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Abstract 
Lesions analysis of mucous glands, which depends on the glands segmentation in histo-

logical images, is an important task of surgical pathology. This paper presents a hybrid meth-
od of glands object segmentation in histological images, based on the trainable active contour 
model. The hybrid method combines the use of both modern convolutional neural networks 
and classical methods of mathematical image processing. Also, within this hybrid method a 
special postprocessing algorithm is implemented, which allows to correctly segment stucked 
glands in the image. The proposed method was tested on PATH-DT-MSU dataset and 
demonstrated good results. The average value of IoU for all test images is 0.81.  
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1.  Introduction 
Currently, the use of machine learning and deep learning methods based on convolutional 

neural networks has become one of the main directions in computer processing and analysis 
of medical images [1, 2]. However, this technique also has a number of shortcomings (tight 
dependency of the solution to the dataset on which the neural network was trained and the 
unpredictability of diagnostic results even with a slight deviation from this dataset, lack of so-
lution justifications with standard medical criteria, insufficient quality control of the used im-
ages, insufficient dependency analysis of diagnostic results on the level of image artifacts). 
Thus, the development of hybrid methods for processing and analyzing medical images, that 
use both machine-learning methods and the classical methods of mathematical image pro-
cessing, becomes very important as they allow to significantly help in solving the above prob-
lems. 

Although the idea of these hybrid methods is quite new, a number of examples of such al-
gorithms can be found in literature. In [3] a hybrid approach uniting a convolutional neural 
network and a classical non-local denoising algorithm is used in the problem of suppresion of 
additive Gaussian noise in images, and in [4] a bundle of classical graph cut algorithm and 
convolutional neural network is used to train the convolutional neural network for semantic 
image segmentation using weakly supervised data, etc. 

In this paper, hybrid algorithms for analyzing medical images will be considered for the 
problem of mucous glands segmentation in histological images. 

Algorithms that perform semantic segmentation of glands in histological images [5] allow 
in some cases to divide adjacent glands, however, in general, the performed segmentation is 
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not perfect and needs further improvements. The principal improvement is the transition 
from the task of semantic segmentation to the task of instance segmentation for detecting in-
dividual glands in the image. 

Among the neural network based algorithms used for instance segmentation, two main 
approaches that are well proven in practice are worth highlighting. The first one is Mask R-
CNN [6], developed by Facebook AI Research. Based on the input image Mask R-CNN gener-
ates assumptions about the areas where the object may be located, predicts the class of the 
object, refines the bounding box, and generates the pixel mask of the object. A fundamentally 
different instance segmentation method is implemented by Deep Watershed model [7]. It us-
es the idea of the classical watershed algorithm and modern deep learning approach to create 
an energy map of the image, where individual objects are represented in the form of energy 
pools. Performing a cut at one energy level allows to get related components corresponding to 
segmented objects. 

Mask R-CNN and Deep Watershed architectures are instance segmentation architectures 
of general type and have their disadvantages when applied to the segmentation of glands in 
histological images. In particular, Mask R-CNN requires a large amount of data for training 
and Deep Watershed is prone to perform incomplete segmentation of objects and lose details 
near objects boundaries. In addition, none of these architectures uses information about the 
shape of segmented objects, which could be extremely useful in the case of histological struc-
tures (the boundaries of the glands are mostly smooth and in a large number of cases are 
close to ellipses). 

To work with this kind of information an active contour model [8], which represents a var-
iational method of finding boundaries in an image, can be a very good solution. In this model 
the problem of finding an object boundary is formulated as finding a contour on which the 
specified energy functional reaches its minimum. 

The main disadvantage of the classical active contour model is the manual selection of the 
parameters of the contour for each image and the use of low-level image characteristics when 
constructing the energy functional. In attempt to combine the good generalization ability of 
convolutional neural networks and the flexibility of the classical model of active contours, this 
paper considers the trainable active contour model [9] and a hybrid method of glands seg-
mentation in histological images, that is based on this model. 

2.  Trainable active contour model 

We will consider an active contour as a polygon  consisting of  nodes 

, where each node  represents one of the nodes of the discretized con-
tour. 

According to the classical active contour model [8] the energy functional can be defined as: 

   (1) 

where  represents external energy, which depends on the source image 

 of size ,  is the membrane term,  is the thin plate term,  is the 

baloon term. The notation  corresponds to the value of  at position . A 
function depending on the gradient of the image is used as an external energy, the remaining 
parameters are manually selected for each image. 

The main difference of the trainable active contour model [9] from the classical model 
is that the energy functionals are determined independently at each point of the image and 
are predicted by a segmentational convolutional neural network. Within this model, the ener-
gy functional is defined as: 

 (2) 



where  represents external energy that depends on the input image  of 

size ,  is the membrane term,  is the thin plate term,  is the 

baloon term, and  is the area inside polygon . 

The field of external energy  defines the regions of the image, where the active con-

tour should move. In other words  should be small near the boundaries of segmented ob-
jects and it should obtain large values in other areas of image. During inference the contour is 

moved in the direction of steepest descent . 
In the case of trainable active contour model the external energy field as well as inter-

nal fields ,  and ballon term  are predicted using a convolutional neural network 
at each pixel of the image. 

According to [9] the derivative of internal contour energy  with respect to the coor-

dinates of polygon  can be calculated as: 

    (3) 

where  is a tri-diagonal matrix and  is a penta-diagonal matrix. 
The ballon term can also be represented in energy form: 

    (4) 

Shifting the node  by  leads to changes of energy . The derivative of 

 is 

  (5) 

in the case of movement by  and 

  (6) 

in the case of movement by . 

The energy of contour (2) can be split into internal energy , consisting of  and 

, and external energy , consisitng of  and . 

Whereas  depends only on contour , and considering (6) the step of contour 
movement can be calculated as:  

   (7) 
Finally, according to [9] the contour movement is described as:  

    (8) 
To make the iteration process (8) more robust, we limit the contour movement to some 

maximal value , defining the number of pixels each node of the contour can be shifted along 

each axis per iteration. We denote the desired contour movement as : 

   (9) 
After that, we represent the contour movement taking into account the introduced re-

strictions: 

    (10) 
To make the movement of the active contour smoother and more stable, we apply the 

idea of momentum [10] that is widely used in machine learning. In particular, we use the 
weighted sum of the calculated movement on the current iteration (17) and the movement 
from the previous iteration: 

   (11) 

where  is momentum. Note that if  formula (11) turns into (10). 
As a result, the movement of the active contour is described by (9), (11). 



Thus, the scheme of the algorithm based on the described trainable active contour 

model is the following. Using the input image , the segmentational convolutional neural 

network predicts energy fields . After that according to the initial position 
of the contour and the predicted energy fields in accordance with (3, 9, 11) the active contour 
is expanded, which leads to the object segmentation. 

It is also worth noting that the process of contour expansion can be implemented di-

rectly within the network. Thus, the source image and the initial contour  are used as neural 

network inputs, and at the output we get all contour representations as a  tensor, where 

 is the number of iterations over time. This allows us to consider the described steps as the 
use of a convolutional neural network with structured prediction [11]. Such neural networks 
got this name because the output of the network represent a complex structured data, not a 
single value or image (as in the case of neural networks used for classification and segmenta-
tion tasks). 

The main drawback of the described active contour model with structured prediction is 

the impossibility to construct any ground-truth data. That is, with a fixed number of  nodes 
on the contour, the boundary of the object can be sampled in almost an unlimited number of 
ways, which makes a standard comparison of the neural network prediction with ground-

truth data using  norm completely meaningless. 
In [9] the authors propose a method for training a neural network with structured pre-

diction, which is based on generating negative examples of incorrect segmentation to sup-
plement positive examples of correct segmentation. For all pairs contour/image from training 

dataset and using a task loss function  they build a functional based on max-margin 
formulation. After that the contour that deviates most from the ground-truth is found for the 
fixed weights of the neural network. This contour is used to calculate the subgradient of the 
maximum distance functional, which makes it possible to find the required change of the 
network weights. As a result, the proposed method allows to simultaneously reduce the ener-

gy of the ground-truth contour  and increase the energy of the contour most differ-
ent from the desired one. Thus, the neural network is trained to predict contours that are 

close to the ground-truth according to task loss function . 
The general scheme of the proposed hybrid method is shown in Fig.1. 

  

 
Fig. 1. The scheme of trainable active contour model. 



3. Applying trainable active contour model for gland seg-
mentation in histological images   

We will consider the issue of using the trainable active contour model for the problem of 
glands segmentation in histological images (the initialization step of active contours requires 
more detailed research and is not included in this work). In this paper, we use PATH-DT-
MSU histological dataset [5], which consists of 20 full-frame sections of colon. To assess the 
quality of the segmentation, we use Jaccard similarity index also known as intersection over 
union or IoU. 

Previously described trainable active contour model can be used to simultaneously operate 
with only one contour in the image. Therefore, both in the case of training and evaluating the 
model, all of the original histological images are divided into square patches of a fixed size, 
using information about the initial positions of the active contours. The size of the patch was 
chosen empirically so that it exceeded the size of the gland presented in PATH-DT-MSU data 
set, and was chosen to be 512 pixels. Also, the formation of patches is performed in a way so 
that the gravity center of the initial position of the contour coincides as far as possible with 
the center of the patch (except the glands that lay close to the image boundary). 

The number patches used for training is enlarged using data augmentation. Data augmen-
tation is performed by turning a patch at a random angle, applying random reflection and 
scale changing, applying nonlinear distortion and changes in brightness. Only those sequenc-
es of these random transformations are considered, during which the ground-truth contour 
corresponding to the patch does not outstep the patch (mainly the rotations are concerned). 

In this paper a modified version of U-Net [12] is used as a segmentational convolutional 
neural network for the trainable active contour model. The network depth (the number of 
convolutional blocks in the encoding part of the network) is chosen to be 5, a normalization 
operation has been added inside each block. To simplify the task and speed up the learning 
process, it was decided to feed the network with patches not of the original size, but reduced 
to 128 × 128 resolution. The main difference of the used network from the original U-Net is 
the number of output tensors, which is equal to 4. In particular, after the network calculates 
the final tensor at the end of the decoding path, four independent convolutions are applied, 
comparing to the one that is used in U-Net to reduce the number of channels to 2. This allows 

to obtain 4 result maps from a single input image: . All calculations for 
contour expansion based on the initial location and the predicted energy maps are performed 
inside the network, thereby forming a network with structured prediction, the training proce-
dure for which was described earlier. 

Also, in the current problem of glands segmentation in histological images due to the lim-

ited amount of training data, it was decided to use the patch-averaged value of  instead of 
the individual value at each point of the patch. 

Presently, the computation scheme that moves the contour based on the predicted energy 
maps is implemented only for a single contour and is not adapted to work in batch mode. 
Therefore, choosing the large batch size results in the low training speed of the network. To 
solve this problem we use group normalization [13] instead of batch normalization inside 
each convolutional block. This approach allows to leave the batch size small (in the current 
configuration, it is equal to 2) while maintaining a network training speed comparable to the 
use of batch normalization with a batch of 16. 

The network is trained using Adam (Adaptive Moment Estimation) optimizer [14]. It 
should be noted that due to the fact that this neural network does not use a smooth loss func-
tion, and weights are optimized based on the subgradient method, training with a gradual de-
crease of the learning rate (by a fixed number of iterations or upon reaching a plateau) gives 
poor results. In this case a cyclical learning rate is much more suitable. To train the network 
we use the scheme of changing the learning rate from [15], in which the learning rate curve 
with respect to an iteration is represented as oscillations with a fast linear increase and a 
smooth cosine decrease with a gradual decrease in amplitude.  



The parameters of the trainable active contour model for the current task were chosen as 

follows: the number of nodes in the contour , the number of iterations , the max-

imum distance each contour node can be shifted during one iteration , contour moment 

, the initial positions of the contours were set as circles with a radius of 5 pixels around 
the gravity center of the ground-truth contour of each gland. 

The results of the glands segmentation in histological images performed with the proposed 
trainable contour model on PATH-DT-MSU dataset using all the described above techniques 
are shown in Fig. 2. The training process is visualized in Fig. 5 in the form of IoU dependency 
from the training epoch on training and test data. In addition, Fig. 3 demonstrates the visual-
ization of some of the predicted energy maps. 
  

  
(a)                                              (b) 

 

  
(c)                                              (d) 

 
Fig. 2. Glands segmentation in the test image from PATH-DT-MSU dataset. The ground-
truth contours of glands are green, the predicted contour is blue. (a), (b), (c), (d) are the 

states of contours at iteration 1, 20, 30 and 40. 
  



 
(a) 

 

 
(b) 

Fig. 3: Visualization of the predicted energy fields for several patches of the test image from 

PATH-DT-MSU dataset: (a) is  energy field, (b) is  energy field. 
  

4.  Postprocessing segmentation results 
The described algorithm for segmentation of individual glands in histological images has 

one major drawback. Namely, the segmentation of each gland with the active contour extend-
ing from its original position is performed independently and does interact with other glands 
present in the image. Due to the fact that the segmentation of each individual gland with the 
active contour model may not be ideal, in some areas of the image the resulting contours of 
several glands may overlap. This effect is obviously a segmentation error. To eliminate the de-
scribed effect, we propose to use a special postprocessing algorithm. 



We consider a set  of  active contours, each of them consists of  nodes and  iterations 

over time. Thus,  stands for the coordinated of -th node of -th active contour at time 

step . To prevent the possibility of contour overlapping we propose a simple but at the same 
time effective postprocessing collision resolution algorithm (Alg.1). 
  

 
1:  procedure REGULARIZE( ) 

○ processed set of contours } 

2:  for t = 2 to  do 
○ iteration over time 

3:    shuffle( ) 
○ shuffle contours 

4:    for i = 1 to  do 
○ iterate over all contours 

5:       
○ already processed contours 

6:       
○ contours that are not processed yet 

7:    for k = 1 to L do 
○ iterate over all nodes 

8:       

○ segment connecting nodes  and  

9:       

○ segment connecting nodes  and  

10:      if  then 
○ if there are any intersections 

11:         
○ do not move this node 

12:  return   
○ result set of contours without collisions 

 
Alg.1: Collision resolution algorithm 

  
This collision resolution algorithm for the expanding active contours works as follows. 

For each iteration  the algorithm randomly shuffles the set of contours, and then alter-
nately examining each contour from the sequence moves only those nodes of the contour 

(from their position at step  to the new position at step ), the movement of which does 
not lead to the intersection of the processed contour with any of the remaining (Fig. 4). When 
the current contour is interacting with the one that has already been processed at the current 

iteration, the processed contour is considered at the updated time step , and when interact-
ing with the contour that has not yet been processed at the current iteration, the unprocessed 

contour is considered at the previous time step . The random shuffling of contours before 
each iteration of the algorithm affects the order of contours processing and leads to more ro-
bust results. 
  



 
(a)                                                                          (b) 

 
(c)                                                                          (d) 

Fig. 4: Interaction of active contours. Turn of the left contour movement. The nodes that are 
moved at the current iteration are marked in green, their new predicted positions are marked 

in orange. (a) shows the initial position of the contour, (b) shows possible new positions of 
the contour nodes and the intersection of its segments with other contours, (c) demostrates 

the choice of the nodes that can be moved, (d) shows the result of the movement. 
  

Postprocessing the set of active contours with the described collision resolution algo-
rithm makes it possible to ensure that the resulting contours in the image do not intersect. At 
the same time, since the introduced trainable active contour model assumed to limit the shift 
of each node of the contour by 2 pixels per iteration, the contours that initially intersected 
would be located close to each other. 
  

 
(a)                                                                          (b) 

Fig. 5: Training a hybrid trainable active contour model: (a) shows IoU over epoch for train-
ing and test data, (b) shows IoU over epoch for test data with and without the use of a colli-

sion resolution algorithm. 



The described postprocessing algorithm improves the quality of segmentation (Fig. 6). 
Thus, the value of the object IoU value on test images after applying the collision resolution 
algorithm increases by an average of 0.01 (Fig. 5). In this case, the final IoU for all test images 
from PATH-DT-MSU dataset is 0.81. 
  

  
(a)                                                                          (b) 

Fig. 6: Postrpocessing with collision resolution algorithm. The ground-truth contours of the 
glands are marked in green, the active contours being trained with the collision resolution al-
gorithm are shown in blue, the initial parts of the contours that have changed after applying 

the algorithm are marked in red. 
  

5.  Conclusion 
This paper presents a hybrid method for glands segmentation in histological images based on 
the trainable active contour model. A separate algorithm is also proposed for postprocessing 
of the segmentation results obtained with active contours. The proposed methods were tested 
on PATH-DT-MSU dataset and demonstrated good segmentation results. 
Further studies will include the development of active contour initialization algorithms de-
signed for histological images, which will allow us to construct a fully automatic trainable 
method for histological images segmentation. 
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