331.57(3)		
Интервал 2 <i>0</i> , °	10.000-89.995		
Шаг сканирования	0.005		
Число уточняемых параметров	28		
Число отражений	234		
R _{exp}	0.029		
R_p, R_{wp}	0.029, 0.038		
R _F	0.355		
R _B	0.257		
χ ²	1.77		

Таблица 46. Координаты и тепловые параметры атомов в структуре Sm₂Ru₃Al₁₅.

Атом	Позиция	x/a	y/b	z/c
Sm1	6 <i>g</i>	0.3948(3)	0	1/4
Sm2	2a	0	0	1/4
Ru1	12 <i>i</i>	0.20405(18)	0.40810(18)	0
Al1	12 <i>k</i>	0.2031(12)	0	0.0224(10)
Al2	12 <i>i</i>	0.5905(11)	0.1810(11)	0
Al3	12j	0.1548(1)	0.2808(9)	1/4
Al4	12j	0.2760(9)	0.5228(11)	1/4
Al5	12k	0.6121(12)	0	0.0998(9)

* Тепловые параметры атомов зафиксированы, B = 0.8.

Структура соединения $Sm_2Ru_3Al_{15}$ представлена на **рисунке 68a**. Интерметаллид можно описать 18-ти вершинными многогранниками вокруг атомов самария. Они представляют собой колонны, причем многогранники вокруг атомов Sm2 образуют колонну вдоль оси *c*, а полиэдры вокруг атомов Sm1 заполняют всё оставшееся пространство структуры (**рис. 686**). С другой стороны, структуру соединения $Sm_2Ru_3Al_{15}$ можно представить как многовершинники вокруг атомов рутения, занимающих единственную позицию в ячейке (**рис. 68в**).

Рис. 68. Проекция кристаллической структуры $Sm_2Ru_3Al_{15}$.

4.3.5 Новый тройной интерметаллид Sm₂RuAl₃

В процессе изучения фазовых равновесий в системе Sm-Ru-Al обнаружен новый интерметаллид Sm₂Ru_{1+x}Al_{3-x} с продолжительной областью гомогенности от 53 до 34 ат.% Al, что соответствует $-0.2 \le x \le 1.0$ (**рис. 69**). Изменения параметров элементарной ячейки $Sm_2Ru_{1+x}Al_{3-x}$ в области гомогенности следуют правилу Вегарда, что проиллюстрировано на **рисунке 70** и в *таблице 47*. Величины *а* и *с* уменьшаются с уменьшением количесва алюминия, что согласуется с данными металлических радиусов элементов (r(Ru) = 1.34 Å, r(Al) = 1.43 Å). Однако, при содержании алюминия около 42 ат.% наблюдается резкое увеличение параметров, что может быть связано с заменой атомов рутения в позиции 2*a* на атомы алюминия.

Рис. 69. Микроструктуры образцов, содержаших фазу $Sm_2Ru_{1+x}Al_{3-x}$: (a) состава $Sm_{41}Ru_{22}Al_{37}$; (б) состава $Sm_{33}Ru_{24}Al_{43}$.

Рис. 70. Зависимость параметров элементарной ячейки от атомного содержания алюминия.

T C 17	11			~	~)		C D	A 1
Iannua 4/	Изменение па	паметпов	элемента	пноп	яченкн	ОЛЯ	соединения	Nm ₂ Ki	111
1 000000000 17.	115/110/110/11/10/11/01	pamempoo	0.10.110.111104			0.00	000000000000000000000000000000000000000	Shizin	$n_1 + x_1 + v_3 - x_1$

<i>a</i> , Å	<i>c</i> , Å	Al, ат.%	x
5.586	8.827	53	-0.2
5.571	8.813	51	-0.1
5.569	8.800	48	0.1
5.555	8.790	45	0.3
5.550	8.780	42	0.4
5.538	8.745	41	0.5
5.524	8.694	39	0.6
5.505	8.670	38	0.7
5.489	8.667	34	1

Монокристаллы для установления структуры получить не удалось, поэтому её установили по порошку с последующим уточнением методом Ритвельда на однофазном образце состава Sm₃₃Ru₂₄Al₄₃. В качестве исходной модели использовали структуру аналога по составу Ce₂RuAl₃ [52] (Mg₂Cu₃Si-тип). Величины критериев R_F, R_B и χ^2 свидетельствуют о правильно подобранной модели и верных параметрах элементарной ячейки для нового ИМС. Результат уточнения структуры Sm₂Ru_{1+x}Al_{3-x} при x = 0.3 представлен на **рисунке 71** и в *таблице 48*. Интерметаллид Sm₂RuAl₃ кристаллизуется в гексагональной сингонии с пространственной группой *P*6₃/*mmc* с параметрами: a = 5.5554(1) Å, c = 8.7904(1) Å.

Таблица 48. Основные кристаллографические данные и параметры уточнения структуры $Sm_2Ru_{1+x}Al_{3-x}$ при x = 0.31

Сингония	Гексагональная
Пространственная группа	<i>P</i> 6 ₃ / <i>mmc</i> (№194)
<i>a</i> , Å	5.5554(1)
<i>c</i> , Å	8.7904(1)
Объём ячейки, $Å^3$	234.95(1)
Интервал 2 <i>0</i> , °	10.00-89.98
Шаг сканирования	0.01
Число уточняемых параметров	15
Число отражений	54
R _{exp}	0.025

R _p , R _{wp}	0.023, 0.029
R _F	0.149
R _B	0.12
χ ²	1.35

Рис. 71. Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная диаграмма (нижняя синяя линия) для образца Sm₃₃Ru₂₄Al₄₃. Полосками зеленого цвета обозначены позиции Брегга для фазы Sm₂RuAl₃.

Проекция кристаллической структуры Sm₂RuAl₃ на плоскость *ab* представлена на **рисунке 72а**, а проекция на плоскость *bc* – на **рисунке 72б**. Координаты атомов приведены в *таблице 49*.

Рис. 72. Проекция элементарной ячейки Sm₂RuAl₃: (а) на плоскость *ab*, (б) на плоскость *bc*. Позиция 6*h* отмечена зелеными шариками.

Атом	Позиция	x/a	y/b	z/c	Заселенность	B iso, (Å ²)
Sm	4f	1/3	2/3	0.05521(14)	1	0.345(3)
Ru	2a	0	0	0	1	1.092(4)
Ru	6 <i>h</i>	0.1623(8)	0.8377(8)	3/4	0.1	1.014(6)
Al	6 <i>h</i>	0.1623(8)	0.8377(8)	3/4	0.9	1.014(6)

Таблица 49. Координаты атомов в структуре $Sm_2Ru_{1+x}Al_{3-x}$ при x = 0.31.

4.3.6 Тройной интерметаллид SmRu₂Al₁₀

В литературе присутствуют сведения существовании 0 $SmRu_2Al_{10}$, кристаллизующегося в пространственной группе Стст. Однако распределение атомов в элементарной ячейке структуры данного алюминида представлено не было [42]. При исследовании системы нами получен практически однофазный сплав, содержащий фазу состава Sm₇Ru₁₆Al₇₇. РФА этого образца показал, что образец содержит в качестве основной фазы соединение SmRu₂Al₁₀, что соответствует составу, определенному методом ЛРСА (рис. 73а). Монокристалл для установления структуры не был найден, поэтому структуру уточнили методом Ритвельда по данным порошковой рентгеновской дифракции. Результат уточнения представлен в *таблице 50* и на рисунке 736. В качестве исходной модели использовали изоформульный аналог этого соединения с церием -CeRu₂Al₁₀. Установлено, что параметры элементарной ячейки a, b и c равны 9.0934(3) Å. 10.2287(3) Å и 9.1418(3) Å, соответственно. Координаты атомов полностью упорядоченной структуры SmRu₂Al₁₀ представлены в *таблице* 51, а кристаллическая структура соединения в проекции на плоскость bc – на рисунке 74.

Рис. 73. (а) ЛРСА образца, содержащего фазу Sm₇Ru₁₆Al₇₇. (б) Экспериментальная (красная линия) и теоретическая (черная линия) рентгенограммы и их разностная диаграмма (нижняя синяя линия) для образца Sm₅Ru₁₅Al₈₀. Полосками зеленого цвета обозначены позиции Брегга для фазы SmRu₂Al₁₀.

Таблииа	50.	Условия	рентгеновской	съемки и	струки	пурные	харакп	геристики	SmRu ₂ Al ₁₀
1 0000000,00		0.00000000	p en me en re e cente m	•••••	e p j m	<i>Sprore</i>	n np m n	op noninini	2

Сингония	Орторомбическая
Пространственная группа	<i>Cmcm</i> (№ 63)
Структурный тип	YbFe ₂ Al ₁₀
<i>a</i> , Å	9.0934(3)
b, Å	10.2287(3)
<i>c</i> , Å	9.1418(3)
Объём ячейки. Å ³ , Z	850.31(5), 4

Интервал 2 θ , °	10 - 90
Шаг сканирования	0.01
Число уточняемых параметров	24
Число отражений	216
R _{exp}	0.025
R_p, R_{wp}	0.035, 0.047
R _F	0.20
R _B	0.26
χ^2	3.63

Рис. 74. Кристаллическая структура $SmRu_2Al_{10}$.

		1 / / 1		
Атом	Позиция	x/a	у/b	z/c
Sm	4 <i>c</i>	0	0.1260(4)	1/4
Ru	8 <i>d</i>	1/4	1/4	0
Al1	8 <i>g</i>	0.2282(14)	0.3611(17)	1/4
Al2	8 <i>g</i>	0.3459(13)	0.1252 (17)	1/4
Al3	8f	0	0.1571(14)	0.6024(14)
Al4	8 <i>f</i>	0	0.3825(16)	0.0529(13)
Al5	8e	0.2355(13)	0	0

Таблица 51. Координаты атомов в структуре SmRu₂Al₁₀.

5 Обсуждение результатов

5.1 Фазовые равновесия в системах {La, Ce, Sm}-Ru-Al

Выбранные для изучения тройные системы содержат РЗ элементы La, Ce, Sm, которые являются аналогами, так как принадлежат первой половине ряда лантаноидов. Два других элемента – Ru и Al – постоянны для всех изучаемых систем. Согласно литературным данным при взаимодействии лантаноидов La, Ce и Sm с рутением или алюминием образуются ряды устойчивых бинарных соединений с одинаковыми количественными составами во всех рассматриваемых двойных системах. Для систем {La, Ce, Sm}-Ru реализуются составы РЗЭRu₂, РЗЭ₃Ru. Состав РЗЭ₇Ru₃ характерен только для лантана и церия, а P3Э₅Ru₂ для лантана и самария, а остальные двойные соединения являются индивидуальными для каждой системы. В ряду систем {La, Ce, Sm}-Al устойчивыми являются составы РЗЭАl₃, РЗЭАl₂, РЗЭАl. Составы РЗЭ₃Al₁₁ и РЗЭ₃Al при температуре 550 °С существуют только в системах La-Al и Ce-Al, а в системе Sm-Al для образования соединений с такими составами необходимы более высокие температуры отжига. Двойная диаграмма состояния системы Ru-Al входит в состав каждой из трех тройных систем. Благодаря реализации двойных соединений в системах РЗЭ-Ru и РЗЭ-A1 при постоянной двойной системе Ru-Al можно было ожидать, что в тройных системах {La, Ce, Sm}-Ru-Al будет наблюдаться схожий характер равновесий.

В настоящем исследовании построены изотермические сечения диаграмм состояния систем {La, Ce, Sm}-Ru-Al (**рис. 75**) и установлены границы твердых растворов на основе известных двойных интерметаллидов. В системах с лантаном, церием и самарием образуются протяженные области гомогенности для соединений состава P3ЭRu₂: до 9 ат.%, 14 ат.% и 12 ат.% Al, соответственно. Соединения P3ЭAl₂ образуют аналогичные твердые растворы в системах Ce-Ru-Al и Sm-Ru-Al (до 12 ат.% Ru).

100

Рис. 75. Изотермические сечения фазовых диаграмм {La, Ce, Sm}-Ru-Al при 550 °C.

В процессе исследования систем {La, Ce, Sm}-Ru-Al определены структуры тройных соединений (*таблица 52*). Как видно из таблицы, составы P3Э₄RuAl, P3Э₃Ru₄Al₁₂, P3Э₂RuAl₃, P3Э₂Ru₃Al₁₅, P3ЭRu₂Al₁₀ реализуются во всех трех системах, значит, структурные типы Gd₄RhIn, Gd₃Ru₄Al₁₂, Mg₂Cu₃Si, Ce₂Ru₃Al₁₅, YbFe₂Al₁₀ являются структурно устойчивыми для систем типа P3Э-Ru-Al. В системе с лантаном при содержании P3Э около 30-40 ат.% образуется два уникальных тройных соединения, которых не обнаружено в системах с церием и самарием. Система Ce-Ru-Al отличается от двух других тем, что при высокой концентрации P3Э (> 33 ат.%) в ней образуется большое количество тройных ИМС – 8, причем пять из них не имеют аналогов в двух других системах. Для системы Sm-Ru-Al характерно то, что все тройные соединения повторяются изоструктурными фазами в системах с лантаном и церием.

La-Ru-Al	Ce-Ru-Al	Sm-Ru-Al	
-	$Ce_{23}Ru_{7+x}Al_{4-x} (0 \le x \le 2.9)$	-	
La ₄ RuAl	Ce ₄ RuAl	Sm ₄ RuAl	
$La_5Ru_3Al_2$	$Ce_5Ru_3Al_2$	-	
$La_{11}Ru_2Al_6$	$Ce_{11}Ru_2Al_6$	-	
-	Ce ₂ RuAl	-	
-	Ce_2Ru_2Al	-	
-	$Ce_4Ru_3Al_2$	-	
La ₂ RuAl ₃	Ce ₂ RuAl ₃	$Sm_2Ru_{1+x}Al_{3-x}$ (-0.2 $\le x \le 1.0$)	
-	CeRuAl	-	
La ₃ RuAl ₃	-	-	
La_2RuAl_2	-	_	
$La_3Ru_4Al_{12}$	$Ce_3Ru_4Al_{12}$	$Sm_3Ru_4Al_{12}$	
$La_2Ru_3Al_{15}$	Ce ₂ Ru ₃ Al ₁₅	Sm ₂ Ru ₃ Al ₁₅	
LaRu ₂ Al ₈	-	-	
_	$CeRu_{3-x}Al_{10+x}$ (x= 0.17)	SmRu ₃ Al ₁₀	
$LaRu_2Al_{10}$	CeRu ₂ Al ₁₀	SmRu ₂ Al ₁₀	

Таблица 52. Тройные соединения, образующиеся в системах {La, Ce, Sm}-Ru-Al*.

*Зеленым цветом выделены соединения одинакового состава, но разных структурных типов. Голубым цветом отмечены соединения, которые не обнаружены при 550 °C.

В системах {La, Ce, Sm}-Ru-Al образуются изоструктурные соединения, состава RE₃Ru₄Al₁₂, RERu₂Al₁₀, RE₄RuAl, кристаллизующиеся в одинаковых структурных типах. При этом при переходе La – Ce – Sm параметры элементарных ячеек изменяются в соответствии с лантаноидным сжатием. Интерметаллиды на основе лантана имеют самые большие параметры ячейки. Например, в кубической структуре P3Э₄RuAl параметр *a* изменяется 14.0944 – 13.7710 – 13.6090 Å, а в структуре P3Э₃Ru₄Al₁₂ обнаружены следующие изменения: a = 8.9254 - 8.8652 - 8.8340 Å, c = 9.7015 - 9.5700 - 9.5660 Å. Такая закономерность объясняется уменьшением металлических радиусов для редкоземельных элементов ($r_M(La) = 1.88$ Å, $r_M(Ce) = 1.83$ Å, $r_M(Sm) = 1.802$ Å).

Обнаруженный новый тройной интерметаллид фиксированного состава La₂RuAl₃ является структурным аналогом соединения Ce₂RuAl₃. Однако, последнее обладает большой областью гомогенности вплоть до состава CeRuAl. В лантановой системе соединение RERuAl не образуется, а интерметаллид La₂RuAl₃ не имеет областей твердых растворов. В системе Sm-Ru-Al также наблюдается образование соединения состава Sm₂Ru_{1+x}Al_{3-x} с протяженной областью гомогенности проходит через состав Sm₃₃Ru₃₃Al₃₄, что соответствовало бы соединению SmRuAl, однако оно в этой системе при 550 °C не обнаружено.

102

В системе La-Ru-Al образуются 3 новых соединения, не имеющие аналогов в цериевой системе. Причем для интерметаллидов La₂RuAl₂ и La₃RuAl₃ среди известных двойных и тройных соединений структурных аналогов найти не удалось, но схожие фрагменты присутствуют в структуре галлида состава La₃Ru₂Ga₂ [113]. Алюминид LaRu₂Al₈ имеет изоструктурный аналог в системе La-Ru-Ga [109].

В системе Ce-Ru-Al в области с большим содержанием церия образуются соединения Ce₂RuAl, Ce₂Ru₂Al, Ce₂₃Ru_{7+x}Al_{4-x}, Ce₄Ru₃Al₂, которые не имеют аналогов в системах с лантаном и самарием.

В системе с самарием при 550 °С обнаружены всего 6 тройных соединений. Все эти алюминиды кристаллизуются в известных структурных типах и имеют аналоги в системе с церием и, частично, с лантаном.

5.1.1 Область с большим содержанием Ru (> 55 ат.%) в системах {La, Ce, Sm}-Ru-Al

В области с большим содержанием рутения тройные соединения не обнаружены (**рис. 76**). Этот факт коррелирует со строением диаграмм соответствующих двойных систем, в которых не образуется соединений при высоких концентрациях тугоплавкого рутения. Все тройные системы {La, Ce, Sm}-Ru-Al в данной области имеют одинаковые тройные равновесия: Ru-RuAl-P3ЭRu₂. Все соединения состава P3ЭRu₂ образуют твердый раствор, который растворяет 8, 14 и 12 ат.% алюминия. Ещё одна общая особенность систем P3Э-Ru-Al – это нахождение твердого раствора RuAl в равновесии с тройным интерметаллидом состава P3Э₂RuAl₃.

Рис. 76. Фазовые равновесия систем La-Ru-Al (а), Ce-Ru-Al (б) и Sm-Ru-Al (в) в области с содержанием рутения > 55 ат.%.

5.1.2 Область с большим содержанием Al (> 55 ат.%) в системах {La, Ce, Sm}-Ru-Al

В области с большим содержанием алюминия во всех исследуемых системах образуется несколько тройных алюминидов, поэтому фазовые равновесия носят более сложный характер, чем в области с большим содержанием рутения (**рис. 77**). Так, соединение $P3\Im Ru_2Al_{10}$, присутствующее во всех тройных системах находится в равновесии с алюминием, $RuAl_6$ и Ru_4Al_{13} . В силу отсутствия соединения Sm_3Al_{11} при температуре 550 °C, равновесие интерметаллида $SmRu_2Al_{10}$ достигается с двойным $SmAl_3$, в то время как в системах с лантаном и церием такого равновесия не образуется. Алюминид $P3\Im_3Ru_4Al_{12}$, образующийся во всех трех системах, имеет устойчивые равновесия с двойными $RuAl_2$ и $P3\Im Al_2$, а также с тройным $P3\Im_2RuAl_3$.

Рис. 77. Фазовые равновесия систем La-Ru-Al (a), Ce-Ru-Al (б) и Sm-Ru-Al (в) в области с содержанием алюминия > 55 ат.%. Цифрами обозначены тройные соединения: (а) 6 – La₃Ru₄Al₁₂, 7 – LaRu₂Al₈, 8 – LaRu₂Al₁₀; (б) 9 – Ce₃Ru₄Al₁₂, 10 – Ce₂Ru₃Al₁₅, 11 – CeRu₂Al₁₀; (в) 3 – Sm₃Ru₄Al₁₂, 4 – Sm₂Ru₃Al₁₅, 5 – SmRu₂Al₁₀, 6 – SmRu₃Al₁₀.

5.1.3 Область с содержанием РЗЭ около 30-40 ат.% в системах {La, Ce, Sm}-Ru-Al

Во всех трех исследуемых системах в областях, близкой к эквиатомному составу, наблюдается образование соединения P3Э₂RuAl₃ (**рис. 78**). В системе с лантаном этот интерметаллид имеет фиксированный состав. Помимо ИМС La₂RuAl₃ в этой области образуются соединения La₃RuAl₃ и La₂RuAl₂, также фиксированых составов, но не наблюдается образования эквиатомного соединения. В системе на основе церия, в отличие от лантана, наблюдается область гомогенности соединения Ce₂Ru_{1+x}Al_{3-x} при -0.23 \leq x \leq 0.72. В этой системе существует эквиатомный интерметаллид CeRuAl. В системе Sm-Ru-Al также наблюдается образование соединения состава Sm₂Ru_{1+x}Al_{3-x} с протяженной областью гомогенности, соответствующей значениям -0.2 \leq x \leq 1.0. Такая область гомогенности проходит через состав Sm₃₃Ru₃₃Al₃₄, что соответствовало бы соединению SmRuAl, однако оно в этой системе при 550 °C не обнаружено.

Рис. 78. Фазовые равновесия систем La-Ru-Al (a), Ce-Ru-Al (б) и Sm-Ru-Al (в) в области с содержанием РЗЭ около 30-40 ат.%. Цифрами обозначены тройные соединения: (а) 3 – La₂RuAl₂, 4 – La₃RuAl₃, 5 – La₂RuAl₃; (б) 7 – CeRuAl, 8 – Ce₂Ru_{1+x}Al_{3-x} (-0.23 $\leq x \leq 0.72$); (в) 2 – Sm₂Ru_{1+x}Al_{3-x} (-0.18 $\leq x \leq 0.96$).

Диаграммы состояния тройных систем {La, Ce, Sm}-Ru-Al в области с большим содержанием РЗЭ не исследовались, так как образцы при 550 °C плавились и/или легко окислялись.

5.2 Анализ кристаллических структур соединений с большим содержанием алюминия

Во всех тройных системах {La, Ce, Sm}-Ru-Al в области с большим содержанием алюминия наблюдается существование трех изоструктурных соединений с одинаковыми составами: $P3Э_3Ru_4Al_{12}$ (Gd₃Ru₄Al₁₂-тип), $P3ЭRu_2Al_{10}$ (YbFe₂Al₁₀-тип), $P3Э_2Ru_3Al_{15}$ (Ce₂Ru₃Al₁₅-тип). Эти кристаллические структуры на примере соединений с самарием представлены на **рисунке 79**. Все соединения характеризуются каркасом из атомов алюминия, а атомы рутения и P3Э находятся в пустотах этого каркаса. Кроме того, эти соединения можно представить последовательно чередующимися слоями из атомов Sm/Al (1 тип) и Ru/Al (2 тип) (**рис. 80**).

Рис. 79. Кристаллические структуры соединений $Sm_3Ru_4Al_{12}$, $SmRu_2Al_{10}$ и $Sm_2Ru_3Al_{15}$.

Рис. 80. Слои 1 и 2 типа в соединениях Sm₃Ru₄Al₁₂, SmRu₂Al₁₀ и Sm₂Ru₃Al₁₅.

В соединении $Sm_3Ru_4Al_{12}$ слой 1 типа состоит из треугольников алюминия и треугольников самария, расположенных в разных частях элементарной ячейки, и атомов алюминия, находящихся в узлах ячейки. В соединении $SmRu_2Al_{10}$ в слое первого типа атомы алюминия образуют последовательные сетки из незамкнутых шестиугольников. На границах сеток в центрах незамкнутых шестиугольников расположены атомы самария, то есть атомы самария располагаются в каждом втором шестиугольнике. Слой 1 в структуре $Sm_2Ru_3Al_{15}$ можно описать трилистниками, образованными атомами алюминия. Атомы самария расположены в центре каждого листа и в самом его центре. Трилистники, касаясь друг друга, образуют треугольники из атомов алюминия. Таким образом, при последовательном рассмотрении структур $P3Э_3Ru_4Al_{12}$, $P3ЭRu_2Al_{10}$, $P3Э_2Ru_3Al_{15}$ можно отметить схожие элементы: трилистники в структуре $P3Э_3Ru_4Al_{12}$, и шестиугольников из атомов алюминия, присутствующих в $P3Э_3Ru_4Al_{12}$, и шестиугольников из атомов алюминия, присутствующих в $P3Э_3Ru_4Al_{12}$, и шестиугольников из атомов алюминия, присутствующих в $P3Э_3Ru_4Al_{12}$, и шестиугольников из атомов алюминия, присутствующих в $P3Э_3Ru_4Al_{12}$, и шестиугольников из атомов алюминия, присутствующих в $P3Э_3Ru_4Al_{12}$, и шестиугольников из атомов алюминия, присутствующих в $P3Э_3Ru_4Al_{12}$, и шестиугольников из атомов алюминия, присутствующих в $P3Э_3Ru_4Al_{12}$, и шестиугольников из атомов алюминия, присутствующих в $P3Э_3Ru_4Al_{12}$.

Слои второго типа во всех структурах $P3\Im_3Ru_4Al_{12}$, $P3\Im_Ru_2Al_{10}$, $P3\Im_2Ru_3Al_{15}$ представлены шестиугольниками из атомов алюминия, в центре которых расположены атомы рутения. В структуре $Sm_3Ru_4Al_{12}$ такие шестиугольники имеют общие вершины и стороны. В соединении $SmRu_2Al_{10}$ каждый шестиугольник имеет с соседями 2 общие стороны и 2 общие вершины, которые соединяют ряды шестиугольников. Между такими рядами наблюдается четырехугольная полость из атомов алюминия. Еще больше свободного пространства между шестиугольниками наблюдается в структуре $Sm_2Ru_3Al_{15}$, где присутствуют и треугольные, и четырехугольные, и даже шестиугольные пустоты.

106

К этой группе интерметаллидов можно добавить и соединения состава $P3\Im Ru_3Al_{10}$ (**рис. 81**), которые образуются в ситемах с церием и самарием. Их структуру также можно представить чередующимися слоям двух типов. В этих соединениях расположение атомов P3Э и алюминия очень схоже со строением аналогичного слоя в P3 $\Im Ru_2Al_{10}$. Здесь P3 \Im также находится в центрах шестиугольников из атомов A1, при этом все шестиугольники оказываются центрированы, чего не наблюдалось в соединении SmRu₂Al₁₀. К тому же в структуре P3 $\Im Ru_3Al_{10}$ в слое 1 типа имеются пустые четырехугольники, которых не наблюдалось в серии P3 $\Im Ru_4Al_{12}$, P3 $\Im Ru_2Al_{10}$, P3 $\Im 2Ru_3Al_{15}$.

Слои второго типа также присутствуют в соединениях РЗЭRu₃Al₁₀. Основная сетка также состоит из атомов рутения, окруженных шестью атомами алюминия. На груницах таких шестиугольников наблюдаются пустоты, образованные четырьмя атомами Al. Такая же ситуация в Ru-Al слое наблюдалась в соединениях РЗЭRu₂Al₁₀.

В системе La-Ru-Al в области с большим содержанием Al соединение состава РЗЭRu₃Al₁₀ при 550 °C не обазуется, однако

существует интерметаллид LaRu₂Al₈. В его структуре тоже можно выделить слои двух типов (рис. 82), однако они имеют состав, отличный от составов соответствующих слоев в соединениях $P3\Im_3Ru_4Al_{12}$, $P3\Im Ru_2Al_{10}$, $P3\Im_2Ru_3Al_{15}$, $P3\Im Ru_3Al_{10}$. Слой первого типа состоит из атомов всех сортов. Атомы Ru и Al образуют сетку из 10-тиугольников, центрированных атомами лантана, и четырехугольников. В другом типе слоев присутствуют только атомы алюминия, которые также соединены в сложную фигуру из десяти атомов. Тем не менее в структуре LaRu₂Al₈ присутствуют фрагменты (четырехугольники и треугольники), которые наблюдались В серии $P333Ru_4Al_{12}$, $P3\Im Ru_2Al_{10}$, $P3\Im_2Ru_3Al_{15}$, $P3\Im Ru_3Al_{10}$.

Таким образом, рассмотрев соединения составов $P3\Im_3Ru_4Al_{12}$, $P3\Im Ru_2Al_{10}$, $P3\Im_2Ru_3Al_{15}$, $P3\Im Ru_3Al_{10}$ и $P3\Im Ru_2Al_8$, можно отметить, что все они имеют общие фрагменты

расположения атомов в структуре, которые наиболее заметны у соединений, близких по составу (P3ЭRu₂Al₁₀ и P3ЭRu₃Al₁₀), и изменяются с уменьшением содержания атомов алюминия.

5.3 Взаимосвязь между структурами La₃RuAl₃, La₂RuAl₂, La₃Ru₂Ga₂ и Yb₃Pd₂Sn₂

B системе La-Ru-Al нами обнаружены два новых интерметаллида, кристаллизующиеся в собственных структурных типах – La₃RuAl₃ и La₂RuAl₂. При анализе их кристаллических структур установлено, что La₃RuAl₃ и La₂RuAl₂ состоят из одинаковых фрагментов, но по-разному укомплектованных. Атомы алюминия и рутения соединены в неплоскую сетку, которая чередуется с гофрированным гексагональным слоем из атомов лантана. Между этими фрагментами в структуре La₂RuAl₂ расположена плоская сетка из атомов алюминия. В структуре La₃RuAl₃ между неплоскими сетками из атомов рутения и алюминия располагаются дополнительный слой из атомов лантана и сетка из атомов алюминия, что отличает ее от структуры La₂RuAl₂. Такой же структурный фрагмент из неплоских сеток, образованных атомами d- и p-элементов, окруженных атомами РЗЭ, встречается в тройных интерметаллидах другого атомного состава, например, La₃Ru₂Ga₂ [113], La₃Ni₂Ga₂, Eu₃Pd₂Sn₂, Yb₃Pd₂Sn₂ [114] (рис. 83). Все эти соединения кристаллизуются в разных пространственных группах (таблица 53), однако расположение атомов в пределах слоя практически одинаково (рис. 84).

Рис. 83. Структуры соединений La₃RuAl₃, La₂RuAl₂, La₃Ru₂Ga₂ и Yb₃Pd₂Sn₂ с одинаковыми фрагментами.
Соелинение	Парамо	Пространственная								
Coedimente	a, Å	b, Å	<i>c</i> , Å	eta, °	группа					
La_2RuAl_2	20.7884(2)	7.69489(4)	5.88192(7)	90	Стст					
La ₃ RuAl ₃	15.017(5)	7.731(3)	5.8296(20)	90	Pbcm					
$La_3Ru_2Ga_2$	5.8170	13.980	12.224	97.96	$P2_{1}/m$					
Yb ₃ Pd ₂ Sn ₂	5.8262	16.8393	13.8735	90	Pbcm					

Таблица 53. Кристаллографические характеристики La₃RuAl₃, La₂RuAl₂, La₃Ru₂Ga₂ и Yb₃Pd₂Sn₂

Проекции общих фрагментов на плоскость *bc* можно представить неплоской ромбической сеткой из атомов алюминия и рутения (**рис. 84**). В структурах La₃RuAl₃ и La₂RuAl₂ такие сетки идентичны. В структуре с галием сетка представлена восьмиугольниками с несвязанными атомами лантана в центре. Соединив атомы рутения и галлия, как показано на **рисунке 84** пунктирной линией, получаем сетку, идентичную алюминидам.

Рис. 84. Расположение атомов в одинаковых структурных фрагментах соединений La₃RuAl₃, La₂RuAl₂, La₃Ru₂Ga₂.

5.4 Взаимосвязь между структурами Ce₂Ru₂Al и Ce₂RuAl

Соединения Ce₂Ru₂Al и Ce₂RuAl (**рис. 85**) не имеют аналогов в системах с лантаном или самарием. Их структуры являются производными от двойных La₂Ni₃ и LaF₃, соответственно. В первом соединении атомы церия занимают позиции лантана, а две позиции никеля – рутений и алюминий, и структура упорядочена. Для соединения Ce₂RuAl характерно другое распределение атомов по позициям, чем в прототипе: замена атомов фтора атомами алюминия и церия, в то время как атомы рутения находятся в позиции лантана. Кристаллиечские структуры этих соединений можно представить последовательно чередующимися слоями двух типов: первый состоит только из атомов церия, а другой из атомов рутения и алюминия (**рис. 85**)

Рис. 85. Кристаллические структуры соединений Ce₂RuAl и Ce₂Ru₂Al.

В структуре Ce₂RuAl слой первого типа чередуется со слоем второго типа, а в структуре Ce₂Ru₂Al слои входят друг в друга. В обеих этих структурах атомы рутения и алюминия соединяются последователно, однако, если в первом соединении они образуют неплоский графитовый слой, то во втором соединении атомы алюминия образуют ромбическую сетку, а рутениевые атомы центрируют каждую сторону ромба. Атомы церия образуют слои II типа. В обоих соединениях Ce атомы расположены на 2 уровнях (на **рисунке 85** синим цветом отмечены атомы, лежащие на одной высоте, темно-синим –

на другой). В Ce₂RuAl церий образует сетку шестиугольников, в другом соединении атомы Ce расположены змейкой, сдвинутой по осям *b* и *c*.

5.4 Взаимосвязь между структурами Ce₄RuAl и Ce₂₃Ru_{7+x}Al_{4-x}

Кристаллические структуры двух интерметаллидов из системы Ce-Ru-Al – Ce₄RuAl и Ce₂₃Ru_{7+x}Al_{4-x} – связаны друг с другом, так как они обе могут быть представляют чередующимися слоями двух типов (**рис. 86** и **рис. 87**). Слои первого типа представляют собой укладку тригональных [Ce₆]-призм, центрированных атомами Ru и соединенных друг с другом через общие вершины и ребра. Слои второго типа состоят из аналогичных Ru-центрированных тригональных призм [Ce₆], пустых тетраэдров алюминия [Al₄] и пустых [Ce₆] октаэдров. В этом слое структурные элементы не касаются друг друга. Поскольку слои первого типа образуют более простую структуру известного двойного соединения Ce₇Ru₃ [65] (Th₇Fe₃-структурный тип), то его можно добавить к рассмотрению этой группы.

Рис. 86. Кристаллическая структура соединения Ce₄RuAl.

Рис. 87. Кристаллическая структура соединения $Ce_{23}Ru_{7+x}Al_{4-x}$ при x = 0.

Структура соединения Ce_7Ru_3 представляет собой последовательность взаимосвязанных слоев типа 1 и 2, перпендикулярных оси *с* (**рис. 88**). Каждый слой состоит из тригональных призм, образованных атомами церия [Ce₆], соединенных общими вершинами и ребрами. Все атомы рутения находятся внутри призм. Слой 2 получается путем вращения слоя 1 на 180° вокруг оси *с*, поэтому составы слоев идентичны. Обозначим слои 1 и 2 буквой А. Тогда всю структуру можно описать как ... АА Как отмечено в работе [115], такая последовательность укладки слоев вдоль оси *с* приводит к образованию столбцов пустых тетраэдров и октаэдров.

Рис. 88. Кристаллическая структура Ce₇Ru₃.

В более сложной кристаллической структуре тройного соединения Ce₄RuAl [43] слои типа A чередуются со слоями второго типа. Как показано на **рисунке 86**, проекция элементарной ячейки Ce₄RuAl может быть полностью описана путем последовательного чередования слоев ... 123456 Подобно слоям структуры Ce₇Ru₃, 1, 3, 5 слои образованы тригональными призмами из атомов Ce1 и Ce2 с атомом Ru внутри, причем тригональные призмы соединены вместе общими вершинами и ребрами. Эти слои (1, 3, 5) также имеют одинаковый состав, но отличаются друг от друга сдвигом вдоль оси *c*. Поэтому назовем все эти слои типа A, как в структуре Ce₇Ru₃. Слои 2, 4, 6 содержат несвязанные тригональные призмы, состоящие из атомов Ce1 и Ce2 с атомом Ru внутри. Эти призмы направлены вдоль оси третьего порядка (**рис. 86**). В дополнение к тригональным призмам, образованными шестью атомами Ce3. Слои 2, 4, 6 имеют одинаковый состав и отличаются только сдвигом вдоль оси *c*. Слои 2, 4, 6 отнесем к слоями типа B. Таким образом, структуру соединения Ce₄RuAl можно рассматривать как последовательное чередование слоев А-типа со слоями B-типа (... ABABAB ...).

Новый интерметаллид Ce₂₃Ru_{7+x}Al_{4-x} продолжает эту серию. Проекция структуры интерметаллида Ce₂₃Ru_{7+x}Al_{4-x} показана на рисунке 87. Как и алюминид Ce₄RuAl, структура Ce₂₃Ru_{7+x}Al_{4-x} может быть представлена как чередование слоев ... 123456 ..., которые перпендикулярны направлению [001]. 1, 2, 4, 5 слои состоят из тригональных призм $[Ce_6]$ с атомом Ru в центре, как это наблюдалось в структурах соединений Ce₇Ru₃ и Ce₄RuAl. В парах (1-4) и (2-5) слои преобразуются друг в друга посредством действия винтовой оси второго порядка. Следовательно, слои в парах идентичны, а слои 1 и 2 аналогичны, так как они имеют один и тот же состав и структурный мотив. Все эти 1,2,4 и 5 слои отличаются пространственной ориентацией тригональных призм и соответствуют А-типу, наблюдаемому в Ce_7Ru_3 и Ce_4RuAl . В структуре $Ce_{23}Ru_{7+x}Al_{4-x}$ при соединении друг с другом слои типа А образуют тетраэдрические и октаэдрические пустоты, которые ранее наблюдались в структуре Ce₇Ru₃. Слои второго типа (3 и 6) состоят из несвязанных между собой тригональных призм, перпендикулярных плоскости *ab*, пустых тетраэдров [Al₄] и полых [Ce₆] октаэдров, подобно 2, 4, 6 слоям структуры Ce₄RuAl (**рис. 86**). В структуре Ce₂₃Ru_{7+x}Al_{4-x} слой 3 переходит в слой 6 под действием винтовой оси второго порядка, и эти слои имеют идентичный состав, поэтому также относятся к В-типу. Таким образом, внутри элементарной ячейки структура Ce₂₃Ru_{7+x}Al_{4-x} представляет собой чередование двух типов слоев ... ААВААВ

В литературе [116] описано существование тригонального интерметаллида La₁₅Rh₅Cd₂, кристаллическая структура которого состоит из аналогичных слоев, поэтому

его можно отнести к описанной выше структурной группе. Проекция его кристаллической структуры на плоскость *bc* с разделением элементарной ячейки на 12 слоев показана на **рисунке 89** (Пр. гр. *R3m*, параметры ячейки: *a* = 10.1640 Å, *c* = 44.1870 Å). По аналогии со слоями A структур Ce₄RuAl и Ce₂₃Ru_{7+x}Al_{4-x} слои 2-4, 6-8, 10-12 состоят из [La₆] тригональных призм, центрированных атомами родия. В тройках (2-6-10), (3-7-11), (4-8-12) слои преобразуются друг в друга посредством действия R-трансляции. Поэтому слои в тройках одинаковы, причём слои 2, 3, 4 аналогичны, так как имеют одинаковый состав и структурный мотив. Все эти слои можно отнести к слоям A-типа. По аналогии со слоями A структур Ce₄RuAl и Ce₂₃Ru_{7+x}Al_{4-x} в структуре La₁₅Rh₅Cd₂ слои 1, 5, 9 состоят из несвязанных тригональных призм [La₆Rh], пустых тетраэдров [Cd₄] и полых [La₆] октаэдров. В этой тройке слои также идентичны из-за действия R-трансляции. Значит, их можно отнести к B-типу. Таким образом, структуру La₁₅Rh₅Cd₂ можно описать как последовательность ... BAAABAAABAAA ..., где слой B-типа чередуется с тремя слоями типа A.

Все соединения Ce₇Ru₃, Ce₄RuAl, Ce₂₃Ru_{7+x}Al_{4-x} и La₁₅Rh₅Cd₂ могут быть представлены как последовательный переход структур из одной в другую (**рис. 90**). Интерметаллид Ce₇Ru₃ состоит только из слоев А-типа. При переходе к следующим членам серии - Ce₄RuAl, Ce₂₃Ru_{7+x}Al_{4-x}, La₁₅Rh₅Cd₂ - слои В-типа появляются в кристаллической структуре, при этом количество слоев А-типа между слоями В-типа последовательно увеличивается. Поэтому в структуре Ce₇Ru₃ слои типа В отсутствуют, в структурах структуры Ce₄RuAl A и В чередуются в соотношении 1: 1, в Ce₂₃Ru_{7+x}Al_{4-x} на один слой В приходится два слоя A и в структуре La₁₅Rh₅Cd₂ три слоя A чередуются с одним В-слоем (**рис. 90**).

Рис. 89. Кристаллическая структура соединения La₁₅Rh₅Cd₂.

Рис. 90. Взаимопереход структур Ce₇Ru₃, Ce₄RuAl, Ce₂₃Ru_{7+x}Al_{4-x} и La₁₅Rh₅Cd₂.

5.5 Новый структурный тип Ce₄Ru₃Al₂ и его связь с YbAuGe-типом

В процессе исследования системы Ce-Ru-Al получено новое соединение Ce₄Ru₃Al₂, кристаллизующееся в новом структурном типе. Изучая структуру данного ИМС, обнаружены схожие структурные фрагменты в структурах ранее известных эквиатомных германидов YbAuGe [111] и CaCuGe [117, 118]. Впервые такое расположение атомов определено для соединения с кальцием в пространственной группе $Pna2_1$ [117], однако дальнейшие исследования позволили перейти в центросимметричную пространственную группу *Pnma* с параметрами элементарной ячейки a = 21.249 Å, b = 4.360 Å, c = 7.494 Å, Z = 12 [118], структурного типа YbAuGe (Пр. гр. *Pnma*, a = 21.332 Å, b = 4.485 Å, c = 7.708Å). Каждая из фаз Ce₄Ru₃Al₂, YbAuGe и CaCuGe имеет девять кристаллографически независимых позиций 4с. В германидах каждый тип атомов занимает по 3 позиции, что приводит к эквиатомному составу. Отличие нового структурного типа состоит в том, атомы Се распределены по четырем позициям 4c, атомы Ru занимают три, а атомы Al – две независимые позиции 4c. Отсюда и получается состав Ce₄Ru₃Al₂. Кроме того, отличия в величинах координат атомов по осям а и с (по оси b атомы имеют фиксированную координату 1/4) приводят к тому, что некоторые координационные полиэдры нового структурного типа значительно отличаются от соответствующих полиэдров в известных германидах.

На рисунке 91 показаны структуры Ce₄Ru₃Al₂ и YbAuGe. Обе структуры имеют схожие фрагменты в виде «бабочек», состоящих из тригональных призм и имеющих общее ребро и центрированных атомом рутения, и четырехугольных призм. В структуре Ce₄Ru₃Al₂ такая «бабочка» образована одной призмой из атомов церия и алюминия, а вторая – только из атомов церия, в то время как в структуре YbAuGe бабочка состоит из одинаковх иттербиево-германиевых призм. Четырехугольные призмы в обеих структурах имеют схожий состав Ru_2Al_2 или Au_2Ge_2 , но в структуре с церием основания призмы искажены до параллелограмма, в то время как в структуре с итербием они образуют неискаженный прямоугольник.

Рис. 91. Структуры соединений Ce₄Ru₃Al₂ (слева) и YbAuGe (справа).

5.6 Межатомные расстояния в тройных соединениях систем {La, Ce, Sm}-Ru-Al

В соединениях, содержащих церий и рутений, наблюдаются укороченные контакты Ce-Ru, которые меньше суммы атомных радиусов и даже суммы ковалентных радиусов этих элементов. Значения атомного (r_a) и ковалентного (r_c) радиусов для атомов Ce и Ru, взятые из [6]:

$$r_a (Ce) = 1.83 \text{ Å}, r_a (Ru) = 1.34 \text{ Å}, \Sigma a (Ce-Ru) = 3.17 \text{ Å};$$

$$r_c$$
 (Ce) = 1.65 Å, r_c (Ru) = 1.24 Å, Σc (Ce-Ru) = 2.89 Å

В системе Ce-Ru-Al нам удалось получить 4 тройных интерметаллида, содержащие укороченные и аномально короткие контакты между атомами церия и рутения: Ce₂₃Ru_{7+x}Al_{4-x}, Ce₄Ru₃Al₂, Ce₂Ru₂Al, Ce₂RuAl.

Как уже отмечалось выше, в серии соединений Ce₇Ru₃, Ce₄RuAl, Ce₂₃Ru_{7+x}Al_{4-x} все атомы Ru расположены внутри тригональных призм, образованных атомами церия. Поэтому в этих соединениях расстояния Ce-Ru зависят от линейных размеров призм [Ce₆] и от положения атомов рутения в них. В родоначальнике серии двойном интерметаллиде Ce₇Ru₃ межатомные расстояния Ce-Ru варьируются от 2.745 до 3.050 Å [34].

В структуре Ce₄RuAl кратчайшие расстояния между атомами Ru и атомами Ce составляют 2.630 (с одним атомом Ce2), 2.816 (с одним атомом Ce1) и 2.850 (с одним атомом Ce2) Å. Эти контакты меньше или намного меньше суммы металлических радиусов Ce и Ru (3.17 Å) и даже меньше суммы ковалентных радиусов (2.89 Å). В отличие от Ce1 и Ce2 атомы Ce3 не образуют коротких контактов с атомами рутения. Кроме того, они расположены в довольно больших пустотах каркаса из тригональных призм, поэтому ближайшие соседние атомы находятся на расстоянии более 3.38 Å (**рис. 92**).

Рис. 92. Ближайшее окружение атомов Ce1 (a), Ce2 (б), Ce3 (в) соединения Ce₄RuAl.

Из литературы известно, что в изотипических соединениях Ce₄RuX, где X = Cd [119], In [59], Mg [120] также присутствуют укороченные контакты Ce-Ru: 2.793, 2.806,

2.824 Å, соответственно. Напротив, у прототипа Gd₄RhIn расстояния Gd-Rh обычны – 2.837 и 2.842 Å и близки к сумме ковалентных радиусов для этих элементов (2.86 Å) [6].

Новый алюминид Ce₂₃Ru_{7+x}Al_{4-x} также содержит укороченные расстояния между атомами Ce и Ru (**рис. 93**). Самое короткое из них равно 2.562 Å. Кроме того, наблюдаются также контакты Ce-Ru, равные 2.716 и 2.728 Å. В изотипических соединениях Ce₂₃Ru₇Mg₄ [110], Ce₂₃Ru₇Cd₄ [121] и Ce₂₃Ru₇Zn₄ [122] укороченные расстояния Ce-Ru составляют 2.612, 2.582 и 2.518 Å, соответственно. Только для интерметаллида с Zn эти расстояния меньше, чем соответствующие в алюминиде Ce₂₃Ru_{7+x}Al_{4-x}. Опять же, в прототипе Pr₂₃Ir₇Mg₄ расстояния между атомами Pr и Ir (2.845-2.882) нормальны и близки к сумме ковалентных радиусов этих двух элементов (2.91 Å [6]).

Рис. 93. Ближайшее окружение атомов Ce2 (а), Ce3 (б), Ce5 (в), Ce8 (г), Ce9 (д) соединения Ce₂₃Ru_{7+x}Al_{4-x} при x = 0.4. Эти атомы имеют укороченные контакты Ce-Ru.

В новом интерметаллиде Ce_2Ru_2Al также присутствуют короткие контакты Ce-Ru (**рис. 94**). Атомы P3Э в этой структуре занимают только одну кристаллографическую позицию, находясь в которой атомы Ce образуют укороченные контакты – 2.782 Å и 2.919 Å – с атомами Ru. Эти значения не являются аномальными, тем не менее, они короче обычных расстояний Ce-Ru и близки к сумме ковалентных радиусов элементов. В этом соединении все укороченные расстояния Ce-Ru находятся на границе слоев I и II типов, где неплоский слой из атомов церия входит в неплоский слой, образованный атомами рутения и

алюминия (**рис. 85**). Структурные аналоги соединения Ce₂Ru₂Al в литературе в настоящее время не представлены, поэтому невозможно объяснить такие значения расстояний Ce-Ru кристаллическим строением или исключительно особенностью цериевых атомов образовывать укороченные контакты с переходными металлами. В прототипе La₂Ni₃ (атомы церия занимают позицию лантана, а атомы рутения – одну из позиций никеля)

кратчайшее расстояние между атомами La и Ni равно 2.896 Å [123]. Эта величина больше, даже чем сумма атомных радиусов элементов (2.76 Å) [6].

В алюминиде Ce₂RuAl также наблюдаются аномально короткие расстояния Ce-Ru, равные 2.482 Å (**рис. 95**). Такие расстояния образуют только атомы Ce1, кратчайшее же расстояние для Ce2 атома тоже образовано с атомом рутения, но по числовому значению оно близко к сумме ковалентных радиусов элементов – 2.907 Å. Укороченные расстояния Ce-Ru также находятся на границах слоев двух типов, присутствующих в структуре. Такое расположение коротких Ce-Ru контактов схоже с расположением аналогичных в соединении Ce₂Ru₂Al. Изоструктурных соединению Ce₂RuAl аналогов пока не обнаружено.

Рис. 95. Ближайшее окружение атомов Ce1 (a), Ce2 (б) соединения Ce₂RuAl.

Новое соединение C₄Ru₃Al₂ является исключительным представителем класса соединений с аномально короткими расстояниями между атомами церия и рутения в системе Ce-Ru-Al. Рассчитанные значения контактов Ce-Ru имеют аномально малые величины. Например, Cel и Rul образуют расстояние, равное 2.300 Å, а Ru2 находится на расстояниях 2.572 Å и 2.583 Å от Ce4 и Ce2 атомов, соответственно (**рис. 96**). В структуре Ce₄Ru₃Al₂ атомы располагаются на высоте ¹/₄*c* и ³/₄*c*. Самые короткие контакты образованы атомами, расположенными на одной высоте в ячейке, причем атомы рутения является центрирующими элементарный структурный фрагмент – «бабочку», но соседнюю с атомом церия (**рис. 96**). Следует отметить, что атомы Ce3 не образуют короткие расстояния с любыми другими атомами. Их ближайший сосед – Ru1 – находится на расстоянии 3.236 Å.

Рис. 96. Ближайшее окружение атомов Ce1 (a), Ce2 (б), Ce3 (в), Ce4 (г) соединения $Ce_4Ru_3Al_2$.

В соединениях с лантаном и самарием аномально коротких расстояний между атомами не наблюдается, но расстояния, близкие к сумме ковалентных радиусов соответствующих элементов, могут присутствовать. Так, в соединениях La₄RuAl, La₃RuAl₃ и La₂RuAl₂ присутствуют расстояния, равные 2.865 Å, 2.805 Å, 2.796 Å, соответственно. Минимальные межатомные расстояния тройных ИМС систем {La, Ce, Sm}-Ru-Al представлены в *таблице 54*.

Структуры соединений с большим содержанием алюминия можно представить как каркасные. Каркасы структур построены из атомов рутения и алюминия, находящимися на расстояниях, близких к величинам ковалентных связей. Например, для соединений $LaRu_2Al_{10}$ и аналогичного с самарием, $LaRu_2Al_8$ и $Sm_2Ru_3Al_{15}$ межатомные расстояния Ru-Al в каркасе изменяются от 2.374 до 2.613 Å. В обширных пустотах каркаса расположены атомы лантана или самария, образующие с ближайшими атомами-соседями типичные металлические связи (>3 Å).

Соединение	Типы атомов	Расстояние между атомами		Соединение	Типы атомов	Расстояние между атомами
La ₄ RuAl	3La2-Ru 3La1-Ru	2.8645 2.9674		Ce ₂ Ru ₂ Al	2Al3-Ru 2Ce-Ru 2Ce1-Ru	2.5545 2.781 2.9195
La ₃ RuAl ₃	2Al2-Ru La2-Ru La3-Ru	2.551 2.805 2.974			Ce1-Ru1 Ce4-Ru2 Ce2-Ru2	2.300 2.572 2.583
La ₂ RuAl ₂	2Al2-Ru La2-Ru La1-Ru	2.535 2.796 2.976		Ce ₄ Ru ₃ Al ₂	Ce4-Ru3 Al1-Ru3 Ce1-Ru3	2.408 2.563 2.839
	Al6-Ru1	2.374		Sm ₂ RuAl ₃	6Al Ru-Ru	2.703
LaRus Ala	2A18-Ru1	2Al8-Ru1 2.537			2Al4-Ru1	2.553
Laixu ₂ Ai ₈	Al7-Ru1	2.593		$Sm_3Ru_4Al_{12}$	2Al3-Ru1	2.570
	Al7-Ru1	2.595			2A12-Ru2	2.391

Таблица 54. Некоторые межатомные расстояния в тройных ИМС системах {La, Ce, Sm}-Ru-Al.

	Al9-Ru2	2.411
	Al6-Ru2	2.416
	Al7-Ru2	2.478
LoDy A1	2Al1-Ru	2.563
$LaRu_2AI_{10}$	2A15-Ru	2.579
	2Ce9-Ru1	2.728
	2Ce2-Ru1	2.910
Co. Du Al	Ce3-Ru2	2.562
$Ce_{23}Ku_7AI_4$	Ce8-Ru2	2.836
	2Ce5-Ru2	2.876
	3Ce3-Ru3	2.716
	Ce2-Ru	2.630
Ce ₄ RuAl	Ce1-Ru	2.816
	2Ce2-Ru	2.850
C - D - Al	Ce1-Ru	2.482
Ce ₂ KuAI	Ce2-Ru	2.907

	6Al1-Ru2	2.587
	2 A 12 Du	2 5 4 2
Sm ₂ Ru ₃ Al ₁₅	ZAIZ-RU	2.342
2 5 15	2AI4-Ru	2.613
	Al3-Ru1	2.454
	Al5-Ru1	2.454
	2A17-Ru1	2.553
SmRu ₃ Al ₁₀	Al4-Ru1	2.566
	4Al4-Ru2	2.535
	2Al4-Ru2	2.549
	2A12-Ru2	2.559
	2411-Ru	2 560
$SmRu_2Al_{10}$	2A15 D.	2.500
	2A13-KU	2.301

Таким образом, подтвердилось сделанное предположение об образовании в системе Ce-Ru-Al новых, не известных ранее тройных соединений. Кроме того нами установлено, что все эти соединения имеют короткие и аномально короткие расстояния.

5.7 Физические свойства

Как было отмечено в литературном обзоре, в интерметаллических соединениях РЗЭ поведение электронов в зоне проводимости вблизи уровня Ферми в значительной степени модифицировано из-за сильного взаимодействия с локализованными магнитными моментами *f*-электронов и с электрическим полем кристалла, за счет чего возникает ряд необычных физических явлений, таких как состояние Кондо-решетки, тяжелофермионное состояние, ТФ сверхпроводимость, состояние с нестабильной валентностью. Для изучения этих явлений необходимы знания о кристаллических структурах изучаемых ИМС, а также сами соединения, полученные в виде однофазных образцов. В данной работе нами найдены и структурно охарактеризованы 10 новых тройных интерметаллидов. Из них для трех соединений с Се и одного с Sm были впервые измерены магнитные и электрические параметры.

5.7.1 Физические свойства Ce₂Ru₂Al

На поликристаллическом образце, содержащем соединение Ce₂Ru₂Al как основную фазу, измерена магнитная восприимчивость при 1.72 – 400 К и внешнем поле до 5 Т (**рис. 97**). Общая форма этой кривой типичный для систем с флуктуациями валентности [73].

Рис. 97. Зависимость обратной магнитной восприимчивости Ce_2Ru_2Al от температуры, измеренная во внешнем магнитном поле 0.1 Т. Левая вставка отображает данные магнитной восприимчивости при низких температурах. Правая вставка показывает намагниченность, измеренную при 1.72 К с увеличением (темные круги) и уменьшением (белые круги) магнитного поля.

Во всем диапазоне температур, магнитная восприимчивость мала и выше 100 К слабо зависит от температуры. После 200 К обратная магнитная восприимчивость χ_m^{-1} уменьшается с повышением температуры, и показывает тенденцию к насыщению при температуре выше комнатной. По аналогии с другими Ce-Ru интерметаллидами, можно ожидать наличия широкого минимума в зависимости $\chi_m^{-1}(T)$ выше 400 К, что определило бы характерный энергетический масштаб флуктуации валентности в Ce₂Ru₂Al. Для галлидов Ce₂Ru₂Ga₃ [124] и Ce₄Ru₃Ga₃ [113] минимум $\gamma_m^{-1}(T)$ наблюдался вблизи 150 К и 250 К соответственно. Онако в литературе представлены соединения Ce₉Ru₄Ga₅ [125] и алюминид Ce₅Ru₃Al₂ [9], в которых минимум магнитной восприимчивости, как и у интерметаллида Ce₂Ru₂Al, оценивался выше 400 К. Во всех этих соединениях ионы Ce более одной кристаллографической позиции, и некоторые занимают ИЗ них демонстрируют стабильное трехвалентное состояние. Атомы в этих позициях не участвуют в валентных флуктуациях. Такая ситуация может привести к появлению дальнего магнитного упорядочения при низких температуры [9, 124, 125]. В случае Се₂Ru₂Al атом Се занимает только одну независимую кристаллографическую позицию в элементарной ячейке и, следовательно, промежуточная валентность атомов однородна. Данные $\chi_m^{-1}(T)$ и намагниченнсти $\sigma(H)$ (левая и правая вставки на рисунке 97, соответственно) свидетельствуют о парамагнитном состоянии образца вплоть до температуры 1.72 К. Подчинение магнитной восприимчивости закону Кюри, вероятно возникает из-за магнитных примесей (например, оксида церия), присутствующих в

небольшом количестве в исследуемом образце, которые не обнаружены при исследовании ЛРСА и РФА.

5.7.2 Физические свойства Ce₂RuAl

Физические свойства соединения Ce₂RuAl изучались на полученном однофазном образце комплексом методов. Результаты экспериментов представлены на рисунках 98 –

99.

Как **98**. показано на рисунке экспериментальный спектр XANES, полученный комнатной температуре, при содержит два максимума, которые возникают из-за присутствия в структуре атомов церия в двух электронных состояниях $4f^{4}$ (Ce³⁺) и $4f^{0}$ (Ce⁴⁺). Это предполагает наличие гомогенного промежуточного валентного состояния или гетерогенного смешанного валентного состояния для ионов церия в изученном соединении. Оценку экспериментальных спектров

проводили с использованием обычного разложения пиков поглощения с комбинациями лоренцевых, гауссовских и арктангенциальных кривых, ограниченных шириной и положением энергии [126]. Так называемая средняя валентность всех ионов Се, распределенных по положению Ce1 и Ce2, равна 3.19. Такое значение показывает, что все эти ионы обладают неустойчивой 4*f*-оболочкой. Однако, учитывая структурные особенности, а именно необычно короткие расстояния Ce1-Ru, можно предположить, что ионы Ce1 в Ce₂RuAl имеют гораздо более сильное отклонение от трехвалентного состояния, чем ионы Ce2.

Характер зависимости обратной магнитной восприимчивости Ce₂RuAl (**рис. 99a**) от температуры является типичным для соединений с переменной валентностью, например, у фаз SmS [127] и Ce₂Rh₂In [128]. На правой вставке **рисунке 99a** представлена зависимость магнитной восприимчивости от температуры, а на левой – зависимость намагниченности от увеличения/уменьшения напряженности поля при T = 1.71K. Температурная зависимость электрического сопротивления показана на **рисунке 99в**. Проводимость Ce₂RuAl носит металлический характер. Однако стоит отметить, что ниже 40 К нарушается линейная зависимость из-за наличия примесей.

В соответствии с данными XANES магнитная восприимчивость Ce₂RuAl зависит от температуры, типичной для промежуточных валентных систем [127, 128]. Как показано на

рисунке 99а, во всем температурном диапазоне молярная восприимчивость мала и не подчиняется закону Кюри-Вейсу. Постепенное уменьшение $\chi^{-1}(T)$, наблюдаемое выше 250 К, предполагает наличие выше 400 К минимума восприимчивости, характерной для систем с переменной валентностью атомов [128]. Стоит напомнить, что, например, в галлидах с флуктуациями валентности Ce₂Ru₂Ga₃ [124] и Ce₄Ru₃Ga₃ [113] T(χ_{max}) составляет около 150 К и 250 К соответственно, однако для похожего соединения Ce₉Ru₄Ga₅ [125], а также для алюминида Ce₅Ru₃Al₂ [9] T(χ_{max}) значительно превышает 400 К. Поскольку T (χ_{max}) является мерой характерного энергетического масштаба валентных флуктуаций, его большая величина согласуется с большим средним значением валентности атомов Ce, полученным для Ce₂RuAl по данным XANES спектроскопии. Более того, наблюдаемое магнитное поведение подтверждает наличие неустойчивых 4*f*-оболочек ионов Ce1 и Ce2.

Рис. 99. Зависимости обратной магнитной восприимчивости (а) и электросопротивления (б) от температуры для соединения Ce₂RuAl.

Кроме того выразительной особенностью фазы Ce₂RuAl является, небольшой максимум на зависимости $\chi(T)$ около 10 К (правая вставка на **рисунке 996**), что довольно необычно для соединений с промежуточной валентностью атомов. Другой особенностью соединения – наблюдаемый перегиб на зависимости намагниченности от магнитного поля, измеренной значительно ниже 10 К. Учитывая это и большую величину намагниченности, обнаруженной в сильных магнитных полях (левая вставка к **рисунку 996**), можно предположить существование антиферромагнитного перехода при низких температурах.

Ранее в литературе сообщалось о существовании дальнего магнитного порядка и валентных флуктуаций для нескольких соединений из систем Ce-Ru-X, таких как Ce₉Ru₄Ga₅ (антиферромагнитный переход при 3.7 K) [125], Ce₂₃Ru₇Cd₄ (ферромагнитный порядок ниже 3.6 K) [121], Ce₂₃Ru₇Mg₄ (антиферромагнитное состояние ниже 2.9 K) [110] и Ce₂RuZn₄ (вероятное упорядочение ниже 2 K) [122]. В случае Ce₂RuAl такой сценарий

представляется маловероятным, поскольку антиферромагнитая аномалия на кривой $\gamma(T)$ относительно слаба, и, кроме того, соответствующая особенность не проявляется на кривой электросопротивления (рис. 996). Наблюдемая ситуация существенно отличается от предполагаемой, например, для Ce₉Ru₄Ga₅, в котором 1/3 ионов Ce, занимающих одну из трех независимых кристаллографических позиций, имеет устойчивое трехвалентное состояние. При понижении температуры эти ионы антиферромагнитно упорядочиваются, о чем свидетельствуют все основные объемные свойства соединения: магнитная восприимчивость, И электросопротивление [125]. По-видимому, теплоемкость низкотемпературное магнитное упорядочение в Ce₂RuAl можно предварительно приписать неизвестной магнитной примеси, присутствующей в измеренном образце в количестве ниже предела обнаружения методами РФА и ЛРСА. Температурная зависимость электросопротивления Ce₂RuAl показана на рисунке 1016. Соединение обладает хорошей металлической проводимостью с сильно изогнутым $\rho(T)$ в измеряемом температурном диапазоне. При комнатной температуре удельное сопротивление составляет $\rho_{300K} = 144 \ \mu\Omega$ см, а при 4,2 К оно насыщается со значением $\rho_{4,2K} = 8 \ \mu\Omega$ см. Большое отношение сопротивлений ($\rho_{300K}/\rho_{4.2K} = 18$) указывает на довольно высокое качество исследуемого поликристаллического образца. Как правило, электросопротивление систем с флуктуациями валентности в основном определяется электронами рассеяния на структурных дефектах, колебаниями решетки и спиновыми флуктуациями. Для Ce₂RuAl, который имеет две подрешетки ионов Ce, имеющих заметно отличающиеся эффективные моменты электронной 4f-оболочки, надежный численный анализ экспериментальных данных в широком температурном диапазоне не представляется возможным. Однако надо отметить, что ниже 40 К удельное электросопротивление пропорционально квадрату температуры (вставка на Рис. 101б). Такое ферми-жидкостное поведение $\rho(T)$ является характерной особенностью систем с [129]. Эта функциональная переменной валентность зависимость удельного сопротивления разрушается при самых низких температурах (ниже 13 К), возможно, из-за примесей, обнаруженных в магнитных исследованиях.

5.7.3 Магнитные и электрические свойства Ce₄Ru₃Al₂

На поликристаллическом образце $Ce_4Ru_3Al_2$ проведены низкотемпературные измерения магнитных и электрических транспортных свойств. Результаты исследований показали сосуществование валентных флуктуаций и магнетизма локальных моментов. За первое свойство отвечают атомы Ce1, Ce2 и Ce4, имеющие аномально короткие контакты Ce-Ru. Атомы Ce3, находящиеся от атомов рутения на нормальных расстояиях, имеют

стабильную электронную конфигурацию $4f^4$, и именно они ответственны за антиферромагнитное упорядочение при $T_N = 2$ К и за поведение типа Кондо в электросопротивлении материала. В этом отношении новый алюминид напоминает галлид Ce₉Ru₄Ga₅, который также имеет в своей ячейке несколько кристаллографических позиций атомов Ce с нестабильными валентными состояниями [125].

Рис. 100. Зависимости магнитных параметров соединения Ce₄Ru₃Al₂ от температуры и магнитного поля (см. текст).

На рисунке 100 представлены зависимости магнитных параметров соединения Ce₄Ru₃Al₂ от температуры и магнитного поля. Выше 50 К экспериментальные данные можно описать модифицированном законом Кюри-Вейсса (красная линия):

$$\chi = \chi_0 + C/(T - \theta),$$

где $\chi_0 = 2.44*10^{-3}$ СГСМ/моль – независящий от температуры член, $\theta = -17.9$ К – параметр Кюри-Вейса.

Эффективный магнитный момент атомов Се равен 2.3 μ_B (в предположении, что он относится только к одной позиции Ce³⁺). Предполагается, что три других иона Се в кристаллической решетке Ce₄Ru₃Al₂ обладают неустойчивой электронной оболочкой 4*f* и, таким образом, влияют только на независящий от температуры член χ_0 , найденный из анализа данных магнитной восприимчивости. Значительная отрицательная величина параметра Кюри-Вейса соответствует эффекту Кондо, наблюдаемому в электронной проводимости в соединении Ce₄Ru₃Al₂. Верхняя вставка на **рисунке 100**: данные о низкотемпературной магнитной восприимчивости, показывающие антиферромагнитный фазовый переход при T_N = 2 К. Нижняя вставка: изотерма намагничивания, построенная при 1.72 К при увеличении (зеленые круги) и уменьшении (белые круги) магнитного поля.

Рис. 99. (a) Температурная зависимость электросопротивления Данные поликристаллического образца $Ce_4Ru_3Al_2$. (б) низкоомного электросопротивления, измеренные в магнитном поле, приложенного перпендикулярно к электрическому току. **(B)** Зависимости магнитного поля поперечного магнитосопротивления, измеренные при нескольких температурах в парамагнитном состоянии.

Зависимость электросопротивления $\rho(T)$ для соединения Ce₄Ru₃Al₂ носит немонотонный характер (**рис. 99а**). В парамагнитной области наблюдается минимум при темпеатуре 25 К, что связано с эффектом Кондо. В экспериментах, где приложенное магнитное поле перпендикулярно электрическому току, наблюдается монотонное увеличение сопротивления в полях до 3 Т. При увеличении напряженности поля с 5 Т до 9 Т (**рис. 99б**) на кривой электросопротивления появляется максимум, сдвигающийся к более высоким температурам, который может быть связан с подавлением эффекта Кондо магнитным полем. Как показано на **рисунке 99в**, для температур T < 20 К поперечное магнитосопротивление имеет отрицательные значения, и по абсолютной величине возрастает с увеличением приложенного поля. В поле 9 Т магнитосопротивление, измеренное при T_N достигает примерно -40%. В парамагнитной области изотермы меняют свою форму, характерную для Кондо-систем: чем ниже температура измерений, тем сильнее наблюдается зависимость электросопротивления от поля.

Выполненные эксперименты физических параметров соединения Ce₄Ru₃Al₂ свидетельствуют о сильных электронных корреляциях при низких температурах.

5.7.4 Физические свойства Sm₂RuAl₃

Магнитные измерения выполненны на поликристаллическом образце $Sm_2Ru_{1+x}Al_{3-x}$ при x = 0.3 (**рис. 102**). Обратная магнитная восприимчивость (**рис. 102a**) носит сложный характер, показывая необычное поведение: при температуре больше 50 К эта зависимость соответствует феномену флуктуации валентности атомов Sm, а ниже этой температуры появляются стабильные локализованные магнитные моменты, которые возможно упорядочены ферромагнитно.

Рис. 102. Физические свойства образца. содержащего $Sm_2Ru_{1+x}Al_{3-x}$ при x = 0.3.

На **рисунке 1026** представлена зависимость намагниченности от температуры в поле 0.1Т. Кривая намагниченности при охлажении в поле (FC) показывает монотонное возрастание. В нулевом поле (ZFC) кривая намагниченности носит сложный характер: при температуре 50 К наблюдается максимум, что возможно связано с переходом соединения в магнитоупорядоченное состояние. На **рисунке 102в** представлена зависимость намагниченности от приложенного поля. При температурах 15-30 К в поведении намагниченности наблюдается гистерезис. Необычные магнитные свойства Sm₂RuAl₃ требуют дальнейших исследований с измерением термодинамических и транспортных параметров этого соединения.

Таким образом, выполненные исследования подтвердили сделанное предположение о наличии значительных электронных корреляций в тройных интерметаллидах церия и самария. Поскольку не все найденных в работе новых соединений были исследованы, то синтез однофазных образцов и их изучение по-прежнему являются перспективными для специалистов-физиков.

6 Выводы.

1. Комплексом методов физико-химического анализа изучено взаимодействие компонентов в тройных системах {La, Ce, Sm}-Ru-Al и построены изотермические сечения диаграмм состояния этих систем при 550 °C. Установлено, что в исследованных системах происходит образование ряда тройных ИМС одинакового стехиометрического состава, а также отсутствуют соединения в областях с большим содержанием рутения. Следствием этого явилось подобие характеров фазовых равновесий на изотермических сечениях.

2. Подтверждено предположение о существовании большого количества тройных алюминидов в изученных системах: всего в системе La-Ru-Al образуется 8 ИМС, 11 в системе Ce-Ru-Al и 6 в системе Sm-Ru-Al. Уточнены литературные данные для 15 соединений: 4-х системе La-Ru-Al; 7-ми в системе Ce-Ru-Al; 4-х в системе Sm-Ru-Al. Обнаружено 10 новых тройных ИМС: 4 в системе La-Ru-Al, 4 в системе Ce-Ru-Al и 2 в системе Sm-Ru-Al. Для них впервые определены кристаллографические характеристики, при этом установлено, что соединения La₃RuAl₃, La₂RuAl₂, Ce₄Ru₃Al₂, Ce₂RuAl и Ce₂Ru₂Al кристаллизуются в структурах новых типов.

3. Выполненный кристаллохимический анализ нескольких рядов тройных ИМС показал аналогию в упаковках структурных фрагментов соединений La₃RuAl₃ и La₂RuAl₂ между собой и с известными соединениями Yb₃Pd₂Sn₂ и La₃Ru₂Ga₂; родственность в ряду соединений Ce₇Ru₃, Ce₄RuAl, Ce₂₃Ru_{7-x}Al_{4+x} и La₁₅Rh₅Cd₂; взаимосвязь структур алюминидов P3Э₃Ru₄Al₁₂, P3ЭRu₂Al₁₀, P3Э₂Ru₃Al₁₅, P3ЭRu₃Al₁₀ и P3ЭRu₂Al₈; сходства и различия новых структурных типов Ce₂Ru₂Al и Ce₂RuAl; и связь соединения Ce₄Ru₃Al₂ с YbAuGe-типом.

4. Подтверждены прогнозы о наличии укороченных и аномально коротких расстояний между атомами Се и Ru в тройных интерметаллидах с большим содержанием РЗЭ. В системе Ce-Ru-Al самые короткие контакты (2.300 Å) наблюдаются у нового Ce₄Ru₃Al₂.

5. Измеренные физические свойства трех соединений из системы Ce-Ru-Al подтвердили сделанное предположение о принадлежности тройных ИМС из цериевых систем к семейству соединений СКЭС: в алюминидах Ce₂Ru₂Al, Ce₂RuAl и Ce₄Ru₃Al₂ наблюдаются флуктуации валентности атомов церия, кроме того последний интерметаллид является Кондо соединением.

7 Список литературы

- Gruner G., Zawadowski A. Magnetic impurities in non-magnetic metals. // Rep. Prog. Phys. 1974. V.37. p. 1497-1583.
- Mishra R., Hermes W., Rodewald Ute Ch., Hoffmann R.-D., Pöttgen R. Trivalent-Intermediate Valent Cerium Ordering in Ce₂RuZn₄ // Z. Anorg. Allg. Chem. 2008. V.634. p.470-474.
- Tursina A.I., Kurenbaeva Zh. M., Gribanov A.V., Noël H., Roisnel T., Seropegin Y.D., Ce₂Ru₂In₃ and Ce₃Ru₂In₂: site exchange in ternary indides of a new structure type // J. Alloys Compd. 2007. V.442. p.100-103.
- 4. Fujii H. Structure and superconductivity of the ternary intermetallics of La₃Ni₄Si₄, La₃Ni₄Ge₄, and La₃Pd₄Si₄. // J. Phys.: Condens. Matter. 2006. V. 18. p. 8037-8047.
- Hull G.W., Wernick J.H., Geballe T.H., Waszczak J.V., Bernardini J.E. Superconductivity in the ternary intermetallics YbPd₂Ge₂, LaPd₂Ge₂, and LaPt₂Ge₂. // Phys. Rev. 1981. V.24. p. 6715-6718.
- 6. Справочник. Элементы (под ред. Дж. М. Эмсли). Мир. 1993. 260 с.
- 7. Справочник. Свойства элементов (под ред. М.Е. Дрица). М.: Металлургия. 1985. 672с.
- Kneidinger F., Michor H., Bauer E., Gribanov A., Lipatov A., Seropegin Y., Sereni J., Rogl P. Superconductivity and non-Fermi-liquid behavior of La₃Pd₄Si₄ and Ce₃Pd₄Si₄ // Phys. Rev. B 2013. V.88. p. 024423-1-024423-7.
- Murashova E.V., Tursina A.I., Bukhanko N.G., Nesterenko S.N., Kurenbaeva Zh.M., Seropegin Y.D., Noel H., Potel M., Roisnel T., Kaczorowski D. New ternary intermetallics RE₅Ru₃Al₂ (RE=La, Ce, Pr): synthesis, crystal structures, magnetic and electric properties.//Mat. Res. Bull. 2010. V. 45. p.993–999.
- 10. Lawrence J.M., Riseborough P.S., Parks R.D. Valence fluctuation phenomena// The Institute of Physics. 1981. 77p.
- Sanada Sh., Aoki Yu., Aoki H., Tsuchiya A., Kikuchi D., Sugawara H., Sato H. Exotic Heavy-Fermion State in Filled Skutterudite SmOs₄Sb₁₂ // J. Phys. Soc. Jpn. 2005. V. 74, p. 246-249.
- Yamada A., Higashinaka R., Miyazaki R., Fushiya K., Matsuda T. D., Aoki Y., Fujita W., Harima H., Sato H. Anomalously Field-Insensitive Correlated Electron Behaviors in SmTa₂Al₂₀ // J. Phys. Soc. Jpn. 2013. V.82, p.123710.
- 13. Pauling File Binaries Edition, Version 1.0, Release 2002/1
- 14. Справочник. Диаграммы состояния двойных металлических систем (под ред. Н.П. Лякишева). М.: Машиностроение. 1996. 996с.
- Palenzona A., Canepa F. The phase diagrams of the La-Ru and Nd-Ru systems. // J. Less Com. Met. 1990. V. 157, P. 307–313.
- 16. Carlsson A. Ab Initio Structure Evaluation of Aperiodic Structures in the Rare Earth Ruthenium Systems. 2015.

- 17. Selhaoui N., Charles J., Bouirden L., Gachon J.C. Optimization of the binary Ce–Ru system. // J. Alloys Compd. 1998. V. 269. p. 166-172.
- Palenzona A. The phase diagram of the Ce-Ru system. // J. Alloys Compd. 1991. V. 176.
 p. 241-246.
- 19. Palenzona, A., Canepa, F. The phase diagram of the Sm-Ru system. // J. Less Com. Met. 1989. 155(2). L31–L33.
- 20. Tonkov E.I., Yu E. High Pressure Phase Transformations: A Handbook. 1992. V. 1. p.647.
- 21. Canneri G.// Metallurgia italiana. 1932. V. 24. p. 3-7.
- Buschow K.H.J. The lanthanum-aluminium system // Philips Res. Rep. 1965. V. 20. N 3. p. 337-348.
- 23. Saccone A., Cardinale A.M., Delfino S., Ferro R.: Z. Metallkde. 1996. 87. P.82.
- 24. Okamoto H. Al-Ce (Aluminum-Cerium). // J. Phase Equilibria. 1998. 19. P. 396.
- 25. Okamoto H., Al-Sm (Aluminum-Samarium). // J. Phase Equilib. Diffus., 2008. 29(2).
 P. 200.
- 26. Buschow K.H.J., van Vucht J. H. N. On the intermediate phases in the system samariumaluminium. // Philips Res. Rep. 1965. V. 20. N 3. p. 15-22.
- 27. Borzone, G., Cardinale, A.M., Saccone, A., Ferro, R. Enthalpies of formation of solid Sm-Al alloys. // J. Alloys and Comp. 1995. 220. P. 122.
- 28. Buschow K.H.J., van Vucht J. H. N. Systematic arrangement of the binary rare-earth aluminium systems. // Philips Res. Rep. 1967. V. 22. p. 233-245.
- 29. Obrowski W. Degussa A.G. Uber Legierungen des Ruthenium smit Bor, Beryllium and Aluminium. // Metall (Berlin). 1963. 17. P. 108-112.
- Massalski Ed. T.B. Binary Alloy Phase Diagrams, Second Edition. // ASM International, Materials Park. Ohio. 1990. 1. P. 203-204.
- 31. Matthlas B.T., Suhl H., Corenzwit E. Spin exchange in superconductors // Phys. Rev. Letters. 1958. V. 1 N.3. p. 92-94.
- 32. Palenzona A., Eggenhoffner R., Canepa F. Superconductivity in the La-Ru system // J. Alloys and Comp. 1994. V. 205. p. 49-52.
- 33. Canepa F., Palenzona A., Eggenhoffner R. Evidence of strong correlations between anomalous lattice parameters and transport properties in Ce₁₆Ru₉ // J. Alloys and Comp. 1994. V. 215. p. 105-109.
- 34. Trovarelli O., Sereni J.G., Schmerber G., Kappler J.P. Coexistence of magnetic order, heavy fermion and intermediate valence behavior in Ce₇X₃ (X = Ni, Ru, Pd, Pt, Ir and Rh) // Physica B. 1995. V. 206-207. p. 243-245.
- 35. Sharifrazi P., Mohanty R.C., Raman A. Intermediate phases in some rare earth-ruthenium systems // Z. *Metallkd*. 1984. 75. p.801–805.
- Fornasini M.L., Palenzona A. The crystal structure of Ce₄Ru₃ // Zeitschrift fur Kristallographie. 1992. V.200. p. 57-61.

- 37. Goshina H., Suzuki T., Fujita T., Hedo M., Nakama T., Yagasaki K. Thermal and elastic properties of superconducting CeRu₂ // Physica B. 1995. V. 206-207. p. 193-195.
- Yagasaki K., Hedo M., Nakama T. Reentrant superconductivity of CeRu₂ // J. Phys. Soc. Jpn. 1993. V. 62, pp. 3825-3828.
- Murashova E.V., Tursina A.I., Kurenbaeva Zh.M., Noël H., Seropegin Y.D., Intermetallics La₁₁Ru₂Al₆ and Ce₁₁Ru₂Al₆ with a new structure type// Chem. Met. Alloys. 2010. V.3. p.101-107.
- 40. Wanyin Ge, Hitro Ohta, Chishiro Michioka, Kazuyoshi Yoshimura, Magnetic properties of the novel layered compounds $RE_3Ru_4Al_{12}$ (RE = La-Nd) // J. Phys.: Conf. Ser. 2012. V.344. 012023.
- 41. Yokota K., Nishioka T., Kitagawa K., Kato H., Matsumura M. Magnetic properties of new dilute rare earth compounds R₂Ru₃Al₁₅. //JPS Conf. Proc. 2014. 011051.
- 42. Thiede Verena M. T., Ebel Thomas and Jeitschko Wolfgang, Ternary aluminides LnT₂Al₁₀ (Ln=Y, La–Nd, Sm, Gd–Lu and T=Fe, Ru, Os) with YbFe₂Al₁₀ type structure and magnetic properties of the iron-containing series// J. Mater. Chem. 1998. V.8(1). p. 125-130.
- 43. Kurenbaeva Zh.M., Murashova E.V., Hannanov D.N., Ilyukhin A.B., Tursina A.I., Seropegin Yu.D., Ternary intermetallics La₄RuAl, Ce₄RuAl, and Ce₄RuIn// Collected Abstracts of the XI International Conference on Crystal Chemistry of Intermetallic Compounds (XI IMC). Lviv. Ukraine. 2010. p. 103.
- 44. Wanyin Ge, Chishiro Michioka, Hiroto Ohta, Kazuyoshi Yoshimura. Physical properties of the layered compounds RE₃Ru₄Al₁₂ (RE=La–Nd). // Solid State Communications. 2014. 195. P. 1–5.
- 45. Bukhan'ko N.G., Tursina A.I., Malyshev S.V., Gribanov A.V., Seropegin Yu D., Bodak O.I. The Crystal Structure of the Compound Ce₃Ru₄Al₁₂ with Gd₃Ru₄Al₁₂ Type// // J. Alloys Compd. 2004. V. 367. p. 149-151.
- 46. Tursina A.I., Nesterenko S.N., Murashova E.V., Chernyshev I.V., Noël H. and Seropegin Y.D., Ce₂Ru₃Al₁₅, an intermetallic compound of a new structure type// Acta Cryst. 2004. E60. i145-146.
- 47. Morrison G., Haldolaarachchige N., Chen Chih-Wei, Young D. P., Morosan E., Chan J. Y. Synthesis, Structure, and Properties of Ln₂Ru₃Al₁₅ (Ln = Ce, Gd):Comparison with LnRu₂Al₁₀ and CeRu₄(Al,Si)_{15.58}. // Inorg. Chem. 2013, 52, p. 3198–3206.
- 48. Tursina A.I., Nesterenko S.N., Murashova E.V., Chernyshev I.V., Noël H. and Seropegin Y.D., CeRu₂Al₁₀ with the YbFe₂Al₁₀ structure type// Acta Cryst. 2005. E61. i12-14.
- Tursina A.I., Bukhan'ko N.G., Gribanov A.V., Noël H, Roisnel T., Seropegin Y.D., Crystal structure of the new ternary aluminide CeRu_{3-x}Al_{10+x} (x=0.17)// J. Alloys Compd. 2005. V.500. p.194-196.
- Gribanov A.V., Tursina A.I., Grytsiv A.V., Murashova E.V., Bukhan'ko N.G., Rogl P., Seropegin Y.D., Giester G., Crystal structures of isotypic aluminides CeRuAl and CeRhAl// J. Alloys Compd. 2008. V.454. p.164-167.

- 51. Hermes W., Matar S.F., Pöttgen R. Unusually Short Ce–Ru Distances in CeRuAl and Related Compounds. // Z. Naturforsch. 64b. 2009. p. 901–908.
- 52. Mishra T., Hoffmann R.-D., Schwickert C., Pöttgen R. Structure Refinement and Magnetic Properties of Ce₂RuAl₃ and a Group-Subgroup Scheme for Ce₅Ru₃Al₂ // Naturforsch Z. 66b. 2011. p. 771-776.
- Sordier G., Dörsam G., Kniep R., Magn J. New intermediate phases in the ternary systems rare earths - transition element - aluminium// Magn. Mater. 1988. 76–77. p. 653– 654.
- 54. Schank C., Jfihrling F., Luo L., Grauel A., Wassilew C., Borth R., Olesch G., Bredl C.D., Geibel C. and Steglich F. 4f-conduction electron hybridization in ternary Ce-TM-Al compounds. // J. Alloys Compd. 1994. 207/208. P. 329-332.
- 55. Pottgen R., Borrmann H., Kremer R. K. Ferromagnetic ordering in CeAuGe// J. Magn.Magn. Mater. 1996. 152. p. 196-200.
- 56. Ханнанов Д.Н. Изучение фазовых равновесий в системе Ce-Ru-Al при 550 °C // Дипломная работа. 2010.
- 57. Мороз О.И.// Кристаллография. 1983. 28. с. 795.
- Strydom A.M. CeRu₂Al₁₀: Anomalous Magnetic Ordering and Its Field Stability. // J Low Temp Phys. 2010. 159. P. 160–163.
- 59. Tappe F., Schwickert C., Linsinger S., Pöttgen R. New rare earth-rich aluminides and indides with cubic Gd₄RhIn-type structure. // Monatsh Chem. 2011. 142. P. 1087.
- Debnath J.C., Strydom A.M., Sondezi B.M., Tappe F., Pöttgen R. Magnetic and Thermodynamic Properties of Ce₄RuAl. // Acta Physica Polonica A. 2015. 127. P. 237-239.
- 61. Niermann J., Jeitschko W. Ternary Rare Earth (R) Transition Metal Aluminides R₃T₄Al₁₂ (T= Ru and Os) with Gd₃Ru₄Al₁₂ Type Structure. // Zeitschrift für Anorganische und Allgemeine Chemie.2002. V.628. p. 2549-2556.
- 62. Peratheepan P., Strydom A.M. Electronic, magnetic, and transport properties of the isotypic aluminides SmT_2Al_{10} (T = Fe, Ru). // J. Phys.: Condens. Matter. 2015. 27. 095604 (12pp).
- 63. Takai Sh., Matsumura T., Tanida H., Sera M. Incommensurate-commensurate magnetic phase transition in SmRu₂Al₁₀. // Phys. Rev. B 2015. 92. 174427.
- 64. Murashova E. V., Kurenbaeva Z. M., Tursina A. I., Noël H., Rogl P., Grytsiv A. V., Gribanov A. V., Giester G. and Seropegin Y. D., The crystal structure of Ce₁₆Ru₈In₃₇ // J. Alloys Compd. 2007. V. 442. p.89-92.
- 65. Kurenbaeva Zh. M., Tursina A.I., Murashova E.V., Nesterenko S.N., Gribanov A.V., Seropegin Y.D., Noël H. Crystal ctructure of the new ternary compound Ce₃Ru₂In₃ // J. Alloys Compd. 2007. V. 442. p.86-88.
- 66. Murashova E. V., Tursina A. I., Kurenbaeva. Z. M.,Gribanov A. V., Seropegin Y. D. Crystal structure of CeRu_{0.88}In₂ // J. Alloys Compd. 2008. V. 454(1-2). p.206-209.

- 67. Rieken J., Hermes W., Chevalier B., Hoffman R.-D., Schappacher F.M., Pöttgen R. Trivalent-Intermediate Valent Cerium Ordering in CeRuSn - A static intermediate valent cerium compound with superstructure of the CeCoAl type // Z. Anorg. Allg. Chem. 2007. V. 633. p.1094-1099.
- 68. Gaudin E., Chevalier B., Heying B., Rodewald U. Ch., Pöttgen R. Valence and Structural Transitions in the Pseudo-Ternary Germanide Ce(Rh_{0.69}Ir_{0.31})Ge// *Chem. Mater.* 2005, V.17. p. 2693-2700.
- 69. Chevalier B., Heying B., Rodewald U. Ch., Bauer E., Pöttgen R. Hydrogenation of the Ce(Rh_{1-x}Ir_x)Ga system occurrence of antiferromagnetic ordering in the hydrides Ce(Rh_{1-x}Ir_x)GaH_{1.8}. // Chem. Mater. 2007. V.19. p.3052-3060.
- 70. Linsinger S., Eul M., Rodewald Ute Ch., Pottgen R. Intermediate-valent Cerium in CeRu₂Mg₅ // Z. Naturforsch. 2010. V. 10. p.1185-1190.
- 71. Riecken J. F., Al Alam A. F., Chevalier B., Matar S. F., Pottgen R. Structure and Chemical Bonding of PrRuSn//Z. Naturforsch. 2008. V.63b. p.1062-1068.
- Morosan E., Natelson D., Nevidomskyy A.H., Si Q. Strongly correlated materials // Adv. Mater. 2012. 28p.
- Дзебисашвили Д.М. Низкотемпературные свойства и куперовская неустойчивость сильно коррелированных систем // Докторская диссертация. Красноярск. 2010. 305с.
- 74. Doniach S. The Kondo lattice and weak antiferromagnetism // Physica B+C. 1977. V. 91. p. 231-234.
- 75. Хомский Д.И. Необычные электроны в кристаллах. М.:Знание. 1987. 64с.
- 76. https://home.cern/about/engineering/superconductivity
- 77. Kondo J. Resistance Minimum in Dilute Magnetic Alloys. // Progress of Theoretical Physics, 1964. Vol. 32. No. 1. P. 37-49.
- 78. Ott H.R., Walti Ch. Trends in Superconductivity of Heavy-Electron Metals. // J. of Superconductivity Incorporating Novel Magnetism. 2000. V. 13. No. 5. P. 837.
- 79. Steglich F., Aarts J., Bredl C.D., Lieke W., Meschede D., Franz W., Sch., Superconductivity in the Presence of String Pauli Paramagnetism: CeCu₂Si₂. // Phys. R.Let., 1979. 43 (25) p. 1892-1895.
- Annett J.F. Unconventional Pairing in Anomalous Superconductors // Physica C. 1999. 317-318. p. 1-8.
- Brison J.-P., Glemot L., Suderow H., Huxley A., Kambe Sh., Flouquet J. Heavy fermion superconductivity // Physica B. 2000. 280. p. 165-171.
- 82. Coleman P. Heavy Fermions: Electrons at the Edge of Magnetism //Handbook of Magnetism and Advanced Magnetic Materials. 2007. V.1. p. 95-148.
- 83. Sauls J.A. The Order Parameter for the Superconducting Phases of UPt₃ // Adv.Phys. 1994. V.43. p. 113-141.
- 84. Jourdan M., Huth M., Adrian H. Superconductivity mediated by spin fluctuations in the heavy-fermion compound UPd₂Al₃ // Nature. 1999. V. 398. p. 47-56.

- Agterberg D.F., Frigeri P.A., Kaur R.P., Koga A., Sigrist M. Magnetic fields and superconductivity without inversion symmetry in CePt₃Si // *Physica* B. 2006. V. 378-380. p. 351-354.
- 86. Bauer E., Hilscher G., Michor H., Paul C., Scheidt E.W., Gribanov A., Seropegin Y., Noel H., Sigrist M., Rogl P. Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt₃Si // Phys. Rev. Lett. 2004. V.92. 027003.
- 87. Palstra T.T.M., Menovsky A.A., van den Berg J., Dirkmaat A.J., Kes P.H., Nieuwenhuys G.J., Mydosh J.A. Superconducting and magnetic transitions in the heavy-fermion system URu₂Si₂ // Phys. Rev. Lett. 1985.V. 55. p.2727.
- 88. Mathur N.D., Grosche F.M., Julian S.R., Walker I.R., Freye D.M., Haselwimmer R.K.W. и Lonzarich G.G. Magnetically mediated superconductivity in heavy fermion compounds // Nature. 1998. V. 394. p. 39–43.
- Trovarelli O., Weiden M., Müller-Reisener R., Gómez-Berisso M., Gegenwart P., Deppe M., Geibel C., Sereni J. G., Steglich F. Evolution of magnetism and superconductivity in CeCu₂(Si_{1-x}Ge_x)₂ // Phys. Rev. B 1997. V. 56. p. 678-685.
- H.R.Ott. Chapter 5: Characteristic Features of Heavy-Electron Materials // Progress in Low-Temp. Phys. 1987. Vol. XI. p. 215.
- 91. Petrovic C., Pagliuso P.G., Hundley M.F., Movshovich R., Sarrao J.L., Thompson J.D., Fisk Z., Monthoux P. Heavy-fermion superconductivity in CeCoIn₅ at 2.3 K // J. Phys.: Condens. Matter. 2001. V. 13. L337-L342.
- 92. Sarrao J.L., Morales L.A., Thompson J.D., Scott B.L., Stewart G.R., Wastin F., Rebizant J., Boulet P., Colineau E., Lander G.H., Plutonium-based superconductivity with a transition temperature above 18 K // Nature 2002. V. 420. p. 297-299.
- 93. De Menezes O.L.T., Troper A., Lederer P., Gomes A.A. Valence fluctuation in Eu compounds: Role of charge screening // Phys. Rev. B 1978. V. 17. p. 1997-2003.
- 94. Pietri R., Andraka B., Kaczorowski D., Leithe-Jasper A., Rogl P. Magnetoresistance and low-temperature specific heat of the Yb compounds YbRhSn, YbPdBi, and YbPtSn // Phys. Rev. B 2000. V.61. p. 12169-12173.
- 95. Pavarini E., Koch E., Coleman P. Many-Body Physics: From Kondo to Hubbard Modeling and Simulation// Forschungszentrum Julich. 2015. Vol. 5. p. 1.1-1.34.
- 96. Павлов И. В., Хохлов А.Д., Физика твёрдого тела// Москва, изд-во "Знание". 2000.
 494c.
- 97. STOE WinXpow, Program Package for the Operation of Powder Diffractometers and Analysis of Powder Diffractograms, Version.2.20.
- 98. В.А. Тафеенко, Использование программ FULLPROF и WinPLOTR для обработки данных порошковой дифрактометрии. М., 2010, 48с.
- 99. Rodriguez-Carvajal J., "FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis", in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. 1990: Toulouse, France p. 127.

- 100.Roisnel T. and Rodriguez-Carvajal J., in Materials Science Forum, Proceedings of the European Powder Diffrection Conference (EPDIC7). 2001. p. 118.
- 101. Методичка Калмыкова
- 102.Sheldrick G. M. SYELXS-97: Program for the Solution of Crystal Structure. University of Gottingen, Germany. 1997.
- 103.Sheldrick G. M. SYELXL-97: Program for Crystal Structure Refinement. University of Gottingen. Germany. 1997.
- 104.P. McArdle. Oscail-X. // J.Appl.Cryst.1995. 28. P. 65-65.
- 105.Brandenbung K. DIAMOND. Gerhard DomagkStrab 3.2i Bonn. Germany. 1996.
- 106.Фетисов Г.В. «Синхротронное излучение. Методы исследования структуры веществ» М. 2007. с. 87-91, 338-346, 456-458.
- 107.Zlokazov V.B., Chernyshev V.V. MRIA a program for a full profile analysis of powder multiphase neutron-diffraction time-of-flight (direct and Fourier) spectra //J. Appl. Crystallogr. 1992. V. 25. p.447-451.
- 108.Michal D., Petricek V., Palatinus L. Introduction to JANA2006 //Acta. Cryst. 2006. V.62. p.46.
- 109.Schluter M., Jeitschko W., Ternary Lanthanoid Ruthenium Gallides with a High Gallium Content: Ln2Ru3Ga10 (Ln = Yb, Lu) with a New Structure Type and LnRu2Ga8 (Ln = La-Nd) with CaCo2Al8-type Structure // Inorg Chem., 2001. V. 40. p. 6362-6368.
- 110.Linsinger S., Eul M., Hermes W., Hoffmann R.-D., Pöttgen R., Intermediate-valent $Ce_{23}Ru_7Mg_4$ and $RE_{23}Ru_7Mg_4$ (RE = La, Pr, Nd) with $Pr_{23}Ir_7Mg_4$ -type Structure. // Z. Naturforsch. 2009. 64b. p. 1345.
- 111.Merlo, F., Pani, M., Canepa, F., & Fornasini, M. (1998). Phases around the 1:1:1 composition in the Yb–Au–Ge and Ca–Au–Ge systems. // J. Alloys and Compd. 1998. 264(1-2), p.82–88.
- 112.База Международного Ценра дифракционных данных ICDD, США
- 113.Shablinskaya K., Murashova E., Kurenbaeva Zh., Yaroslavtsev A., Seropegin Y., Kaczorowski D. Intermetallic compounds Ce₄Ru₃Ga₃ and La₃Ru₂Ga₂ with crystal structures of new types// J. Alloys Compd. 2013. V. 575. p. 183-189.
- 114.Solokha P., Curlik I., Giovannini M., Lee-Hone N.R., Reiffers M., Ryan D.H., Saccone A. Structural and physical properties of the new intermetallic compound Yb₃Pd₂Sn₂// Journal of Solid State Chemistry. 2011. V. 184. p.2498–2505.
- 115.Kripyakevich P.I. Structure Types of Intermetallic Compounds// Nauka, Moscow. 1977. 288 p.
- 116.F. Tappe, U.C. Rodewald, R.D. Hoffmann, R. Pöttgen, Cd₄ tetrahedra and condensed RE₆Rh trigonal prisms as building units in the rare earth-rich compounds RE₁₅Rh₅Cd₂ (RE= La, Ce, Pr, Nd)// Zeitschrift für Naturforschung, B: Chemical Sciences. 2011. V. 66. p. 559-564.
- 117.Dorrscheidt W., Niess N., Schafer H., Z. Naturforsch. 1977. V.32b. p.985.

- 118.Kußmann D., Hoffmann R.-D., Pottgen R. Syntheses and Crystal Structures of CaCuGe, CaAuIn, and CaAuSn – Three Different Superstructures of the KHg₂ Type. // Z. Anorg. Allg. Chem. 1998. 624. 1727
- 119.F.M. Schappacher, R. Pöttgen, Rare Earth-Rich Cadmium Compounds RE₄TCd (T = Co, Ru, Rh) with Gd₄RhIn Type Structure, Monatsh Chem. 2008. V.139. p.1137.
- 120.Tuncel S., Chevalier B., Matar S.F., Pöttgen R., Synthesis, Structure and Chemical Bonding of RE₄RuMg (RE = La, Nd, Sm, Gd, Ho). // Z Anorg Allg Chem. 2007. V. 633. p. 2019.
- 121.Tappe F., Hermes W., Eul M., Pöttgen R., Mixed cerium valence and unusual Ce–Ru bonding in Ce₂₃Ru₇Cd₄. // Intermetallics. 2009. 17. P. 1035-1040.
- 122.Niehaus O., Bartsch T., Pöttgen R., Zn_4 tetrahedra as basic building units in intermediatevalent Ce₂₃Ru₇Zn₄, Solid State Sciences. 2015. V.46. p. 95 – 101.
- 123.Van Vucht J.H.N., Buschow K.H.J. The crystal structure of La₂Ni₃ // J. of the Less-Common Metals. 1976. V.46. p.133-138.
- 124.Murashova E., Shablinskaya K., Kurenbaeva Zh., Yaroslavtsev A., Menushenkov A., Chernikov R., Grishina O., Nesterenko S., Seropegin Y., Kaczorowski D. Synthesis, crystal structure and physical properties of Ce₂Ru₂Ga₃. // Intermetallics. 2013. V. 38. P. 23-29.
- 125.Kaczorowski D., Murashova E., Kurenbaeva Zh., Antiferromagnetic ordering in an intermediate valence compound Ce₉Ru₄Ga₅ // J. Alloys Compd., 2013. 557. 23-26.
- 126. Röhler J. L_{III}-absorption on valence fluctuating materials.// J Magn Magn Mater. 1975. 47-48. 175-80.
- 127.Lawrence J. M., Riseborough P. S., Parks R. D. Valence fluctuation phenomena. // Rep. Prog. Phys. 1981. V.44 No.1.
- 128.Kaczorowski D., Rogl P., Hiebl K. Magnetic behavior in a series of cerium ternary intermetallics: Ce₂T₂In (T=Ni, Cu, Rh, Pd, Pt, and Au). // hys. Rev. B 1994. V. 54. P. 9891.
- 129.Wohlleben D., Wittershagen B., Resistivity anomalies due to valence fluctuations. // Adv. Phys. 1985. V. 34. p. 403–443.

8 Благодарности

Автор выражает благодарности коллективу кафедры общей химии химического факультета МГУ имени М.В.Ломоносова и лично доценту, к.х.н. Грибанову А.В., с.н.с., к.х.н. Куренбаевой Ж.М., с.н.с., к.х.н. Мурашовой Е.В. за помощь в работе и обсуждении результатов данной работы. Диссертант признателен в.н.с., к.х.н. Калмыкову К.Б., к.ф.-м.н. Ярославцеву А.А., профессору Качаровски Д. за содействие в проведении исследований. Автор также благодарит Российский Фонд Фундаментальных Исследований за материальную поддержку (грант №18-03-00656а).

9 Приложения.

N⁰	Состав. ат.%	these JIDCA	атомные %			ወሙለ
равновесия	La-Ru-Al	фаза - ЛРСА	La	Ru	Al	ΓΨΑ
		Ru	0	100	0	+
1	10-70-20	RuAl	0	52	48	+
		LaRu ₂	34	64	2	+
		LaRu ₂	34	51	16	+
2	55-35-10	La ₇ Ru ₃	65	33	2	+
		RuAl	2	52	46	+
		$La_5Ru_3Al_2$	50	30	20	+
3	49-34-17	La ₇ Ru ₃	70	29	1	+
		RuAl	0	55	45	+
		La ₄ RuAl	66	18	16	+
4	64.5-25.5-10	$La_5Ru_3Al_2$	49	31	20	+
		La ₃ Ru	73	26	1	+
		La ₅ Ru ₃ Al ₂	51	31	18	+
5	50-30-20	La ₄ RuAl	67	17	16	+
		La ₃ RuAl ₃	44	16	40	+
		La ₃ Al	74	1	25	+
6	57.9-5.3-36.8	La ₃ RuAl ₃	46	15	39	+
		LaAl	55	1	44	+
		La ₃ RuAl ₃	42	16	42	+
7	40-40-20	La ₅ Ru ₃ Al ₂	48	33	19	+
		La ₂ RuAl ₂	-	-	-	+
		$La_5Ru_3Al_2$	49	33	18	+
8	33.3-33.3-33.4	RuAl	0	52	48	+
		La ₂ RuAl ₂	40	21	39	+
		La ₂ RuAl ₃	33	18	49	+
9	25.2-25.4-49.4	La_2RuAl_2	39	20	41	+
		RuAl	0	50	50	+
		La ₃ RuAl ₃	43	14	43	+
10	33.3-33.3-33.4	La ₂ RuAl ₂	40	19	41	+
		La_2RuAl_3	33	17	50	+
		LaAl	54	1	45	+
11	40-20-40	La ₃ RuAl ₃	44	15	41	+
		La_2RuAl_3	36	16	48	-
		LaAl	50	0	50	-
12	33.3-16.7-50	$La_3Ru_4Al_{12}$	17	22	61	+
		La ₂ RuAl ₃	35	17	48	+
13	30-10-60	LaAl	47	6	47	-

Таблица 55. Данные локального рентгеноструктурного анализа и рентгенофазового анализа для сплавов системы La-Ru-Al при 550 °C

		LaAl ₂	33	2	65	+
		$La_3Ru_4Al_{12}$	16	21	63	+
		La ₂ RuAl ₃	33	18	49	+
14	15-30-55	$La_3Ru_4Al_{12}$	16	22	62	+
		RuAl ₂	0	35	65	+
		RuAl ₂	0	35	65	+
15	16.5-24.5-59	$La_3Ru_4Al_{12}$	16	22	62	+
		La ₂ RuAl ₃	33	17	50	+
		LaAl ₂	33	6	61	+
16	16-20-64	RuAl ₂	0	36	64	+
		$La_3Ru_4Al_{12}$	16	22	62	+
		$LaRu_2Al_8$	-	-	-	+
17	10-20-70	RuAl ₂	-	-	-	+
		LaAl ₂	-	-	-	+
		LaAl ₂	34	0	66	+
18	18.2-9.1-72.7	LaAl ₃	26	0	74	+
		LaRu ₂ Al ₈	9	20	71	+
		LaRu ₂ Al ₈	10	20	70	+
19	20-3.4-76.6	La ₃ Al ₁₁	22	0	78	+
		LaAl ₃	26	0	74	+
		LaRu ₂ Al ₈	-	-	-	+
20	13.7-10-76.3	La_3Al_{11}	-	-	-	+
		$LaRu_2Al_{10}$	-	-	-	+
	12.0.4.0.02.0	La_3Al_{11}	21	0	79	+
21	13.0-4.0-83.0	$LaRu_2Al_{10}$	8	15	77	+
		Al	3	0	97	+
		Al	0	0	100	+
22	3.3-10.9-85.8	RuAl ₆	0	16	84	+
		$LaRu_2Al_{10}$	8	17	75	+
		$LaRu_2Al_{10}$	8	16	77	+
23	2.6-17.7-79.7	Ru_4Al_{13}	0	24	76	+
		RuAl ₆	0	16	84	+
		LaRu ₂ Al ₈	9	19	72	+
24	2.6-25.5-71.9	Ru_4Al_{13}	0	25	75	+
		RuAl ₂	0	34	66	+

атомные % Номер фаза - ЛРСА ΡΦА Состав равновесия Ce Ru Al Al +эксперимент не 1 8 13 79 Ce_3Al_{11} +проводился $CeRu_2Al_{10}$ +Al +эксперимент не 2 2 10 88 $CeRu_2Al_{10}$ +проводился $RuAl_6$ +RuAl₆ +эксперимент не 3 3 18 79 $CeRu_2Al_{10}$ +проводился Ru_4Al_{13} + Ce_3Al_{11} +эксперимент не 4 10 13 77 CeRu₂Al₁₀ проводился $Ce_2Ru_3Al_{15}$ + $CeRu_2Al_{10}$ +эксперимент не 5 3 21 76 Ru_4Al_{13} +проводился $RuAl_2$ + $\overline{Ce_3Ru_4Al_{12}}$ +эксперимент не $Ce_2Ru_3Al_{15}$ 6 20 8 72 +проводился CeAl₃ +16 20 64 $Ce_3Ru_4Al_{12}$ +7 8 69 $Ce_2Ru_3Al_{15}$ 16 73 23 11 + $RuAl_2$ 34 65 1 +CeAl₃ +эксперимент не 8 21 12 67 $CeAl_2$ +проводился $Ce_3Ru_4Al_{12}$ + CeAl₂ +эксперимент не 9 10 63 27 $Ce_3Ru_4Al_{12}$ +проводился CeAl₂ p-p + $Ce_3Ru_4Al_{12}$ +эксперимент не 10 8 30 62 $RuAl_2$ +проводился RuAl +CeAl₂ p-p 34 60 6 +11 34 11 55 Ce_2RuAl_3 34 15 51 + $Ce_3Ru_4Al_{12}$ 17 20 63 + Ce_2RuAl_3 35 17 48 +12 33 17 50 Ce₂RuAl₃ p-p 35 27 38 + $Ce_3Ru_4Al_{12}$ 21 16 63 + $Ce_3Ru_4Al_{12}$ +эксперимент не 13 20 30 50 Ce₂RuAl₃ p-p +проводился RuAl +CeAl₂ +эксперимент не 14 41 4 55 CeAl₂p-p +проводился CeAl +CeAl +эксперимент не 15 38 7 55 CeAl₂ p-p +проводился Ce₂RuAl₃ p-p +Ce₂RuAl₃ p-p 33 16 50 +49 39 Ce₂RuAl 16 12 не найден +CeAl не найден +Ce₂RuAl 52 23 25 +17 35 20 45 Ce₂RuAl₃ p-p 34 21 45 +

Таблица 56. Данные локального рентгеноструктурного анализа и рентгенофазового анализа для сплавов системы Ce-Ru-Al при 550°C

					1	1	1	
				$Ce_3Ru_4Al_{12}$	16	21	63	+
				Ce ₂ RuAl ₃ p-p	34	24	42	-
18	5	45	50	RuAl	0	48	52	-
				RuAl	0	45	55	-
				Ce ₂ RuAl ₃ p-p	33	26	41	+
19	33	30	37	CeRuAl	33	35	32	+
				RuAl	0	51	49	+
				CeAl	51	0	49	+
20	10	55	35	Ce ₂ RuAl	51	26	23	+
				Ce ₃ Al	76	0	24	+
				CeRuAl	35	32	33	+
21	35	30	35	Ce ₂ RuAl ₃ p-p	34	26	40	+
				Ce ₅ Ru ₃ Al ₂	51	29	20	+
				CeRuAl	33	35	32	+
22	39	34	27	Ce ₄ Ru ₃ Al ₂	42	35	24	+
				$Ce_{\epsilon}Ru_{2}Al_{2}$	50	31	19	+
				$Ce_4Ru_2Al_2$	42	35	23	+
23	39	40	21	CeRuAl	35	34	31	+
	0,			Ce ₂ Ru ₂ Al	41	41	18	+
				CeRuAl	-11	71	10	+
24	20	40	40	CeaRua Al	эксп	еримент	не	
27	20	40		RuAl	пр	оводился		
				RuA1	0	51	/10	
25	34	10	18	CeRu, n n	34	52	1/	
23	54	40	10	$CeRu_2 p-p$		30	20	+
	-			Ce2Ru2AI	22	62	20	+
26	25	65	10		32	0.5	5	+
20	23	05		KUAI	H	енаиден		Ŧ
				$C_{\alpha}D_{\alpha}$	27.20	61 20	11 24	
				CeRu ₂ p-p	27,28	61,38	11,34	+
27	10	70	20	CeRu ₂ p-p Ru	27,28 0	61,38 99	11,34 1	+ +
27	10	70	20	CeRu2 p-p Ru CeRu2	27,28 0 30	61,38 99 64	11,34 1 6	+ + + +
27	10	70	20	CeRu2 p-p Ru CeRu2 RuAl	27,28 0 30 0	61,38 99 64 56	11,34 1 6 44	+ + + + + + +
27	10	70	20	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ CeRu_2 p-p \end{array}$	27,28 0 30 0 34	61,38 99 64 56 53	11,34 1 6 44 13	+ + + + + +
27	10 50	70 40	20 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ \end{array}$	27,28 0 30 0 34 41	61,38 99 64 56 53 41	11,34 1 6 44 13 18	+ + + + + + + + + + + + + + + + + + + +
27	10 50	70 40	20 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \end{array}$	$ \begin{array}{r} 27,28\\0\\30\\0\\34\\41\\54\\42\end{array} $	61,38 99 64 56 53 41 41 22	11,34 1 6 44 13 18 5 24	+ + + + + + +
27	10 50	70 40	20 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ \end{array}$	27,28 0 30 0 34 41 54 43	61,38 99 64 56 53 41 41 33	11,34 1 6 44 13 18 5 24	+ + + + + + + + +
27 28 29	10 50 45	70 40 34	20 10 21	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ \end{array}$	$ \begin{array}{r} 27,28\\0\\30\\0\\34\\41\\54\\43\\41\\50\end{array} $	61,38 99 64 56 53 41 41 33 41 20	11,34 1 6 44 13 18 5 24 18 20	+ + + + + + + + + + +
27 28 29	10 50 45	70 40 34	20 10 21	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ \end{array}$	$ \begin{array}{r} 27,28\\ 0\\ 30\\ 0\\ 34\\ 41\\ 54\\ 43\\ 41\\ 50\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55$	61,38 99 64 56 53 41 41 33 41 30	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\\hline\end{array} $	+ + + + + + + + + + + + +
27 28 29	10 50 45	70 40 34	20 10 21	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_4Ru_3 p-p \\ Ce_$	$ \begin{array}{r} 27,28\\0\\30\\0\\34\\41\\54\\43\\41\\50\\55\\55\\51\end{array} $	61,38 99 64 56 53 41 41 33 41 30 40	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\10\end{array} $	+ + + + + + + + + + + + +
27 28 29 30	10 50 45 44	70 40 34 38	20 10 21 18	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_4Ru_3 p-p \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_5Al_2 \\ Ce_5Ru_5Al_5 \\ Ce_$	$ \begin{array}{r} 27,28\\0\\30\\0\\34\\41\\54\\43\\41\\50\\55\\51\\42\end{array} $	$ \begin{array}{r} 61,38\\99\\64\\56\\53\\41\\41\\33\\41\\30\\40\\30\\20\end{array} $	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\19\\19\end{array} $	+ + + + + + + + + + + + + + -
27 28 29 30	10 50 45 44	70 40 34 38	20 10 21 18	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru$	$ \begin{array}{r} 27,28\\0\\30\\0\\34\\41\\54\\43\\41\\50\\55\\51\\42\\62\\62\\62\\62\\62\\62\\62\\62\\62\\62\\62\\62\\62$	61,38 99 64 56 53 41 41 33 41 30 40 30 39	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\19\\19\\19\end{array} $	+ + + + + + + + + + + + + + +
27 28 29 30	10 50 45 44	70 40 34 38	20 10 21 18	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_4Ru_3 p-p \\ Ce_5Ru_3Al_2 \\ Ce_4Ru_3 p-p \\ Ce_5Ru_3Al_2 \\ Ce_6Ru_3Al_2 \\ Ce_6Ru_5Al_2 \\ Ce_6Ru_5Al_5Al_5 \\ Ce_6Ru_5Al_5 \\ Ce_6Ru_5Al_5 \\ Ce_6Ru_5Al_5 \\ Ce_6Ru_5Al_5 \\$	$ \begin{array}{r} 27,28\\ 0\\ 30\\ 0\\ 34\\ 41\\ 54\\ 43\\ 41\\ 50\\ 55\\ 51\\ 42\\ 63\\ 63\\ 60\end{array} $	61,38 99 64 56 53 41 33 41 30 40 30 39 35	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\19\\19\\19\\2\\\end{array} $	+ + + + + + + + + + + + + + + + + +
27 28 29 30 31	10 50 45 44 59	70 40 34 38 31	20 10 21 18 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ \hline CeRu_2 \\ RuAl \\ \hline CeRu_2 p-p \\ \hline Ce_2Ru_2Al \\ \hline Ce_4Ru_3 p-p \\ \hline Ce_4Ru_3Al_2 \\ \hline Ce_2Ru_2Al \\ \hline Ce_2Ru_2Al \\ \hline Ce_5Ru_3Al_2 \\ \hline Ce_4Ru_3 p-p \\ \hline Ce_5Ru_3Al_2 \\ \hline Ce_2Ru_2Al \\ \hline Ce_2Ru_2Al \\ \hline Ce_7Ru_3Al_2 \\ \hline Ce_1_6Ru_9 \\ \hline Ce_7Ru_3 \\ \hline \end{array}$	$ \begin{array}{r} 27,28\\0\\30\\0\\34\\41\\54\\43\\41\\50\\55\\51\\42\\63\\68\\12\end{array} $	$ \begin{array}{r} 61,38\\99\\64\\56\\53\\41\\41\\33\\41\\30\\40\\30\\39\\35\\31\\26\end{array} $	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\19\\19\\2\\1\\1\end{array} $	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31	10 50 45 44 59	70 40 34 38 31	20 10 21 18 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_7Ru_3 \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ \end{array}$	$\begin{array}{r} 27,28 \\ 0 \\ 30 \\ 0 \\ 34 \\ 41 \\ 54 \\ 43 \\ 41 \\ 50 \\ 55 \\ 51 \\ 42 \\ 63 \\ 68 \\ 50 \\ 50 \\ \end{array}$	$ \begin{array}{r} 61,38\\99\\64\\56\\53\\41\\41\\33\\41\\30\\40\\30\\39\\35\\31\\30\\5\end{array} $	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\19\\19\\2\\1\\20\\1\end{array} $	+ + + + + + + + + + + + + + + + + +
27 28 29 30 31	10 50 45 44 59	70 40 34 38 31	20 10 21 18 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_7Ru_3 \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_5Au_3 \\ Ce_5Ru_5Au_3 \\ Ce_5Ru_5Au_5 \\ Ce_5Ru_5 \\ Ce$	$\begin{array}{r} 27,28\\ 0\\ 30\\ 0\\ 34\\ 41\\ 54\\ 43\\ 41\\ 50\\ 55\\ 51\\ 42\\ 63\\ 68\\ 50\\ 50\\ 50\\ \end{array}$	$\begin{array}{r} 61,38\\99\\64\\56\\53\\41\\41\\30\\40\\30\\30\\39\\35\\31\\30\\30\\30\\\end{array}$	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\19\\19\\2\\1\\20\\20\\20\end{array} $	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31 32	10 50 45 44 59 61	70 40 34 38 31 29	20 10 21 18 10 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_7Ru_3 \\ Ce_7Ru_3 \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_7Al_4 \\ \end{array}$	$\begin{array}{r} 27,28\\ 0\\ 30\\ 0\\ 34\\ 41\\ 54\\ 43\\ 41\\ 50\\ 55\\ 51\\ 42\\ 63\\ 68\\ 50\\ 50\\ 69\\ \end{array}$	$\begin{array}{r} 61,38\\99\\64\\56\\53\\41\\41\\33\\41\\30\\40\\30\\39\\35\\31\\30\\30\\25\end{array}$	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\19\\19\\2\\1\\20\\20\\6\\\end{array} $	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31 32	10 50 45 44 59 61	70 40 34 38 31 29	20 10 21 18 10 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ \hline CeRu_2 \\ RuAl \\ \hline CeRu_2 p-p \\ \hline Ce_2Ru_2Al \\ \hline Ce_4Ru_3 p-p \\ \hline Ce_4Ru_3Al_2 \\ \hline Ce_2Ru_2Al \\ \hline Ce_2Ru_2Al \\ \hline Ce_5Ru_3Al_2 \\ \hline Ce_5Ru_3Al_2 \\ \hline Ce_4Ru_3 p-p \\ \hline Ce_5Ru_3Al_2 \\ \hline Ce_7Ru_3 \\ \hline Ce_7Ru_3 \\ \hline Ce_7Ru_3 \\ \hline Ce_5Ru_3Al_2 \\ \hline Ce_5Ru_3Al_2 \\ \hline Ce_7Ru_3 \\ \hline Ce_7Ru_3 \\ \hline Ce_7Ru_3 \\ \hline Ce_7Ru_3 Al_2 \\ \hline Ce_7Ru_3 Al_2 \\ \hline Ce_7Ru_3 \\ \hline C$	27,28 0 30 0 34 41 54 43 41 50 55 51 42 63 68 50 50 69 He o	61,38 99 64 56 53 41 41 33 41 30 40 30 30 39 35 31 30 30 25 обнаружен	11,34 1 6 44 13 18 5 24 18 20 5 19 19 2 1 20 20 6 Ha	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31 32	10 50 45 44 59 61	70 40 34 38 31 29	20 10 21 18 10 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_3Ru_3Al_2 \\ Ce_3Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_5Au_3 \\ Ce_5Ru_5Au_5 \\ Ce_5Ru_5 \\ Ce$	27,28 0 30 0 34 41 54 43 41 50 55 51 42 63 68 50 50 69 He o 50	61,38 99 64 56 53 41 41 33 41 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 5 6 30 30 30	11,34 1 6 44 13 18 5 24 18 20 5 19 19 20 6 Ha 20 6	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31 32 33	10 50 45 44 59 61 65	70 40 34 38 31 29 25	20 10 21 18 10 10 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_4Ru_3 p-p \\ Ce_5Ru_3Al_2 \\ Ce_7Ru_3 \\ Ce_7Ru_3 \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_7Ru_3 \\ $	$\begin{array}{r} 27,28 \\ 0 \\ 30 \\ 0 \\ 34 \\ 41 \\ 54 \\ 43 \\ 41 \\ 50 \\ 55 \\ 51 \\ 42 \\ 63 \\ 68 \\ 50 \\ 50 \\ 69 \\ He o \\ 50 \\ 69 \\ \end{array}$	61,38 99 64 56 53 41 41 30 40 30 30 30 30 30 25 6наружен 30 27	11,34 1 6 44 13 18 5 24 18 20 5 19 19 20 20 6 Ha 20 4	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31 32 33	10 50 45 44 59 61 65	70 40 34 38 31 29 25	20 10 21 18 10 10 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_4Ru_3 p-p \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_7Al_4 \\ Ce_7Ru_3 \\ Ce_{23}Ru_7Al_4 p-p \\ Ce_{23}Ru_7Al_4 \\ Pp \\ C$	$\begin{array}{r} 27,28\\ 0\\ 30\\ 0\\ 34\\ 41\\ 54\\ 43\\ 41\\ 50\\ 55\\ 51\\ 42\\ 63\\ 68\\ 50\\ 50\\ 69\\ He\ 0\\ 50\\ 69\\ 70\\ \end{array}$	61,38 99 64 56 53 41 41 33 41 30 30 35 31 30 25 бнаружев 30 27 21	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\19\\19\\2\\1\\20\\20\\6\\4\\20\\4\\9\end{array} $	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31 32 33	10 50 45 44 59 61 65	70 40 34 38 31 29 25	20 10 21 18 10 10 10	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_4Ru_3 p-p \\ Ce_5Ru_3Al_2 \\ Ce_7Ru_3 \\ Ce_7Ru_3 \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_3Al_2 \\ Ce_2Ru_3A $	$\begin{array}{r} 27,28\\ 0\\ 30\\ 0\\ 34\\ 41\\ 54\\ 43\\ 41\\ 50\\ 55\\ 51\\ 42\\ 63\\ 68\\ 50\\ 50\\ 69\\ He o\\ 50\\ 69\\ He o\\ 50\\ 69\\ 70\\ 68\\ \end{array}$	61,38 99 64 56 53 41 33 41 30 40 30 30 30 30 30 30 30 30 30 30 30 30 30 25 обнаружен 30 27 21 27	$ \begin{array}{r} 11,34\\1\\6\\44\\13\\18\\5\\24\\18\\20\\5\\19\\19\\2\\1\\20\\5\\19\\19\\2\\0\\6\\4\\9\\5\\5\end{array} $	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31 32 33 34	10 50 45 44 59 61 65 69	 70 40 34 38 31 29 25 27 	20 10 21 18 10 10 10 4	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3 p-p \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2$	27,28 0 30 0 34 41 54 43 41 50 55 51 42 63 68 50 50 69 He o 50 69 70 68 He o	61,38 99 64 56 53 41 41 33 41 30 30 30 30 30 30 30 30 30 30 25 бнаружет 30 27 21 27 60 27 21 27 60 99	11,34 1 6 44 13 18 5 24 18 20 5 19 19 20 6 Ha 20 4 9 5	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31 32 33 34	10 50 45 44 59 61 65 69	70 40 34 38 31 29 25 27	20 10 21 18 10 10 10 4	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_3Al_2 \\ Ce_2Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_7Al_4 \\ Ce_2Ru_3Al_4 \\ Ce_2Ru_7Al_4 \\ Ce_2Ru_3Al_4 \\ Ce$	27,28 0 30 0 34 41 54 43 41 50 55 51 42 63 68 50 50 69 He o 70 68 He o 70	61,38 99 64 56 53 41 41 33 41 30 30 30 30 30 30 25 бнаружен 30 27 21 27 61,38 99 64 53 60 61,38 99 64 53 61,38 61,09 23	11,34 1 6 44 13 18 5 24 18 20 5 19 19 20 6 Ha 20 6 Ha 7	+ + + + + + + + + + + + + + + + + + +
27 28 29 30 31 32 33 34 35	10 50 45 44 59 61 65 69 64	70 40 34 38 31 29 25 27 21	20 10 21 18 10 10 10 4	$\begin{array}{c} CeRu_2 p-p \\ Ru \\ CeRu_2 \\ RuAl \\ CeRu_2 p-p \\ Ce_2Ru_2Al \\ Ce_4Ru_3 p-p \\ Ce_4Ru_3Al_2 \\ Ce_4Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_2Al \\ Ce_2Ru_3Al_2 \\ Ce_2Ru_3Al_2 \\ Ce_7Ru_3 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_5Ru_3Al_2 \\ Ce_2Ru_7Al_4 \\ Ce_7Ru_3 \\ Ce_2Ru_7Al_4 \\ Ce_2Ru_7Al_4 \\ Ce_2Ru_7Al_4 \\ Ce_2Ru_3Al_2 \\ Ce_2Ru_7Al_4 \\ Ce_2Ru_3Al_2 \\ Ce_2Ru_7Al_4 \\ Ce_7Ru_3 \\ C$	27,28 0 30 0 34 41 54 43 41 50 55 51 42 63 68 50 50 69 He o 50 69 70 68 He o 70 50	61,38 99 64 56 53 41 33 41 30 30 30 30 30 30 30 30 25 бнаружев 30 27 21 27 обнаружев 23 31	11,34 1 6 44 13 18 5 24 18 20 5 19 19 20 6 Ha 20 6 Ha 7 19	+ + + + + + + + + + + + + + + + + + +

				$Ce_{23}Ru_7Al_4$	69	21	10	+
	66	10		Ce ₃ Al	0.1101		+	
36			34	Ce ₂ RuAl	яксперимент не		не	+
				Ce ₄ RuAl	проводился			+

Таблица 57. Данные локального рентгеноструктурного анализа и рентгенофазового анализа для сплавов системы Sm-Ru-Al

•

Номер	Состав сплава. ат.%		а. ат.%	Ф	Данны	Данные									
равновесия	Sm	Ru	Al	Фазы	Sm	Ru	Al	РФА							
				SmAl ₃	18	0	82	+							
1	10	10	80	$SmRu_2Al_{10}$	8	17	75	+							
				Al	0	0	99	+							
				$Sm_2Ru_3Al_{15}$	-	-	-	+							
2	10	15	75	$SmRu_2Al_{10}$	8	17	75	+							
				SmAl ₃	25	0	75	+							
				$SmRu_2Al_{10}$	5	12	83	+							
3	2	18	80	$Sm_2Ru_3Al_{15}$	9	15	76	+							
				Ru_4Al_{13}	0	24	76	+							
				$Sm_2Ru_3Al_{15}$	8	16	74	+							
4	7	22	71	Ru_4Al_{13}	0	26	74	-							
				$RuAl_2$	0	37	63	-							
				$SmAl_2$	32	0	68	+							
5	20	6	74	SmAl ₃	24	0	76	+							
				$Sm_2Ru_3Al_{15}$	10	15	75	+							
	20 1			$SmAl_2$	31	0	69	+							
6		10	70	$Sm_2Ru_3Al_{15}$	10	16	74	+							
				$Sm_3Ru_4Al_{12}$	15	21	65	+							
	5										RuAl	0	46	55	+
7		35	60	$RuAl_2$	0	33	67	+							
				$Sm_3Ru_4Al_{12}$	18	23	60	+							
				SmAl	49	2	49	+							
8	40	5	55	$SmAl_2(p-p)$	34	7	59	+							
				Sm_2RuAl_3	34	17	49	+							
				Sm_2RuAl_3	31	16	53	-							
9	27	10	63	SmAl ₂ p-p	32	8	60	+							
				$Sm_3Ru_4Al_{12}$	14	23	64	+							
				Sm ₂ RuAl ₃ p-p	33	24	43	+							
10	24	23	53	$Sm_3Ru_4Al_{12}$	16	25	60	+							
				Sm ₂ RuAl ₃ p-p	32	45	23	+							
				RuAl	0	52	47	-							
11	22.1	27.2	50.7	Sm ₂ RuAl ₃	33	26	42	+							
				$Sm_3Ru_4Al_{12}$	16	25	60	+							
				Sm ₂ RuAl ₃	34	20	46	+							
12	50.2	7.5	42.3	SmAl	51	1	49	-							
				Sm ₂ Al	65	1	33	+							

				Sm ₄ RuAl	63	19	18	-
13	60	5	35	Sm ₂ RuAl ₃	32	19	49	+
				Sm ₂ Al	62	0	38	-
				Sm ₄ RuAl	66	18	16	-
14	40	15	45	Sm ₂ RuAl ₃ (p-p)	33	13	54	+
				Sm_2RuAl_3	33	16	51	+
				Sm ₂ RuAl ₃ (p-p)	33	29	39	+
15	46	24	30	Sm ₄ RuAl	66	18	16	+
				Sm ₃ Ru	73	27	0	-
				Sm ₄ RuAl	72	13	15	+
16	5 70 2	20	10	Sm ₃ Ru	-	-	-	+
				Sm_5Ru_2	72	28	0	+
				$\mathrm{Sm}_{44}\mathrm{Ru}_{25}$	66	34	0	-
17	33.3	55.6	11.1	SmRu ₂ p-p	32	53	15	+
				Sm ₂ RuAl ₃	32	31	37	+
				$\mathrm{Sm}_{44}\mathrm{Ru}_{25}$	62	38	0	+
18	51.98	42.65	5.373	SmRu ₂ p-p	30	61	9	+
				эвтектика	58	42	0	-
				SmRu ₂	31	63	6	+
19	14.71	65.27	20.02	RuAl	0	56	44	+
				Ru	1	93	7	+
				RuAl	0	55	45	+
20	20	60	20	SmRu ₂	30	63	6	+
				SmRu ₂	24	61	15	+
				RuAl	0	54	46	+
21	33.3	43.7	23	Sm ₂ RuAl ₃ p-p	32	41	27	+
				SmRu ₂ p-p	31	55	14	+
				SmRu ₃ Al ₁₀	7	24	69	+
22	10	23	67	RuAl ₂	0	37	63	+
				$Sm_3Ru_4Al_{12}$	15	22	63	+