
Minimal Union-free Decompositions of Regular

Languages

Sergey Afonin and Denis Golomazov

Lomonosov Moscow State University, Institute of Mechanics
Moscow, Russia
serg@msu.ru

Abstract. A regular language is called union-free if it can be repre-
sented by a regular expression that does not contain the union operation.
Every regular language can be decomposed into a union of a finite num-
ber of union-free languages (the so-called union-free decomposition). We
call the number of components in the minimal union-free decomposition
of a regular language the union width of the regular language. In this pa-
per we prove that union width of a regular language is computable and
we present an algorithm for constructing a corresponding decomposition.

1 Introduction

Regular expressions are a natural formalism for the representation of regular
languages. It is well known that there exist regular languages that can be rep-
resented by infinitely many equivalent regular expressions, and a number of
“canonical” forms of regular expressions representing a given regular language
have been proposed in the literature, such as concatenative decomposition [1,2],
or union-free decomposition (see e.g. [3]). In this paper we consider union-free
decompositions of a regular language.

This paper is devoted to the task of finding a minimal union-free decomposi-
tion of a regular language. A language is called union-free if it can be represented
by a regular expression without the usage of the union operation. For example,
the language represented by the expression (a + b∗)∗ is union-free because there
exists an equivalent expression (a∗b∗)∗. Union-free languages have been intro-
duced under the name “star-dot regular” languages by J. Brzozowski in [4]. It
follows from the definition that every union-free language L can be written as

L = S∗
01S

∗
02 · · ·S

∗
0k0

u1S
∗
11 · · ·S

∗
1k1

u2 · · ·S
∗
l−1,1 · · ·S

∗
l−1,kl−1

ulS
∗
l,1 · · ·S

∗
l,kl

, (1)

where Sij are regular languages, u1, . . . , ul are non-empty words, and l > 0. We
call (1) a general form of a union-free language and denote it GF (L).

Every regular expression r can be transformed into a regular expression
r′ in which union operations appear only on the “top level” of the expres-
sion, i.e., it takes the following form: r′ = r1 + . . . + rm, and the regular
expressions r1, . . . , rm do not contain the “+” operator (see [3]). This means

2 Sergey Afonin, Denis Golomazov

that every regular language can be represented as a finite union of union-
free languages. But this decomposition is not necessarily unique: for example,
(a + b)∗ = (a∗b∗)∗ = {ε} + a∗ba∗ + b∗ab∗, and these are two different union-
free decompositions of the language (a + b)∗. We call the minimal number of
components in such representation the union width of the regular language and
a corresponding decomposition (that is not necessarily unique) is called mini-
mal. Our goal is an algorithm that computes the union width and constructs a
minimal union-free decomposition of a regular language.

Union width of a regular language and corresponding decompositions may
be considered as canonical representations of a regular expression, as well as a
complexity measure of a regular language [5], similar to the restricted star height.
Union-free decompositions play an important role in the algorithm for checking
membership of a regular language in a rational subset of a finitely generated
semigroup of regular languages with respect to concatenation as a semigroup
product. In order to check such membership one should verify that at least
one of the distance automata corresponding to the components of an arbitrary
union-free decomposition of the regular language is limited. We do not go into
the details here (see [6]). We will just mention that checking the limitedness
property is Pspace-complete [7], thus, the number of components in a union-
free decomposition is an important parameter influencing membership-checking
complexity.

The main result of the current paper is that union width of a regular language
can be effectively computed, and we present an algorithm that constructs the
corresponding decomposition. This result is achieved by using the combinatorial
technique we have adopted from [2]. We prove that for any regular language L
there exists an effectively computable finite set C(L) of union-free languages such
that there exists a minimal union-free decomposition of L that consists of lan-
guages from C(L). We also present an algorithm for checking that a given regular
language is union-free. This decidability result is already known (see Theorem 2.1
below) but it is based on reduction to the computationally expensive problem
of checking limitedness of distance automata, which is Pspace-complete.

The paper has the following structure: Section 2 provides some basic def-
initions, Section 3 presents results concerning general properties of union-free
languages, Section 4 is devoted to the algorithm for finding a minimal union-free
decomposition of a regular language, and Section 5 contains conclusions and
ideas for the further work.

2 Preliminaries

Let Σ = {a1, . . . , an} be a finite alphabet, L ⊆ Σ∗ be a regular language and V =
〈Σ, Q, q0, F, ϕ〉 be the corresponding minimal deterministic finite automaton,
where Q = {q1, . . . , qm} is the set of all states of V , q0 is the initial state, F ⊆ Q
is the set of final states and ϕ : Q × Σ → Q is the transition function of the
automaton. Let M ⊆ Σ∗, q1 ∈ Q. The definition of the function ϕ is extended
as follows: ϕ(q1, M) = {q ∈ Q | ∃α ∈ M : ϕ(q1, α) = q}.

Minimal Union-free Decompositions of Regular Languages 3

An ordered list of states {q1,. . . ,qm}(qi ∈ Q) is called a path marked with
a word w ∈ Σ∗ iff w = a1 · · · am−1 and ϕ(qi, ai) = qi+1, i = 1, . . . , m − 1. A
path in an automaton is called cycle-free iff it starts at the initial state q0, ends
at a final state qf ∈ F and does not contain any cycles, i.e., there is no state
occurring in the list more than once. It should be noted that when we mention
“a cycle-free path in a language” we actually mean a word in the language that
is represented by a cycle-free path in the minimal automaton associated with
the language.

A language W ⊆ Σ∗ is called a star language iff W = V ∗ for some V ⊆ Σ∗.
Let L be a union-free language. We denote tsw(L) the shortest word in L.

Proposition 3.1 shows that the definition is correct, i.e., there cannot exist two
different words of minimum length.

Let L be a regular language. Then a representation L = L1 ∪ L2 ∪ · · · ∪ Lk

is called a union-free decomposition of L iff Li is a union-free language for all
i = 1, . . . , k. The decomposition is called minimal iff there is no other union-free
decomposition of L with fewer elements.

Theorem 2.1 (K. Hashiguchi [8]). Let L be a regular language, T ⊆ {·,∪, ∗}
be a subset of the rational language operations (concatenation, union, and star),
and M = {M1, . . . , Mn} be a finite set of regular languages. Then it is decid-
able whether L can be constructed from elements of M using a finite number of
operations from T .

As an immediate corollary we obtain that it is decidable whether a regular
language L is union-free, by taking singleton languages as M and T = {·, ∗}.

Let B ⊆ Q. The set of words {x ∈ Σ∗ | ∀q ∈ B, ϕ(q, x) ∈ B} is denoted
str(B).

Lemma 2.1 (J.A. Brzozowski, R. Cohen [2]). Let B ⊆ Q. Then str(B) is
a regular star language.

3 Union-free Languages

In this section some common properties of union-free languages are studied. In
particular, we present an algorithm for checking whether a regular language is
union-free.

First, we adduce an example of a union-free language. Its associated finite
automaton is shown in Fig. 1(a). We believe that it is not a simple task to
recognize a union-free language by looking at the automaton. For example, the
well-known Kleene algorithm constructs a regular expression that contains three
union operations on the top level. The language can be represented as M =
S∗

1bS∗
2aS∗

3 where S1, S2, and S3 are shown in Fig. 1(b),1(c), and 1(d), respectively
(the initial states of these automata are marked by 1).

In this section we assume that Σ = {a1, . . . , an} is a finite alphabet, L ⊆ Σ∗

is a regular language and V = 〈Σ, Q, q0, F, ϕ〉 is its associated deterministic
finite automaton.

4 Sergey Afonin, Denis Golomazov

5

a

3

b

1

2a

b

4

a

b

a

b

a
b

(a) M

1

b

2a 3

b

4

a

b

5
a

b

a

b

a

(b) S1

1

2a

3
b

b

4

a

a

ba

b

(c) S2

1
2

a

3

b

a

4
b

5

a

6

b

b

a

a

b

a

b

(d) S3

Fig. 1. Example of the union-free language M = S
∗

1bS
∗

2aS
∗

3

Proposition 3.1. Let L be a union-free language. Then tsw(L) is meaningfully
defined, i.e., if u and v are shortest words in L then u = v.

Proof. Suppose u = u1 · · ·ul, v = v1 · · · vl. Consider GF (L). It should have the
following form:

L = S∗
01S

∗
02 · · ·S

∗
0k0

u1S
∗
11 · · ·S

∗
1k1

u2 · · ·S
∗
l−1,1 · · ·S

∗
l−1,kl−1

ulS
∗
l,1 · · ·S

∗
l,kl

Since v ∈ L and length of v is equal to that of u, vi = ui for i = 1, . . . , l, hence
u = v. ⊓⊔

Remark 3.1. Obviously, the word u1 · · ·ul in the general form of a union-free
language L is equal to tsw(L).

Definition 3.1. Let 2Q = {B1, . . . , Bk}. We denote

B(L) = {str(B1), . . . , str(Bk)}

By Lemma 2.1, B(L) is the fixed set of regular star languages that can be
constructed for every regular language. We now show that for every representa-
tion of a subset of L as a product of a prefix language, a star language and a
suffix language the star language can be replaced with a language from B(L).
Thus we can extend each subset of L by replacing all star languages within it
with star languages from the fixed set B(L).

Minimal Union-free Decompositions of Regular Languages 5

Lemma 3.1. Let M ⊆ L. Then for every representation M = PR∗T there
exists a language D ∈ B(L) so that M ⊆ PDT ⊆ L.

Proof. First it should be noted that we do not consider the automaton associated
with M and work only within the automaton for L.

Given a representation M = PR∗T we define

C = {q ∈ Q | ∃w ∈ P, ϕ(q0, w) = q},

Then we denote Ĉ = {q ∈ Q | ∀w ∈ T ϕ(q, w) ∈ F}. Obviously, C ⊆ Ĉ ⊆ Q.

We define D = str(Ĉ). Taking any words p ∈ P and r ∈ R∗, we obtain that

ϕ(q0, p) ∈ C ⊆ Ĉ and ϕ(q0, pr) ∈ Ĉ, because ϕ(prt) ∈ F for all t ∈ T . This

means that ϕ(q, r) ∈ Ĉ for all q ∈ Ĉ, r ∈ R∗. Hence, R∗ ⊆ D ∈ B(L) and
M ⊆ PDT . PDT ⊆ L, because we extend the language R∗ to the language
D working within the same unmodified automaton for L and therefore cannot
obtain a language that contains more words than L does. ⊓⊔

Corollary 3.1. For every representation L = PR∗T there exists a language
D ∈ B(L) so that L = PDT .

Proof. We consider M = L and apply Lemma 3.1. Then L ⊆ PDT ⊆ L hence
L = PDT . ⊓⊔

Definition 3.2. We denote C(L) a set of all maximal finite concatenations of
languages from B(L) and letters such that every concatenation is a subset of L.
Maximal means that if C1, C2 are such finite concatenations and C2 ⊆ C1 then
we include only the language C1 in C(L).

Lemma 3.2. Let M ⊆ L, B1 ⊆ Q, B2 ⊆ Q and M = P str(B1) str(B2)T , where
P and T are regular languages. Then ϕ(q0, P str(B1)) ⊂ ϕ(q0, P str(B1) str(B2))
or there exists B3 ⊆ Q such that M ⊆ P str(B3)T ⊆ L.

Proof. We denote three sets of states: D1 = ϕ(q0, P), D2 = ϕ(q0, P str(B1)),
and D3 = ϕ(q0, P str(B1) str(B2)). Since str(B1) and str(B2) contain the empty
word, D1 ⊆ D2 ⊆ D3. We also obtain that str(B1) ⊆ str(D2), because the
set ϕ(q0, P str(B1) str(B1)) = ϕ(q0, P str(B1)) = D2. Suppose D2 = D3. This
means that str(B2) ⊆ str(D2). Therefore, str(B1) str(B2) ⊆ str(D2) and M =
P str(B1) str(B2)T ⊆ P str(D2)T . Finally, we take B3 = D2. P str(B3)T ⊆ L
because we have not modified the automaton for L and still work within it. ⊓⊔

Lemma 3.3. C(L) is a finite set.

Proof. Every element in C(L) is a concatenation of star languages and letters.
As already mentioned, all the letters concatenated form the shortest word in
the language represented by the concatenation. First we limit the number of
letters in each concatenation by |Q| − 1. We do that as follows: if a concate-
nation Li ∈ C(L) contains more than |Q| − 1 letters, we show that there is
a language Mi ∈ C(L) such that Li ⊆ Mi, and we come to a contradiction

6 Sergey Afonin, Denis Golomazov

with the definition of C(L). We show how to effectively construct the language
Mi given the language Li. Suppose Li ∈ C(L) and its general form contains
more than |Q| − 1 letters. This means that tsw(Li) contains cycles in the au-
tomaton for L. Then tsw(Li) = u1v1 · · ·uhvh, where uj ∈ Σ∗, vj ∈ Σ+ and
every vj = vj1 · · · vjlj

(j = 1, . . . , h) represents a cycle in the path u1v1 · · ·uhvh

in the minimal automaton for L (and every uj does not contain any cycles).
This means that Li = Lu1

Lv1
· · ·Luh

Lvh
where languages Luj

and Lvj
are parts

of the general form of Li corresponding to the words uj , vj , respectively. For
example, Lv1

= v11Sp1 · · ·Spkp
v12Sp+1,1 · · ·Sp+1,kp+1

v13 · · · v1l1 . Then we define
the language Mi as Mi = Lu1

(Lv1
)∗ · · ·Luh

(Lvh
)∗. First, Li ⊂ Mi. Second,

tsw(Mi) = u1 · · ·uh and u1 · · ·uh represents a cycle-free path in L. Third,
Mi ⊆ L, because it has been constructed within the automaton for L. This
means that Li ⊂ Mi ⊆ L and we come to a contradiction, since C(L) contains
only maximal languages.

Now we prove that there is only a limited number of star languages be-
tween every pair of adjacent letters in every concatenation M ∈ C(L). For
every representation M = P str(B1) · · · str(Bk)T we apply Lemma 3.2 and ob-
tain that either ϕ(q0, P str(B1)) ⊂ ϕ(q0, P str(B2)) ⊂ . . . ⊂ ϕ(q0, P str(Bk)) or
we can replace the language M with the language M ′ such that M ⊆ M ′ and
M ′ = P str(D1) · · · str(Dl)T and

ϕ(q0, P str(D1)) ⊂ ϕ(q0, P str(D2)) ⊂ . . . ⊂ ϕ(q0, P str(Dl)).

In this case M /∈ C(L). We conclude that every element in C(L) can be written
as a concatenation with not more than |Q|−1 star languages between every pair
of adjacent letters. These two limitations complete the proof. ⊓⊔

Corollary 3.2. Let M ∈ C(L). Then tsw(M) represents a cycle-free path in
the automaton associated with L.

Proof. Since M ⊆ L, tsw(M) ∈ L. Suppose tsw(M) contains cycles in the
automaton associated with L. Then applying the procedure described in the
proof of Lemma 3.3 (which constructs the language Mi using the language Li),
we obtain a language M ′ ∈ C(L) such that M ⊂ M ′. This means that M /∈ C(L)
and we get a contradiction. ⊓⊔

Corollary 3.3. |C(L)| 6 c|Q|
(
2|Q|

)|Q|−1
, where c is the number of cycle-free

paths in the automaton associated with L.

Proof. First, we fix a cycle-free path in the automaton associated with L (c
possibilities). Then we fix a position of star languages: since there are not more
than |Q|−1 letters, we have |Q| possibilities (because star languages can appear
before the first letter and after the last one). Then we choose not more than
|Q|−1 languages from B(L) (each language can appear more than once), having
(
2|Q|

)|Q|−1
possibilities. Finally, we multiply all three expressions and come to

the statement of the corollary. ⊓⊔

Minimal Union-free Decompositions of Regular Languages 7

Remark 3.2. To construct C(L) given a language L, we simply take all possible
concatenations that contain letters that being concatenated form cycle-free paths
in the automaton for L and that contain not more than |Q| − 1 languages from
B(L) between each pair of letters. Finally, we exclude the languages that are not
subsets of L and the languages that are subsets of other languages from the set.

Lemma 3.4. Let L be a regular language and M ⊆ L be a union-free language.
Then there exists a language CM ∈ C(L) such that M ⊆ CM .

Proof. We take each star language S∗
i,j from the general form of M . Thus M =

PS∗
i,jT where

P = S∗
01 · · ·S

∗
0k0

a1 · · ·S
∗
i1 · · ·S

∗
i,j−1

and T = S∗
i,j+1 · · ·Si,ki

ai+1 · · ·alS
∗
l,1S

∗
l,2 · · ·S

∗
l,kl

. Then we apply Lemma 3.1 and
derive that M ⊆ P str(Bk)T where Bk ∈ B(L). Thus we extended the “un-
known” language S∗

i,j to the known language str(Bk) from the fixed set B(L).
After applying the procedure of extension to each star language in the general
form for M , we get a language CM that is a finite concatenation of languages from
B(L) and letters and also an extension of M . Hence M ⊆ CM and CM ∈ C(L).

⊓⊔

Theorem 3.1. Let L be a regular language. Then L is a union-free language iff
L ∈ C(L).

Proof. Necessity. We consider M = L and apply Lemma 3.4. Then there exists
a language CL ∈ C(L) such that L ⊆ CL. But since all languages from C(L) are
subsets of L, L = CL and hence L ∈ C(L).
Sufficiency. Suppose L ∈ C(L) and L is a non-union-free language. Then it
cannot be represented as a finite concatenation from C(L) because every con-
catenation from C(L) only consists of union-free languages (languages from B(L)
and letters), and we come to a contradiction. ⊓⊔

4 Union-free Decomposition

Theorem 4.1. Let L be a regular language. Then there exists an algorithm that
results in a minimal union-free decomposition of L: L = L1 ∪ L2 ∪ · · · ∪Lk (the
algorithm is described within the proof).

Proof. To construct a minimal union-free decomposition, we examine all the sub-
sets of C(L) and choose the subset containing a minimum number of languages
(among all the subsets) which being added up are equal to L. It should be noted
that there is at least one subset containing languages which being added up are
equal to L, because there exists at least one union-free decomposition of L and
to every component of the decomposition we can apply Lemma 3.4, thus obtain-
ing a decomposition of L into languages from C(L). The final step is to prove
that the decomposition obtained is minimal, i.e., there exists no decomposition
containing fewer elements than the one we got. Suppose we have such a decom-
position L = N1 ∪N2 ∪ · · · ∪Np, p < k. We take each language Ni (i = 1, . . . , p)

8 Sergey Afonin, Denis Golomazov

and apply Lemma 3.4 to it, getting a union-free language CNi
∈ C(L) such that

Ni ⊆ CNi
. Thus we get the new decomposition L = CN1

∪CN2
∪· · ·∪CNp

, p < k
and every language CNi

belongs to the set C(L). But since we have already
examined all the subsets of C(L), we have examined the subset {CN1

, . . . , CNp
}

too, and we must have chosen this subset for the minimal decomposition. This
contradiction completes the proof. ⊓⊔

The algorithm for constructing a minimal union-free decomposition of a given
regular language L is computationally hard since it requires checking all the

subsets of the set C(L), which can contain up to c|Q|
(
2|Q|

)|Q|−1
elements, where

c is the number of cycle-free paths in the automaton associated with L (see
Corollary 3.3). We believe that there exist more effective algorithms that results
in a minimal union-free decomposition of a given regular language. Some ideas
on creating such an algorithm are given below.

A promising way of constructing minimal union-free decompositions can be
developed using the technique of cutting maximum star languages introduced
in [2]. In short, the technique is as follows. Let L be a regular language. The
equation L = X∗L is proved to have the unique maximal solution X0 (w.r.t. in-
clusion). Moreover, the equation L = X∗

0Y is proved to have the unique minimal
solution Y0. To construct a minimal union-free decomposition of L we solve these
two equations and obtain the language Y0. Then we apply the same procedure
to the language Y0 and get the minimal language Y1 such that L = X∗

0X∗
1Y1.

If the process ends (and it is an open problem, see [9]) we either obtain the
language Ym = {ε} or get a language Ym such that the equation Ym = X∗Ym

has no solutions. Then we check whether all the words in the language Ym

start with the same letter. If it is the case and, for example, all the words
in Ym start with a, we write Ym = aY ′

m and apply the procedure described
above to the language Y ′

m (solve the equation Y ′
m = X∗Y ′

m etc.). If it is not,
and there are words in Ym that start with different letters, e.g. a1, . . . , an, we
can write Ym = Ym1

∪ · · · ∪ Ymn
so that every language Ym1

, . . . , Ymn
con-

tains only words starting with the same letter ai, 1 6 i 6 n. Then we write
L = X∗

0X∗
1 · · ·X∗

mYm1
∪ X∗

0X∗
1 · · ·X∗

mYm2
∪ · · · ∪ X∗

0X∗
1 · · ·X∗

mYmn
and apply

the procedure described above to every language Ym1
, . . . , Ymn

. If the process
ends, thus we obtain the union-free decomposition of the language L, which is
likely to be minimal, but this is yet to be proved. As already mentioned, an-
other open problem connected with this technique is that the described process
of “cutting stars” has not yet been proved to always be finite (see [9]).

5 Conclusions and Further Work

In this paper we have presented an algorithm for constructing a minimal union-
free decomposition of a regular language. The algorithm includes an exhaustive
search but we tend to think that there exist more effective algorithms that solve
the problem.

We have also studied some common properties of union-free languages. In
particular, we have presented the new algorithm for checking whether a given

Minimal Union-free Decompositions of Regular Languages 9

language is union-free which can be more effective than the one existing in the
field (see [8]).

There are some other interesting questions connected with the problems con-
sidered. For instance, whether a minimal union-free decomposition consists of
disjoint languages (as sets of words) and if it is possible to construct a mini-
mal decomposition that contains disjoint languages only. If it is not always the
case, one can consider minimal disjoint union-free decompositions (that consist
of disjoint languages) and ways of constructing them.

Another open problem is connected with star height. Given a star height of a
regular language is it possible to construct a minimal union-free decomposition
that consists of languages of the same star height?

References

1. Paz, A., Peleg, B.: On concatenative decompositions of regular events. IEEE
Transactions on Computers 17(3) (1968) 229–237

2. Brzozowski, J., Cohen, R.: On decompositions of regular events. Journal of the
ACM 16(1) (1969) 132–144

3. Nagy, B.: A normal form for regular expressions. In: Eighth International Con-
ference on Developments in Language Theory, CDMTCS Technical Report 252,
CDMTCS, Auckland (2004) 10

4. Brzozowski, J.: Regular expression techniques for sequential circuits. PhD thesis,
Princeton University, Princeton, New Jersey (1962)

5. Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular expressions. In: STOC
’74: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
New York, NY, USA, ACM (1974) 75–79

6. Afonin, S., Khazova, E.: Membership and finiteness problems for rational sets
of regular languages. International Journal of Foundations of Computer Science
17(3) (2006) 493–506

7. Leung, H., Podolskiy, V.: The limitedness problem on distance automata:
Hashiguchi’s method revisited. Theoretical Computer Science 310(1–3) (January
2004) 147–158

8. Hashiguchi, K.: Representation theorems on regular languages. Journal of Com-
puter and System Sciences 27 (1983) 101–115

9. Brzozowski, J.: Open problems about regular languages. In Book, R.V., ed.: Formal
Language Theory, Santa Barbara, CA, Univ. of CA at Santa Barbara, New York:
Academic Press (1980) 23–47

10. Nagy, B.: Union-free languages and 1-cycle-free-path-automata. Publicationes
Mathematicae Debrecen 68 (2006) 183–197

