Инвариантные комплексные структуры на нильмногообразиях. Миллионщиков Д.В.

Механико-математический факультет МГУ им. М.В. Ломоносова mitia_m@hotmail.com

Нильмногообразие M – компактное вещественное однородное пространство вида G/Γ , где G – односвязная нильпотентная группа Ли, а $\Gamma \subset G$ – ее кокомпактная решетка. Из теоремы Ниренберга-Ньюлендера следует, что левоинвариантую комплексную структуру на нильмногообразии $M = G/\Gamma$ можно понимать как почти комплексную структуру J на касательной алгебре $\mathfrak g$ группы G ($J^2 = -1$), удовлетворяющую условию интегрируемости

$$[JX, JY] = [X, Y] + J[JX, Y] + J[X, JY], \ \forall X, Y \in \mathfrak{g}.$$

Продолжая почти комплексную структуру J на комплексификацию $\mathfrak{g}^{\mathbb{C}}$, мы получаем разложение $\mathfrak{g}^{\mathbb{C}} = \mathfrak{g}^{\mathbb{C}}_{-i} \oplus \mathfrak{g}^{\mathbb{C}}_{i}$, где $\mathfrak{g}^{\mathbb{C}}_{\pm i} = \{x - \pm i Jx : x \in \mathfrak{g}\}$ — собственные подпространства J, отвечающиие собственным значениям $\pm i$. Почти комплексная структура J интегрируема тогда и только тогда, когда оба подпространства $\mathfrak{g}^{\mathbb{C}}_{\pm i}$ являются комплексными подалгебрами в $\mathfrak{g}^{\mathbb{C}}$. В докладе мы обсудим следующий основной вопрос: какие ограничения на структуру вещественной нильпотентной алгебры Ли \mathfrak{g} накладывает сам факт существования на ней интегрируемой комплексной структуры? Также будут рассмотрены разнообразные примеры.