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Phenotypic integration and modularity influence morphological disparity and
evolvability. However, studies addressing how morphological integration and
modularity change for long periods of genetic isolation are scarce. Here, we
investigate patterns of phenotypic integration and modularity in the skull of
phenotypically and genetically distinct populations of the Artic fox (Vulpes
lagopus) from the Commander Islands of the Aleutian belt (i.e. Bering and
Mednyi) that were isolated ca 10 000 years by ice-free waters of the Bering
sea. We use three-dimensional geometric morphometrics to quantify the
strength of modularity and integration from inter-individual variation
(static) and from fluctuating asymmetry (random developmental variation)
in both island populations compared to the mainland population (i.e. Chu-
kotka) and we investigated how changes in morphological integration and
modularity affect disparity and the directionality of trait divergence. Our
results indicate a decrease in morphological integration concomitant to an
increase in disparity at a developmental level, from mainland to the smallest
and farthest population of Mednyi. However, phenotypic integration is higher
in both island populations accompanied by a reduction in disparity compared
to the population of mainland at a static level. This higher integration may
have favoured morphological adaptive changes towards specific feeding
behaviours related to the extreme environmental settings of islands. Our
study demonstrates how shifts in phenotypic integration and modularity
can facilitate phenotypic evolvability at the intraspecific level that may lead
to lineage divergence at macroevolutioanry scales.
1. Introduction
Phenotypic integration and modularity determine how different traits within a
given structure evolve independently or in a coordinate fashion (e.g. [1]). Accord-
ingly, both phenotypic integration and modularity influence phenotypic disparity
and evolvability (e.g. [2]). Patterns of phenotypic integration and modularity can
be investigated through quantitative analysis of morphology at different levels
such as evolutionary (i.e. among species means of an evolutionary lineage),
static (i.e. among adult individuals of the same species) or developmental (i.e.
random changes in development or fluctuating asymmetry) [3].

As genetic isolation influences development due to genomic coadaptation [4],
isolated populations with different environmental settings represent a good
opportunity to investigate emerging modularity and integration shifts. Moreover,
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Figure 1. Phenotypic analysis in Artic fox populations. (a) Area of study (Chukotka/Bering and Mednyi Islands); (b) landmarks digitized in an Artic fox’s skull; (c)
bivariate graph depicted from the first two PCs of SC; (d ) shape changes accounted for by each PC. In black are the deviations from the consensus to each extreme
shape.
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population bottlenecks and genetic drift can influence changes
that are not necessarily coadapted or in response to different
environmental settings [4]. These changes may later facilitate
or constrain functional adaptations to these new ecological
venues at a macroevolutionary scale (e.g. [1,5]). Moreover, gen-
etic isolation might indeed facilitate ecological specialization
when environmental conditions are relatively stable, and even-
tually, lead to population decline after abrupt environmental
changes [6]. However, studies on phenotypic integration and
modularity among isolated populations of the same species
adapted to different environmental conditions are scarce.
Here, we investigate the effect of geographical isolation on phe-
notypic integration, evolvability and ecological specialization
by comparing the patterns of integration and modularity in
the skull of three populations of the Artic fox (Vulpes lagopus),
one from the mainland (Chukotka) and two isolated from the
Commander Islands of the Aleutian belt (i.e. Mednyi and
Bering Islands; figure 1a).

The Artic foxes from Commander Islands represent
genetically unique populations as a consequence of their
extended isolation (ca 10 000 years) by ice-free waters from
mainland Arctic foxes of the Chukchi Peninsula in Far East
continental Russia [7–10]. Indeed, genetic data indicate that
these two populations are separated from all the other
populations of Arctic foxes, and they also exhibit the lowest
genetic diversity (i.e. low levels of mtDNA and microsatellite
variation) among Arctic foxes [9,11,12].

Food resources available to Arctic foxes living on the
Commander Islands differ from those available to the main-
land population [13–16]. While voles and other rodents are
generally the main prey of Arctic foxes on the mainland
throughout the year [13,14,17], they play a minor role in the
diet of foxes from Bering Island and they are absent from
Mednyi [15]. In contrast, the main food resource of Artic
foxes from Commander Islands range from sea birds (e.g.
Fulmarus glacialis) and newborn seal pups (Callorhinus ursi-
nus) during the summer season to carcasses of sea otters
(Enhydra lutris) and fur seals [15,16,18,19]. Therefore, clear
differences at the genetic, morphological and ecological
levels have been found among mainland and island foxes.

In this study, we specifically test: (i) whether there is an
increase of developmental instability in the skull of Artic
foxes associated with the degree of geographical isolation;
(ii) whether the genetic isolation of island populations corre-
lates with changes in the developmental integration and
modularity, using fluctuating asymmetry (FA, e.g. [20]) or
random developmental variation; (iii) whether the static
(between adult individuals) integration patterns of each popu-
lation are similar to the developmental patterns and (iv) how
changes in morphological integration and modularity affect
disparity and the directionality of trait divergence. These
questions assess the extent to which patterns of developmental
integration and modularity can be modified intraspecifically in
genetically isolated populations and how this can facilitate or
constrain phenotypic evolvability and ecological differentiation
at macroevolutionary scales.
2. Material and methods
A sample of 134 skulls belonging to adult individuals of three
different populations of Artic foxes was scanned in three-dimen-
sions using a Next Engine surface scanner. These included 51



Table 1. Results of the Procrustes ANOVA computed to test the effect of allometry for each population of Artic foxes. Log(Cs) refers to the effect of skull size
among individuals (total allometry); populations is the differences in skull shape among the three populations of Artic foxes analysed; and log(Cs): populations
refers to allometric differences among the three populations; residuals is the morphological variance in the skull of Artic foxes explained by other factors.

symmetric component d.f. SS MS Rsq F Z p-value

log(CS) 1 0.012 0.012 0.099 19.899 7.444 0.001

Pop 2 0.029 0.015 0.250 25.020 11.744 0.001

log(CS): Pop 2 0.001 0.001 0.012 1.234 3.253 0.001

residuals 128 0.074 0.001 0.639

total 133 0.116

fluctuating asymmetry d.f. SS MS Rsq F Z Pr(>F )

log(CS) 1 0.001 0.001 0.010 1.367 1.332 0.099

Pop 2 0.002 0.001 0.031 2.142 3.956 0.001

log(CS): Pop 2 0.001 0.001 0.023 1.584 2.565 0.009

residuals 128 0.047 0.000 0.936

total 133 0.051
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from Bering Island, 32 from Mednyi Island and 51 from the
mainland. All skulls analysed in this paper from Mednyi
Island were collected before the late 1970s to avoid the effects
of the severe bottleneck population and the high levels of
mercury experienced by this population [6,8]. All the skulls are
housed at the Zoological Museum of the Lomonosov Moscow
State University (electronic supplementary material, table S1).

A total of 52 homologous landmarks (LMs) were digitized
(figure 1b, electronic supplementary material, table S2) using
the Landmark software package (IDAV 2002–2006). All speci-
mens were digitized twice to assess for data collection error.
We used generalized Procrustes superimposition alignment.

To test for skull allometric effects, we performed a Procrustes
ANOVA assessing the covariation of shape and size [21–24]. We
included the three populations as a grouping factor to test whether
there were differences in the allometric pattern among populations.

FA was studied for all three populations (mainland and two
island populations). We performed an independent Procrustes
ANOVA for each population of foxes with two main factors: indi-
vidual (each skull) and side (left and right sides), plus the two
digitizations per skull as the measurement error [25,26] (for the
effect of sexual dimorphism, see electronic supplementary
material, table S5).

To assess the level of integration and modularity for the three
populations independently, we divided the 52 LMs into six
regions (figure 1b) following Goswami [5]. To study static mod-
ularity, we used the symmetric component of shape variation
(SC) and to study developmental modularity we used FA.

We calculated the average covariance ratio (CR) to test for the
modular hypothesis described above [27]. We tested the signifi-
cance of the CR coefficient with a permutation test with 1000
random modular partitions. In addition, to compare the CR dis-
tributions from different populations, we performed a bootstrap
procedure to compute the confidence intervals for each CR. We
also corrected the CR values to the CR distribution obtained by
bootstrapping in the following way: CRobs + (1/n * Σ (CRboot –
CRrobs); where CRobs is the observed CR value of the actual
sample; CRboot is the values of CR obtained by bootstrapping,
and n the number of iterations.

We performed a series of partial least squares analysis
between pairs of modules for each of the three populations to
quantify patterns of morphological integration. We also com-
pared the strength of integration among populations using the
mean of the z-scores obtained in each pairwise comparison
among modules for each population [28]. This analysis calculates
effect sizes as standard deviates of the rPLS statistic (z) and per-
forms two-sample z-tests, using the pooled standard error from
the sampling distributions of the PLS analyses.

To assess how integration/modularity affects phenotypic
evolution (e.g. [1,29–31]), we performed a set of analyses to
investigate how the craniofacial variation is structured in the
three populations. First, we calculated shape disparity to explore
how integration and modularity affected overall disparity.
Second, we conducted separate PCAs with each of the popu-
lations to gain insight into how this variance is structured
along specific axes of trait variation. Third, we compared the dis-
tribution of shape variance among principal axes within each
PCA, comparing the angles of the first three eigenvectors.

All the analyses were performed with the Geomorph [32]
package of R with the exception of PC axes comparisons that
were conducted in MorphoJ [33].
3. Results
The Procrustes ANOVA yielded a significant relationship
between skull size and shape (table 1), which indicates that
there is an allometric shape change in the Artic fox skull.

Figure 1c shows the bivariate graph resulting from the
first two principal components obtained from the PCA of
SC. The three populations of Arctic foxes occupy different
regions of the morphospace. The first PC separates foxes
from the mainland population from island foxes (figure 1c).
The mainland foxes have skulls with deeper rostra and
more anteriorly positioned zygomatic arches than the skulls
of island foxes (figure 1d ). The second PC slightly separates
both populations of island foxes with the foxes of the main-
land scoring in between (figure 1c). The skulls of Mednyi
foxes are shorter, wider and deeper than the skulls of
Bering Island foxes (figure 1d ).

The effects of FA are significant for the three populations
of Artic foxes (electronic supplementary material, table S3)
but the degree of FA is similar among them. As indicated
by the CR values, island populations show lower modularity
than the population of mainland for SC and for FA (table 2).
This is particularly evident when comparing the Mednyi and



Table 2. Modularity results. Covariance ratio (CR) obtained for the
hypothesis of modularity tested for each population using SC and FA. The
observed (CR) and corrected (CRc) values, as well as the confidence
intervals (CI) are shown. Higher CR values indicate lower skull shape
modularity.

CR CRc p-value CI

symmetric component

mainland 0.622 0.696 0.001 0.651 0.746

Bering 0.653 0.713 0.001 0.656 0.776

Mednyi 0.766 0.819 0.001 0.742 0.898

fluctuating asymmetry

mainland 0.575 0.651 0.001 0.595 0.717

Bering 0.596 0.670 0.001 0.610 0.745

Mednyi 0.648 0.737 0.001 0.674 0.812
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mainland populations (electronic supplementary material,
figures S1 and S2). The z-score (Zs) obtained from PLS analysis
of SC indicated an increase of integration amongmodules from
the population of mainland (Zsma = 6.630) to the population
of Bering (Zsb = 6.960) and Mednyi (Zsme = 6.674) (electronic
supplementary material, table S4). In contrast, the Zs obtained
from the PLS of FA reveal a decrease in integration from the
mainland (Zsma = 7.181) and Bering populations (Zsb = 8.025)
to the population of Mednyi (Zsme = 3.646) (electronic
supplementary material, table S4).

The analysis of disparity shown that the population of
Mednyi (Dme = 0.00045) has lower disparity values than the
populations of Bering Island (Db = 0.00061) and the mainland
(Dma = 0.00056) for SC (electronic supplementary material,
table S6). In contrast, the analysis of disparity from FA indi-
cated that the population of Mednyi has significantly higher
disparity values (Dme = 0.00047) than the populations of
mainland (Dma = 0.00030) and Bering Island (Db = 0.00033)
(electronic supplementary material, table S6).

The shape variance accounted for by the first two eigen-
vectors obtained from the PCA analyses of the SC and FA
are shown in figure 2, and the percentages of variance
explained for by the first 10 eigenvectors are shown in elec-
tronic supplementary material, figure S3. The results of the
angular comparisons between these axes (the first three
eigenvectors) are shown in electronic supplementary
material, table S7.
4. Discussion
Genetic variation is crucial for the evolution of functionally
and developmentally related characters [34], and therefore,
genetic drift and inbreeding depression may substantially
impact patterns of modularity [35]. We hypothesized that
both genetic drift and inbreeding depression have modified
developmental modularity patterns in both island popu-
lations of Artic foxes compared to the population of the
mainland.

Theoretical models have predicted an increase of inte-
gration in the presence of drift [36,37] and, although
empirical evidence for changes in covariation amongmorpho-
logical modules in island mammals is scarce, domesticated
mammals show changing patterns of developmental
integration [38]. Our results indicate that genetic isolation
and drift have reduced developmental integration, particu-
larly in Mednyi foxes, compared to those from the mainland
(electronic supplementary material, table S4).

The strength of integration/modularity affects the direc-
tion of phenotypic evolution (e.g. [30]), with integration
expected to produce phenotypic disparity more constrained
along specific axes of variation (e.g. [1]) and morphological
modularity ‘allows’ a more even exploration of trait space
(i.e. unconstrained to axes of maximum covariation)
[1,39,40]. However, a stronger integration could also be
associated with higher values of morphological disparity
(e.g. [41]). Our results indicate a decrease in developmental
integration accompanied by a significant increase in disparity
or developmental instability (electronic supplementary
material, table S6). This disparity is not structured along
the same axes of variation across populations, and therefore,
is not constrained to specific axes of maximum variation
(figure 2; electronic supplementary material, table S7). More-
over, morphological disparity in those populations with more
integrated skulls at developmental level is more concentrated
in the first axes of variation (electronic supplementary
material, figure S3 and table S8). More than a cause–effect
relationship between developmental integration and dis-
parity, our results suggest that genetic drift could be a
cause to increase developmental variation and ‘breaking’
canalization [4].

These patterns of integration and disparity at the develop-
mental level are different than at a static level. Morphological
integration among individuals significantly increases in both
island populations compared to the population of mainland
(electronic supplementary material, table S4), and this is
accompanied by a significant decrease in disparity in the
population of Mednyi (electronic supplementary material,
table S6). Moreover, among individual disparity seems to
be constrained to specific axes of shape variation (figure 2;
electronic supplementary material, figure S3 and tables S7
and S8).

Our analyses suggest that there is a decoupling between
the developmental and static levels, which might indicate
that phenotypic variation among populations is not only a
direct outcome of the developmental variation. Developmen-
tal variation is altered by a decrease in morphological
integration concomitant with an increase in phenotypic dis-
parity, specially in the smallest population of Mednyi
Island, and most probably as a consequence of genetic drift.
However, developmental shape variation was ‘restructured’
leading to an increase in morphological integration and a
reduction in morphological disparity at inter-individual vari-
ation in both island populations. Whereas genetic drift might
alter phenotypic variation, directional selection might ‘push’
the population distribution towards the optimum [42,43].
This may be the case of the population of Mednyi, as it is
the one with most extreme feeding behaviours and the one
with more derived morphological traits. Accordingly,
changes in skull shape developmental integration seem to
facilitate morphological adaptive changes towards the
extreme environmental conditions of islands, and hence,
decreasing disparity.

In summary, our results demonstrate that in ca 10 000
years of genetic isolation and 20 000 generations [40],
the strength of developmental integration could change
in natural conditions facilitating phenotypic divergence
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(evolvability) that would further constitute independent
lineages adapted to particular environmental conditions.
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