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Abstract. The view selection problem consists of finding a set of views
to materialize that can answer the given set of workload queries and is
optimal in some sense. In this paper we study the view selection prob-
lem for regular path queries over semistructured data and two specific
view-based query rewriting formalisms, namely single-word and arbitrary
regular rewritings. We present an algorithm that for a given finite set of
workload queries, i.e. for a set of regular languages, computes a set of
views that can answer every query in the workload and has minimal pos-
sible cardinality. If, in addition, a database instance is given then one
can construct a viewset such that its size, i.e. amount of space required
to store results, is minimal on the database instance.

Keywords: view selection problem, regular path queries, semigroups of
regular languages.

1 Introduction

The problem of view based query processing plays an important role in many
database applications, including information integration, query optimization,
mobile computing and data warehousing. In its general form, the problem is
stated as follows. Given a query over database schema and a set of materialized
views over the same schema (i.e. a set of queries with precomputed answers –
view extensions), is it possible to answer the query, completely or partially, us-
ing answers to the views? This question has been intensively studied for various
data models and different assumptions on views semantic (e.g., [13,11,5,20]). The
main approaches to view based query processing are query rewriting and query
answering (see [13] for a survey). In query rewriting approach, given a query Q
written in language Q, and a set of views V that are written in language V one
should construct a rewriting R, in language R, such that Q(D) = R ◦ V(D) for
each database instance D. It is worth noticing that query rewriting does not de-
pend on view extensions and can be thought as an algorithm that describes how
result of the query can be computed form the views. In contrast, query answering
consists of direct computing of all answers to Q from the view extensions. The
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connection between query rewriting and query answering studied in [20, 4]. In
this paper we follow query rewriting approach and we shall say that a viewset
V answers a query Q if there exists a rewriting of Q.

The ability to answer a query using only the answers to views can significantly
decrease query evaluation time. For example, in a mobile computing environment
the application does not need to access the network in order to process user’s
query. If the views can not completely answer a query, they can, nevertheless,
speed up query processing, because some computations needed for the query
processing may have been done while computing the views. From the other hand,
view maintaining can be computationally expensive, and the amount of space
that is available to store view results could be bounded. These constraints lead
to the natural optimization problem, known as the view selection problem, which
is, roughly speaking, asking for a set of views that can answer given queries and
satisfies specified constraints [6,21,18]. A dual problem is the view optimization
problem [17], which asks for a viewset that satisfies specified constraints and has
the same expressive power as a given viewset (i.e., answer every query that is an-
swered by a given viewset). Possible applications of these problem include view
selection and optimization in data management systems, intelligent data place-
ment, minimization of communication costs in distributed systems, optimization
of bulk query processing and others (see e.g. [6, 7, 21, 18, 17]).

The view selection problem was studied in various settings for relational data-
bases, see e.g. [6, 7], and for XPath queries [21, 18]. In this paper we consider
the view selection problems for regular path queries over semistructured data.
Informally, a database is an edge-labelled directed graph, and a query is a regu-
lar language over a finite alphabet Σ (without loss of generality we can assume
that Σ is the set of all possible labels of a database graph). The result of a
query Q is the set of all pairs (u, v) of graph vertices such that there exists at
least one labeled path between u and v in the graph and its labels comprise a
word in Q. Although the main topic of current research on semistructured data
has shifted toward tree data models and corresponding query languages graph
model is important in data integration domain. This model is quite flexible and
lays between full text search and XML-like tree data models [9]. Regular path
query evaluation has polynomial time complexity with respect to both database
and query size (one should check non-emptiness of the intersection of some reg-
ular languages), but it can be expensive for large databases because the whole
database graph may need to be searched, which is inefficient. Materialized views
may decrease query processing time drastically.

For regular path query rewritings the so called complete [3] and partial [10]
rewritings were proposed. In both cases a rewriting of a query Q over Σ with
respect to a set of views V is a regular language R over a fresh alphabet Δ, such
that a substitution of languages over Σ instead of corresponding letters of Δ
yields the original language Q. The two approaches differ in possible mappings
for letters of Δ. In complete rewriting Δ letters are mapped into elements of V
only, while in partial rewriting a Δ-letter can be mapped into a Σ-letter as well.
For example, R1 = δ∗1 is a complete rewriting of Q1 = a∗, and R2 = δ1cb

∗+δ1cδ2
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is a partial rewriting of Q2 = a∗cb∗ with respect to the views V = {a∗, b∗} and
the natural substitution δ1 �→ a∗, δ2 �→ b∗. In general, both rewriting techniques
may be considered as special cases of the language substitution problem which is
stated as follows. Given a regular language Q over a finite alphabet Σ and a reg-
ular language substitution ϕ from finite set Δ into regular languages over Σ one
should find a language R over Δ, such that ϕ(R) = Q. Additional constraints
on the structure of language R may be posed. It is known [14] that for any finite
set V of regular languages over Σ, and the subset T ⊆ {·, ∪,∗ } of language
operations (concatenation, union, and iteration) it is decidable whether or not
the regular language Q may be constructed from elements of V using a finite
number of operations from T . Note, that if all three operations are allowed then
we have complete rewriting problem mentioned above. The algorithm for par-
tial rewriting construction [10] computes the exhaustive rewriting that, roughly
speaking, uses available views as much as possible. In the above example this
algorithm gets the rewriting R′

2 = δ1cδ2 but not R2 = δ1cb
∗ + δ1cδ2.

In this paper we deal with two types of complete rewritings: a single word
rewriting (the subset T contains only concatenation), and an arbitrary regular
rewriting. Clearly, that if there exists a single word rewriting of a query, then
there exists an arbitrary rewriting of this query with respect to the same set of
views. Thus, single word rewritings have weaker expressive power then arbitrary
rewritings. Practical meaning of single word rewritings can be justified by some
redundancy presented in arbitrary regular rewritings. Known algorithms for reg-
ular rewritings of a query Q [3, 14] compute the so-called maximal rewriting,
which is the set of all words over Δ, such that the substitution of corresponding
languages yields a subset of Q. For instance, in the previously considered exam-
ple the maximal rewriting is R = δ∗1 , while more efficient single word rewriting
R′ = δ1 exists. In this case the single word rewriting R′ shows that the query can
be answered by the views without any computations at all. In order to compute
the answer using maximal rewriting R the transitive closure of the view should
be constructed. Another attractive property of single word rewritings is that they
does not contain recursion (i.e. Kleene star) and admit efficient processing algo-
rithms. Finally, the set of all single word rewritings is an effectively constructable
regular language [2].

For now, let us consider the problems under investigation. Assume that a
database workload, i.e. the set Q of the most popular queries, is known. What
views should be materialized in the database in order to speed up these queries?
Trivial solution when every query from the workload correspond to a view is not
practical because view maintaining is computationally expensive. In this respect,
view selection should be based not only on the ability to answer queries from
the workload but on some “efficiency” measure as well. Possible measures are
cost of workload queries evaluation, storage constraints, cardinality of a viewset,
and efficiency of rewriting. We consider the following specific problems (for both
single word and regular rewritings).

– Viewset of minimal cardinality. What is the minimal number of views that
should be materialized in order to answer every query from the workload?
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– Instance based minimal size viewset. If a particular database instance is
given, what is the minimal amount of space required to store the results
of a viewset (over this instance) that answer every query from the workload?

– Oracle based minimal size viewset. Assume that there is an oracle that for
every regular path query estimates the size of the result. What is the minimal
size of a viewset that answers queries from the workload?

– p-Containment of viewsets. Given two viewsets V1 and V2 is it decidable
whether or not every query Q that can be rewritten in terms of V1 can be
rewritten in terms of V2?

It is worth noticing that in some cases (e.g., in data integration systems based
on local-as-view approach) there exist a set of views that can not be changed (the
views that describe information sources). Nevertheless, database applications
are allowed to define “top-level” views that are subject to optimization. Our
contribution is the following.

– First, we prove that the search space for minimal cardinality and instance
based minimal size viewset construction problems is finite, both for single
word and regular rewritings. Thus, both problems are decidable and we
propose the algorithms for such viewsets construction.

– We prove that p-containment of viewsets of regular path queries is decidable
for single word and regular rewritings.

– We present an algorithm which for a given workload and a database instance
computes a viewset of minimal size (on this particular database instance).

The results on single-word rewritings may be considered as a contribution to
formal language theory. In particular, we prove that the rank problem for finitely
generated semigroups of regular languages is decidable.

The structure of this paper is the following. In Section 2 we introduce ba-
sic definition and known results on regular path query rewritings. Algorithms
for minimal cardinality viewset construction, for both single word and regular
rewritings, are presented in Section 3. This section also contains the the al-
gorithm for checking p-containment of viewsets, for both types of rewritings.
Minimal size viewset problem is discussed in Section 4.

2 Regular Path Query Rewritings

In order to fix the notation we start this section with basic notions of formal
languages.

An alphabet is a finite non-empty set of symbols. A finite sequence of symbols
from an alphabet Σ is called a word in Σ. The empty word is denoted by ε.
Any set of words is called a language over Σ. Σ∗ denotes the set of all words
(including the empty word) in a given alphabet, Σ+ denotes the set of all non-
empty words in Σ, ∅ is the empty language (containing no words), and 2Σ∗

is
the set of all languages over Σ.
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Let u be a word in Σ and A ⊆ Σ∗. The right quotient of A with respect
to u is the language u−1A = {v ∈ Σ∗ | uv ∈ A}, and the left quotient is
Au−1 = {v ∈ Σ∗ | vu ∈ A}. If A = {w} we shall write u−1w instead of u−1{w}.

The union of languages L1 and L2 is the language L1 ∪ L2 = {w ∈ Σ∗ | w ∈
L1 ∨ w ∈ L2}. The language L1L2 = {w ∈ Σ∗ | ∃w1 ∈ L1, w2 ∈ L2 : w = w1w2}
is called a concatenation of L1 and L2. Lk = LLk−1 is L to the power k. By
definition, L to the power zero is the empty word: L0 = {ε}. The Kleene closure
(or star) of L is the language L∗ = ∪∞

k=0L
k. A language is regular if it can be

obtained from singleton languages (i.e., the letters of the alphabet), the empty
language, and {ε}, using a finite number of operations of concatenation, union
and closure. The set of all regular languages over an alphabet Σ is denoted by
Reg(Σ). In the sequel all the languages are assumed regular.

Let Δ be an alphabet and S be a semigroup. A morphism ϕ : Δ+ → S
is any function satisfying ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Δ+. A morphism
ϕ : Δ+ → 2Σ∗

is called a regular language substitution if ϕ(δ) is a regular
language over Σ for all δ ∈ Δ. Every regular language substitution ϕ : Δ+ →
Reg(Σ) generates the semigroup Sϕ = 〈{ϕ(δ) | δ ∈ Δ)}〉. Conversely, with every
semigroup (S, ·) = 〈V1, . . . , Vn〉 of regular languages we can associate a language
substitution ϕ defined by the rule δi �→ Vi.

We turn now to regular path queries over semistructured data and query
rewritings. A semistructured database is an ordered edge-labeled graph B =
〈O, E, Σ, ψ〉, where O is a finite set of nodes (objects), Σ is a set of labels (a
database alphabet), E ⊆ O × O is a set of edges, and ψ : E → Σ is the edge-
labeling function. With every path in the database graph, i.e. a set of adjusting
edges (e1, e2, . . . , em), we associate the word w = a1a2 . . . am in Σ, defined by
the rule ai = ψ(ei). Let us denote the regular language of all words associated
with all paths between given pair of database nodes, say u and v, as L(u,v)(B).
A query is a regular language over Σ. The result of a query Q on the database
B is the set

Q(B) = {(u, v) ∈ O × O | L(u,v)(B) ∩ Q = ∅}.

Let ϕ : Δ+ → Reg(Σ) be a regular language substitution. The maximal
rewriting of a regular language R ⊆ Σ∗ with respect to ϕ is the set

Mϕ(R) = {w ∈ Δ+ | ϕ(w) ⊆ R}.

The maximal rewriting Mϕ(R) is called exact, if

⋃

w∈Mϕ(R)

ϕ(w) = R.

The following theorem is due to D.Calvanese et al. [3], and K.Hashiguchi [14].

Theorem 2.1. Let ϕ : Δ+ → Reg(Σ) be a regular language substitution. For
any regular language R ⊆ Σ∗ the maximal rewriting Mϕ(R) is a regular language
over Δ.
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As it was mentioned above, the maximal rewriting could be redundant. We say,
that a regular language Q admits a single word rewriting with respect regular
language substitution ϕ if there exists a word w ∈ Δ+, such that Q = ϕ(w). The
decidability of single word rewriting problem was proved by K.Hashiguchi [14]
and the following theorem was proved in [2].
Theorem 2.2. Let ϕ : Δ+ → Reg(Σ) be a regular language substitution and w
be a word in Δ+. The membership problem for the semigroup Sϕ

[w] = {u ∈ Δ+ | ϕ(u) = ϕ(w)}
is a regular language over Δ.
Theorem 2.2 implies that, given a finite set of views and a regular path query
Q, one can effectively construct a finite automaton that recognize the set of all
possible single word rewritings of Q wrt the viewset.

3 Viewsets of Minimal Cardinality and p-Containment

In this section we study the problem of finding a viewset of minimal cardinality
and show decidability of p-containment between viewsets of regular path queries.
We focus our attention on single word rewritings and then extend the result
to arbitrary regular rewritings. For single word rewritings both problems may
be reformulated in terms of finitely generated semigroups of regular languages.
Indeed, given a finite set V of regular languages over Σ one can consider the
semigroup S = 〈V, ·〉 with V as the set of generators and language concatenation
as a semigroup product. The semigroup S consists exactly of languages that can
be rewritten in terms of V using single word rewriting. Now, a viewset V1
is p-contained in a viewset V2 iff the semigroup 〈V1, ·〉 is a subsemigroup of
〈V2, ·〉, and minimal cardinality viewset problem is the following. Given a finite
set Q = {Q1, . . . , Qn} of regular languages over an alphabet Σ one should find
a natural number k and a set G = {G1, . . . , Gk} of regular languages over Σ
satisfying the following conditions:
– Qi ∈ 〈G〉 for every i ∈ {1, . . . , n}, and
– for every k′ < k and every set G′ = {G′

1, . . . , G
′
k′} there exists Q ∈ Q such

that Q /∈ 〈G′〉.
The above conditions imply that 〈Q〉 ⊆ 〈G〉. Note, that k is bounded by the
number of elements in Q and set G always exists, although it can not be con-
structed by a “trivial” brute force algorithm.

The main idea of the algorithm proposed in this section is to construct fac-
torizations of Qi (with respect to concatenation) and choose minimal subset of
factors that forms a basis of a semigroup. The difficulty related to this approach
arise from the fact that a regular language has infinitely many factorizations,
in general. For example, the language L = a∗ admits infinitely many factoriza-
tions of the form L = FM , e.g., every pair of languages F and M such that
F ∪ M = a∗ and ε ∈ F ∩ M forms a factorizations of L. In order to resolve this
problem we show that there exist finite set of languages, that can be effectively
constructed from Q, and minimal basis consist of elements of this set.
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3.1 Maximal Factors of Regular Languages

Let L ⊆ Σ∗ be a regular language. Consider a family of language equations
of the form L = X1 . . . Xm. A m-tuple (L1, . . . , Lm) of languages is a solu-
tion to the equation L = X1 . . . Xm if the equality L = L1 . . . Lm holds. A
m-tuple (L1, . . . , Lm) is contained in a m-tuple (L′

1, . . . , L
′
m) if Li ⊆ L′

i for all
i = 1, . . . , m. A solution (L1, . . . , Lm) is called maximal if it is not contained
in any other solution to the equation. A language F is called a maximal factor
of L if there exist a natural number m such that F is a component of some
maximal solution to the equation L = X1 . . . Xm. The set of all maximal factors
of a language L is denoted by F(L).

Theorem 3.1 (J.Conway [8]). A regular language L has finitely many maxi-
mal factors and all these factors are regular languages. Moreover, maximal fac-
tors are effectively constructable.

The algorithm for viewset selection depends on maximal factors construction and
we briefly describe how this can be done. First, consider the univariate language
equation of the form AY = L where A, L ∈ Reg(Σ). A language F ⊆ Σ∗ is
called a solution to the equation AY = L if AF = L. Since the union of two
solutions is a solution as well, the equation AY = B has at most one maximal
solution and this solution is the language Ymax =

⋂
u∈A u−1L. Similarly, the

language Xmax =
⋂

u∈A Lu−1 is the maximal solution to the equation XA = B.
Since every regular language has finitely many different right (left) quotients the
equation XY = L has at most finitely many maximal solutions.

Let (Pi, Qi) i = 1, . . . , p be the maximal solutions to the equation XY = L.
The set of maximal factors of L is exactly the union of {Pi}, {Qi}, and the
set of maximal solutions of equations PiXQj = L. Maximal solutions to such
equations are to intersection of some left and right quotients of L.

3.2 Algorithm

Let A be a set of languages over Σ. By intersection closure of A, denoted as A,
we mean the set of all languages that can be obtained by finite intersections of
elements of A:

A = {I ⊆ Σ∗ | ∃A1, . . . , Am ∈ A I = A1 ∩ . . . ∩ Am} .

Theorem 3.2. Let Q be a finite set of regular languages and F be the set of all
maximal factor of its elements, i.e.

F = ∪Q∈QF(Q).

There exists a minimal cardinality set G of generators for Q such that G ⊆ F.

Proof. Let A and B be regular languages. We call a language F a common factor
of A and B if A = P1FP2, B = Q1FQ2 for some languages P1, P2, Q1, Q2. We
prove now that if there exits a common factor F for A and B when F can be
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extended to the intersection F ′ = FA ∩ FB of some maximal factors FA ∈ F(A)
and FB ∈ F(B), that is F ⊆ F ′ and F ′ is a common factor of A and B.

Indeed, languages (P1, F, P2) form a solution to the equation A = X1X2X3.
By Theorem 3.1 there exists a maximal solution, say (M1, M2, M3), that contains
the solution (P1, F, P2). It is follows that every tuple (P1, L, P2) is a solution to
the equation if L satisfy the inequalities F ⊆ L ⊆ M2. Similarly, the solution
(Q1, F, Q2) is contained in some maximal solution to the equation B = X1X2X3,
and the intersection of corresponding components of these maximal solutions is
the desired language F ′. Clearly, that if F is a common factor of languages
A1, . . . , Ap, then there exists a common factor F ′ that is the intersection of
some maximal factors of the languages A1, . . . , Ap.

Now assume that G = {G1, . . . , Gk} is a minimal cardinality set of generators
and this set is not contained in F. Without loss of generality assume that F1 /∈ F.
Every language Q ∈ Q has a factorization of the form

Q = Gi1 . . .Gim ,

and G1 is a common factor of some languages from Q. Thus, there exists G′
1 ∈ F

such that the set G1 = {G′
1, G2 . . . , Gk} is the set of generators for Q. Repeat-

edly applying this procedure to all elements of G one can construct the set of
generators that has the same cardinality as G. ��

In the sequel we shall call a viewset that is a subset of F the maximal viewset. It
is worth noting that in the proof we did not assume that the “initial” minimal
cardinality set consists of regular languages, thus if we drop the restriction that
minimal set should contains only regular languages we will not decrease the
number of generators.

As an immediate corollary from Theorem 3.2 and the finiteness of the set of
maximal factors of a regular language we have

Theorem 3.3. Minimal cardinality viewset problem is decidable for single word
rewriting.

Proof. Given a finite set Q = {Q1, . . . , Qn} the algorithm first computes the
intersection closure F of the set F(Q) of all maximal factors, and then, for every
subset G of F, checks whether or not G is the set of generators for Q. ��

The algorithm proposed by this theorem relies on maximal factor construction
and the algorithm that checks that a language is representable as concatenation
of given regular languages. The number of maximal factors of a regular language
L is at most 22N ,where N is the number of states of the minimal deterministic
automaton for L. The best known bound for the number of intersection of
maximal factors is 2N2

[19]. Thus, the size of set F is double-exponential
in the total size of minimal automata for languages in Q. Known algorithms
for single word rewritings [1,14] are based on the limitedness property of distance
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automata which is Pspace-complete [16,15] and for which only exponential time
complexity algorithms are known. The number of states of a distance automaton
to be checked is no more then 2M , where M is the number of states of determin-
istic automaton for Q. Summing up, this algorithm requires Pspace-complete
problem to be called a triple-exponential number of times.

In the rest of this section we show how the minimal cardinality viewset se-
lection problem can be reduced to the minimal test length problem. The crucial
point in this reduction is Theorem 2.2. Let ϕ be a substitution defined by the
rule ϕ(Δ) = F. We shall abuse the notation and denote by [Q] the set of all
words w over Δ such that ϕ(w) = Q. The minimal cardinality viewset can be
represented as a subset B ⊆ Δ. For every query Q from the workload Q one
can construct an automaton for [Q], and the set B should satisfy the following
condition: [Q]∩B∗ = ∅ for every Q ∈ Q. For every query Qi one can effectively
construct the finite set of subsets of Δ, say R

(i)
1 , . . . , R

(i)
ki

⊆ Δ, such that Qi can

be represented in terms of ϕ(B) iff R
(i)
j ⊆ B for some j � ki. These sets corre-

spond to (labels on) simple paths in minimal automaton for [Qi]. The minimal
cardinality viewset is the minimal cardinality subset B ⊆ Δ such that for every
Qi there exists j � ki satisfying R

(i)
j ⊆ B. Although the minimal test length

problem is NP-complete such reduction allows to avoid checking every possible
subset of the set F. Moreover, when membership languages [Q] are constructed
for all Q ∈ Q the remaining computations use transparent structures and the
complexity does not depend on number of states of automata for F.

3.3 Arbitrary Rewritings and p-Containment of Viewsets

Similarly to maximal solutions to linear language equations one can consider
maximal solutions to equations of the form r(X1, . . . , Xn) = L where r is an
arbitrary regular expression over alphabet Σ ∪ {X1, . . . , Xn}. It is known that
for every regular language L there exist only finitely many different languages
that are components of maximal solutions (see e.g. [19]).

Theorem 3.4. Let Q be a finite set of regular languages. There exists a finite
set of languages F, that can be effectively constructed from Q, such that at least
one minimal cardinality viewset (wrt regular rewriting) is contained in F.

The proof is essentially the same as for Theorem 3.2.
The algorithm described in the previous section may produce several viewsets

of minimal cardinality. Different viewsets can be compared by their expressive
power. We say that a viewset V1 is p-contained in a viewset V2 if every query
that can be answered using V1 can be answered using V2. The following theorem
gives an algorithm for p-containment checking.

Theorem 3.5. A viewset V1 is p-contained in a viewset V2 with respect to
regular rewritings iff every view V ∈ V1 may be rewritten in terms of the view-
set V2.
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4 Viewsets of Minimal Size

For now assume that the database instance B is fixed. Every regular path query
defines a (finite) binary relation on the set of the database nodes and we define
the size of a query Q, denoted by |Q|, as the cardinality of the corresponding
relation. This quantity is proportional to the amount of space, in bytes, required
to store the results to the query. Minimal size viewset selection problem is stated
as follows: given a workload Q and a database instance B find a viewset V such
that its total size

∑
V ∈V |V | is minimal on the database B (the minimum is

taken among all the viewsets that answers every query in the workload). The
following proposition states that every minimal size viewset is contained in some
maximal viewset.

Proposition 4.1. Let V be a minimal size viewset for Q and B. There exists
a viewset G such that:

– for every V ∈ V there exists G ∈ G satisfying V ⊆ G;
– every language G ∈ G is the intersection of some maximal factors: G ⊆

F(Q).

The proof is straightforward. The main idea of the algorithm for instance based
minimal size viewset construction is to start from a maximal viewsets and then
minimize their elements by subtracting some regular languages.

Proposition 4.2. Let G = {G1, . . . , Gk} be a maximal viewset for the workload
Q, and B be a database instance. There exists an effectively constructable viewset

G′ = {G′
1, . . . , G

′
k}

such that the following conditions hold:

– G′
i ⊆ Gi for all i = 1, . . . , k;

– for any viewset G′′ = {G′′
1 , . . . , G′′

k} satisfying the above condition the in-
equality |G′| � |G′′| holds.

Proof. Let G = {G1, . . . , Gk} be a maximal viewset that is not a minimal size
viewset. There exist a component G ∈ G such that |G′| < |G|, where G′ is
obtained from G by replacing G with some language G′ ⊆ G. Clearly, that
G′(B) ⊂ G(B) and the language

G′′ = G \
⋃

(u,v)∈G(B)

L(u,v)(B)

has exact the same size as G. Since the database instance is finite, the number
of views to be checked is finite and a minimal size viewset (contained in a given
viewset) may be constructed by checking all possible combinations. ��

As an immediate corollary of Propositions 4.1 and 4.2 we have:
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Theorem 4.1. There exists an algorithm that, for a given workload Q and a
database instance B, computes a viewset of minimal size.

Now, suppose that the database instance is not known, but there exists an oracle
E : Reg(Σ) → N that estimates the size of a query result. Estimation function
E is called exact if E(Q) equals to actual query result size. In this case we have
implication Q1 ⊆ Q2 ⇒ E(Q1) � E(Q2). We show that the problem of minimal
size (with respect to the oracle E) requires construction of minimal solutions to
language equations. Indeed, let Q = {Q1, Q2} and the equation Q1X = Q2 has
a solution. A possible minimal size viewset in this case is a pair {Q1, S}, where
S is a minimal solution to the equation such that E(S) � E(S′) for every other
(minimal) solutionS′. The problem is that even such simple linear equation admits
uncountably many minimal solution. For example, the equation {ε, a}X = {a}∗
over the unary alphabet Σ = {a} has infinitely many minimal solutions: every
language K ⊆ Σ∗ that contains the empty word and satisfies the condition that
if K contains the word an (n � 0) then it contains only one of the words an+1 or
an+2 is a minimal solution. It is not clear whether or not the minimal size viewset
can be computed with respect to exact query size estimation function.

5 Conclusion

In this paper we proved that the search space for minimal cardinality and in-
stance based minimal size viewset construction problems is finite, both for single
word and regular rewritings. Thus, both problems are decidable and we proposed
algorithms for such viewsets construction. We also proved that p-containment of
viewsets of regular path queries is decidable for single word and regular rewrit-
ings. The main result on single-word rewritings may be stated in terms of semi-
groups of regular languages: The rank problem for finitely generated semigroups
of regular languages is decidable.

It could be interesting to consider similar problems for partial rewritings.
Recursionless (i.e., finite) partial rewritings was recently investigated in [12].
It seems that the main problem for view selection under partial rewriting is
to choose an appropriate measure for the viewset. Since partial rewriting ad-
mits letters of original alphabet in the rewriting language, the empty viewset
is the minimal cardinality and minimal size viewset. Thus, a relevant viewset
quality measure should take into account (in addition cardinality and storage
constraints) how often a query evaluation algorithm will access the database.
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