How do Cells Sense Physical Forces? Cellular Mechanosensing and Motility in Biomimetic 3D Environments

V. Santamaria, P. Perazzolo, M. Marzo, P. Luu-Alvarez, M.A. Valverde De Castro, S. Wiesen, V. Ruprecht.
ICFO - The Institute of Photonics Sciences, Barcelona, Spain; CIC, Center for Genomic Regulation, Barcelona, Spain; ICFO - The Institute of Photonics Sciences, Castelldefels (Barcelona), Spain; Universitat Pompeu Fabra, Barcelona, Spain.

The cellular microenvironment regulates processes such as cell division, cell migration, and cancer progression. Cells in vivo constantly sense the physical properties of the environment such as adhesion and mechanical confinement and, accordingly, switch between different migration modes. Embryonic progenitor stem cells derived from zebrafish embryos under mechanical confinement show Myosin II enrichment at the cell cortex. As a consequence cell motility increases and eventually transforms cells from a non motile to a highly migratory phenotype, termed stable bleb (Ruprecht et al., 2015). This amoeboid transformation is highly conserved in between different cell types (Liu et al., 2015). However, how single cells are able to sense a physical force and how Myosin II is activated under confinement is still unknown. Here, by combining quantitative imaging with an interference approach, we identified a conserved minimal set of proteins necessary for cell mechanosensation. These two proteins allow the cells to sense the mechanical confinement and differentiate between compression and inflation exemplified by hypertonic stress. The tight interplay between nuclear membrane tension and intracellular calcium levels controls the mechanosensitive machinery which further activates myosin II and leads to the stable bleb motility transformation. We show that mechanical confinement induces nuclear membrane (INM) unpinning followed by INM tension increase and, in the presence of high calcium levels, cytosolic phospholipase A2 (cPLA2) translocation to the inner nuclear membrane. cPLA2 cleaves fatty acids, releasing arachidonic acid (AA) which further regulates TRPV4 channels and Ca2+ entry. Inhibition of TRPV4 related Ca2+ entry and cPLA2 functioning completely blocks the mechanosensitive cell transformation. Altogether, the interconnected function of nuclear membrane tension and Ca2+ levels specify a novel mechanosensation module capable of reading mechanical force and osmotic inflation from the cell’s microenvironment, with important impacts for amoeboid migration in diseases and cancer.

Active transport confers specific, tuneable, and reversible mechanosensitivty to nucleocytoplasmic shuffling

ICB, Barcelona, Spain.

VAP is a transcriptional regulator with roles in development, cancer, and regeneration, which has been described to be mechanosensitive. Forces applied to the nucleus increase the nuclear accumulation of VAP by enhancing its active import through nucleoporins [1] However, the mechanism by which forces to the nucleus affect the active import of VAP, or any other protein, is unknown. Here we studied how forces to the nucleus regulate the active transport of molecules through nucleoporins. We combined static and dynamic measurements of nuclear import signals (NLS) and nuclear export signals (NES) of various binding constants to karyopherins. We plated mouse embryonic fibroblasts transfected with GFP-NLS on substrates of different rigidity, and observed that the nucleus to cytosolic ratio increased for high substrate rigidity (where the forces applied to cells by their nucleus are higher). However, the nuclear to cytosolic ratio decreased with rigidity for GFP-NES. When we exerted forces to the nucleus by a bar attached to an AFM cantilever, we measured that GFP-NLS and GFP-NES respectively increased or decreased their nuclear to cytosolic ratio, indicating that forces to the nucleus enhance active transport across nucleoporins in both directions. We also measured the dynamics of active transport through the nucleoporins on gels of different rigidities by optogenetically activating a basally caged NES within an NLS-containing construct. We observed that both import and export dynamics are increased with rigidity. This work shows a general mechanism where rigidity increases active transport through nucleoporins by exerting forces to the nucleus, which could explain how cells regulate the specificity of transcriptional program activation in response to mechanical cues.

Hierarchical biointerfaces as smart cellular mechanosensosurfaces

IMDEA Nanoscience, Madrid, Spain.
The surface topology is crucial for biomedical implant effective implantation and tissue healing. This generally involves promoting cellular proliferation around the implant surface and simultaneously preventing possible infection by bacteria. Today this is commonly achieved by the co-administration of growth factors and antibiotics upon surgery. Nonetheless, a significant percentage of artificial implants still fail due primarily to aseptic loosening and infection [1]. The possibility to control both mammalian and bacterial cells simultaneously by topographical mechanosensosurfaces mean have opened new possibilities to solve these issues. Both mammalian cells [2] and bacteria [3] have been seen previously to be responsive towards the surface topography, although at different micro and nano sizes ranges. This is due to the differences in physiology, morphology and size between bacteria and mammalian cells. As such, the design of effective topographical features, that not only prevent bacterial colonization, but also promote mammalian cell proliferation is extremely challenging. This work deals with this challenge by creating a convergent design of nano and micro hierarchical topographies. A novel fabrication process combines sequential nanocomprising with optical lithography steps. This process allows for a simple and well-controlled hierarchical structures fabrication, where the nanofeatures cover the entire micropattern. These topographies have been fabricated onto biocompatible polymers. Hierarchical surfaces provide unique physical environments allowing for testing different biological scales at once. As a biological source, we employ mesenchymal stem cells because of their in vitro capacity to form differentiated cellular identities, which play a key role in tissue regenerative processes. Results have shown that bacteria are sensitive to the nano-scale where bacterial lysis is found. The impact of the hierarchical topography on mesenchymal stem cells surface topography in terms of morphology, cell growth and differentiation, is under study. Previous tests in mammalian cells are shown.

References