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Abstract—It is proved that for an arbitrary polynomial f(x) ∈ Zpn [X] of degree d the Boolean
complexity of calculation of one its root (if it exists) equals O(dM(nλ(p))) for a fixed prime p and
growing n, where λ(p) = �log2 p�, and M(n) is the Boolean complexity of multiplication of two binary
n-bit numbers. Given the known decomposition of this number into prime factors n = m1 . . . mk,
mi = pni

i , i = 1, . . . , k, with fixed k and primes pi, i = 1, . . . , k, and growing n, the Boolean complexity
of calculation of one of solutions to the comparison f(x) = 0 mod n equals O(dM(λ(n))). In particular,
the same estimate is obtained for calculation of one root of any given degree in the residue ring Zm.
As a corollary, it is proved that the Boolean complexity of calculation of integer roots of a polynomial
f(x) is equal to Od(M(n)), where f(x) = adx

d + ad−1x
d−1 + . . .+ a0, ai ∈ Z, |ai| < 2n, i = 0, . . . , d.

DOI: 10.3103/S0027132219010029

INTRODUCTION

Algorithms for solving equations over rings of residues are applied in encoding and cryptography. At the
end of XIX and beginning of XX century, A. Tonelli and M. Cipolla proposed algorithm for extracting roots
over fields formed by residues modulo a prime number (see, e.g., [1–3]). Later on, these algorithms were
repeatedly reopened. These algorithms are probabilistic, but under assumption of validity of some number-
theoretic hypothesis the Tonelli algorithm has a deterministic version of polynomial complexity (see, e.g., [4]).
If it is necessary to apply the algorithm many times over the same field (for example, for decoding schemes),
then it is possible to neglect the complexity (which is uniquely determined by the field) of preliminary
computations (whose results nevertheless can be used for the roots extracting scheme construction over this
field), and the root extracting algorithms become deterministic.

For the Boolean complexity of Cipolla’s algorithm there is the estimate O(log2 p)M(log2 p), where M(n)
denotes the Boolean complexity of multiplication of binary n-bit numbers.

It is known, see [5, 6], that M(n) = ψ(n)n logn, where ψ(n) is a function growing slower than any iteration
of the logarithm. For medium values of n Shenhage–Strassen’s and Pollard’s algorithms work better. For
small n, Karatsuba’s and Toom’s methods were preferred (see, e.g., [1–3]).

COMPLEXITY OF SOLVING ALGEBRAIC EQUATIONS OVER RINGS OF RESIDUES

Solving equations over some rings Zm, we obtain the complexity estimate O(M(log2 m)). In particular,
root extracting in such rings can be performed with the complexity O(M(log2 m)).

Consider the case m = pn, where p is prime. The following result is useful for further considerations.
Lemma 1. The multiplicative inverse can be calculated in the ring Zpn with the Boolean complexity

O(M(λ(p))λ(λ(p)) +M(nλ(p))), where λ(p) = �log2 p�.
Proof. Apply an analogue of the well-known series inversion method (that can be also considered as

using the Newton tangents method or the Karatsuba bisection method). Let we have to solve the equation
ax = 1, a, x ∈ Zpn , or (which is the same) to solve the comparison ax = 1 mod pn, a, x ∈ {1, . . . , pn − 1},
where (a, p) = 1 (i.e., a is not divisible by p, otherwise there is no solution). As is known, for a, x ∈
{1, . . . , p − 1} the solution to the comparison ax = 1 mod p can be obtained with the Boolean complexity
I(1) = O(M(λ(p))λ(λ(p))) by applying the fast extended Euclidean–Shenhage algorithm (see, e.g., [7]). Let
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6 GASHKOV, GASHKOV, AND FROLOV

n1 = �n/2�. Assume a1 = a mod pn1 . As is known, the Boolean complexity of calculation of a1 equals the
complexity of the division with a remainder of a by pn1 , i.e., to O(M(nλ(p))). Suppose equaition a1x = 1,
a1, x ∈ Zpn1 , can be solved with the complexity I(n1) and let x1 ∈ {1, . . . , pn1 − 1} be its solution. Search
for the solution to the comparison ax = 1 mod pn, a, x ∈ {1, . . . , pn − 1}, in the form x = x1 + pn1y, where
ax1 = a1x1 = 1 mod pn1 . Since (ax1 − 1)2 = (a1x1 − 1)2 = 0 mod p2n1 , then −(ax1 − 1)2 = 0 mod pn,
a(2x1 − ax2

1) = 1 mod pn and hence x = 2x1 − ax2
1 mod pn. The computation of x2

1 is executed with the
complexity M(n1λ(p)), the value x2

1 mod pn can be found with the complexity O(M(nλ(p))), and then
a(x2

1 mod pn) can be found with the complexity M(nλ(p)) (see, e.g., [8]). Therefore, a(x2
1 mod pn) mod pn

is calculated with the complexity O(M(nλ(p))) and 2x1 − ax2
1 mod pn can be found with the complexity

O(M(nλ(p))) +O(nλ(p)) = O(M(nλ(p))).

Therefore, the complexity of solving the comparison ax = 1 mod pn can be estimated as

I(n) ≤ I(n1) +O(M(nλ(p))) = I(�n/2�) +O(M(nλ(p))).

Estimating I(�n/2�) from above in a similar way and using the inequalities M(a+b) ≤ M(a)+O(ab), where
a > b, we get

M((n+ 1)λ(p)) < M(nλ(p)) +O(nλ2(p)), M(n) ≥ n,

and for fixed p and increasing n we obtain the inequality

I(n) ≤ I(�n/4�) +O(M(�n/2�λ(p)) +M(nλ(p))) = I(�n/4�) +O(M(nλ(p))).

Proceeding in the same way, we get the estimate

I(n) ≤ I(1) +O(M(nλ(p)) +M(�n/2�λ(p)) +M(�n/4�λ(p)) + . . .+M(λ(p))).

Applying the inequality 2M(n) ≤ M(2n) (which is always assumed to be valid under similar circumstances),
we have

I(n) ≤ I(1) +O(M(nλ(p))) = O(M(λ(p))λ(λ(p)) +M(nλ(p))). �
Example 1. Solve the comparison 4x = 1 mod 32. First we solve the comparison 4x1 = 1 mod 3. Ev-

idently, the solution is x1 = 1 mod 3. Further, search for the solution on the form x = x1 + 3y = 1 + 3y,
where y ∈ {0, 1, 2}. Since (4x1 − 1)2 = 0 mod 32, then 4(2x1 − 4x2

1) = 1 mod 9 and hence x = 2x1 − 4x2
1 =

2− 4 = −2 = 7 mod 9.
Theorem 1. For an arbitrary polynomial f(x) ∈ Zpn [X ] of degree d the Boolean complexity of calcu-

luation of one its root (if it exists) is equal to O(dM(nλ(p)) +M(λ(p))λ(λ(p)) log2 n + dpM(λ(p))). For a
fixed p and an increasing n this estimate becomes O(dM(nλ(p)). In particular, the same estimate is valid
for extracting the roots of any degree4.

Proof. Let n1 = �n/2�. Construct the polynomial f1(x) ∈ Zpn1 [X ] by replacing the coefficients of the
polynomial f by their values modulo pn1 . Consider the comparison f(x) = 0 mod pn1 equivalent to the
comparison f1(x) = 0 mod pn1 . Any solution x of the comparison f(x) = 0 mod pn considered modulo pn1 is a
solution to the comparison f(x) = 0 mod pn1 and to the equivalent comparison f1(x) = 0 mod pn1 . By F (n1)
we denote the complexity of calculation of one such solution x1 ∈ Zpn1 of the comparison f1(x) = 0 mod pn1 .
Since x = x1 mod pn1 , then x = x1+pn1y, y ∈ Zpn−n1 . Therefore, to find a solution x = x1+pn1y, it suffices
to find y ∈ Zpn−n1 . As is known, Taylor’s formula for calculation of f(x) = f(x1 + pn1y) can be written in
the form

f(x1 + pn1y) = f(x1) + f [1](x1)p
n1y + f [2](x1)(p

n1y)2 + . . .+ f [d](x1)(p
n1y)d,

where d = deg f(x), the Hasse–Teichmuller derivative f [k](x) is defined by the equality k!f [k](x) = f (k)(x),
where f (k)(x) is the usual kth order derivative. For a monomial axm, m ≥ k, the kth order Hasse–Teichmuller
derivative is defined as a

(
m
k

)
xm−k, and for m < k it is equal to zero. For an arbitrary polynomial over the ring

Zpn this derivative is evidently defined by linearity. Therefore, the comparison f(x1 + pn1y) = 0 mod pn is
equivalent to the comparison f(x1)+f ′(x1)p

n1y = 0 mod pn. Since f(x1) ∈ Zpn , f(x1) = f1(x1) = 0 mod pn1 ,
then f(x1) = pn1z, z ∈ Zpn−n1 , z = f(x1)/p

n1 . Then the comparison f(x1) + f ′(x1)p
n1y = 0 mod pn is

equivalent to the comparison z+f ′(x1)y = 0 mod pn−n1 , where z = f(x1)/p
n1 , f ′(x1) ∈ Zpn1 . Since n−n1 ≤

n1, then in this comparison one can take f ′(x1) mod pn−n1 instead of f ′(x1). If f ′(x1) mod pn−n1 = 0, then
4The number of roots of degree d over the rings Zpn could be more than d for n > 1 and p | n.
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this comparison has no solutions for z 	= 0 mod pn−n1 and has pn−n1 solutions for z = 0 mod pn−n1 (any
y ∈ Zpn−n1 is a solution). Since the coefficients of the polynomials f and f1 are the same modulo pn1 , then the
coefficients of their derivatives f ′(x) and f ′

1(x) are the same modulo pn1 and hence they are the same modulo
pn−n1 . Therefore, f ′(x1) mod pn−n1 can be calculated by the formula a = f ′

1(x1 mod pn−n1) mod pn−n1 . The
latter implies that for a 	= 0 mod p we have y = −z/a mod pn−n1 and so for x = x1 mod pn1 there exists a
unique solution x = x1 + pn1y ∈ Zpn . If

a = 0 mod pk, a 	= 0 mod pk+1, z = 0 mod pl, z 	= 0 mod pl+1,

then for l ≥ k we have y = (−z/pk)/(a/pk) mod pn−n1 , and for l < k there are no solutions (because
z + ya = 0 mod pl and z + ya 	= 0 mod pl+1). The Boolean complexity of the calculation of z = f(x1)/p

n1

is equal to O(dM(nλ(p))) providing f(x1) ∈ Zpn is calculated by Horner’s method (the order of complexity
of the division of f(x1) mod pn by pn1 is O(M(nλ(p)))). Similarly, the complexity of calculation of a =
f ′
1(x1 mod pn−n1) mod pn−n1 is estimated as O((d − 1)M((n − n1)λ(p))). The complexity of calculation of
1/(a/pk) mod pn−n1 is estimated as

I(n− n1) +O(M((n − n1)λ(p))) = O(M(λ(p))λ(λ(p)) +M(nλ(p)) +M((n− n1)λ(p)))

= O(M(λ(p))λ(λ(p)) +M(nλ(p))).

The complexity of calculation of y = (−z/pk)/(a/pk) mod pn−n1 equals M((n − n1)λ(p)). At last, the
complexity of calculation of the root x = x1 + pn1y is equal to M((n − n1)λ(p))+ O(nλ(p)). The overall
estimate of the complexity of all calculations is equal to

F (n) = F (n1) +O(dM(nλ(p)) + nλ(p) +M(λ(p))λ(λ(p))).

Applying this recurrent estimate to estimate the sequence F (n1), F (n2), . . . , F (nk), where n1 = �n/2�,
n2 = �n/4�, . . ., nk = �n/2k� = 1, 2k−1 < n ≤ 2k, and using the equalities

M(�n/2�) = M(�n/2�) +O(n), F (1) = O(dpM(λ(p))),

we get
F (n) = O(dM(nλ(p)) +M(λ(p))λ(λ(p)) log2 n+ dpM(λ(p))).

(In the field Zp, the roots can be found by direct enumeration using Horner’s method to calculate the values
of the polynomial. For some polynomials the estimate can be improved, for example, for f(x) = xd in some
cases the roots can be found with the complexity O(λ(p)M(λ(p))), and one can use the Cipolla algorithm
for square root extracting.) �

Example 2. Solve the comparison f(x) = x3 + x + 1 = 0 mod 34. As in Example 1, for the sake of
brevity, all calculations are performed not in the binary system, but in the decimal system (of course, in
the ternary system the calculations would become simpler, but in this case one has to transform the final
result into the binary system, but Example 2 illustrates the theorem estimating the Boolean complexity, i.e.,
it is supposed that just the binary system is used. We omit these calculations giving only the final results
for short). The comparison x3 + x + 1 = 0 mod 3 has the root x1 = 1 mod 3. Search for solutions to the
comparison x3 + x+ 1 = 0 mod 32 in the form x2 = x1 + 3y = 1 + 3y mod 32, y ∈ Z3. In this case,

f(x2) = f(1 + 3y) = f(1) + f ′(1)3y = 3 + (3 + 1)3y = 3 + 3y = 0 mod 32, y ∈ Z3,

so y+1 = 0 mod 3, y = 2, x2 = 1+3 ·2 = 7 mod 32. Search for solutions to the comparison f(x) = 0 mod 34

in the form x3 = x2 + 32y = 7 + 32y mod 34, y ∈ Z9. In this case,

f(x3) = f(7 + 9y) = f(7) + f ′(7)32y = (72 + 1)7 + 1 + (3 · 72 + 1)32y = 39 · 9 + (4y) · 9 = 0 mod 34, y ∈ Z9,

so 4y + 39 = 4y + 30 mod 32. In Example 1 we had obtained that 4−1 mod 9 = 7 and hence y = −3 · 7 =
3 · 2 = 6 mod 32, therefore, x3 = 7 + 32y = 7 + 9 · 6 = 61 mod 34.

Theorem 2. Let the prime factorization n = m1 . . .mk, mi = pni

i , i = 1, . . . , k, of n be given. Then for
fixed k, fixed prime pi, i = 1, . . . , k, and increasing n the Boolean complexity of calculation of one root of the
comparison f(x) = 0 mod n equals

O

(

M(λ(n))(d + log2 k) + λ(n)

k∑

i=1

M(λ(mi))

λ(mi)

)

= O(dM(λ(n)).
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Proof. As is known, due to Chinese remainder theorem, solution of the comparison f(x) = 0 mod n can
be reduced to the solution of the comparisons f(x) = 0 mod mi, i = 1, . . . , k. Let xi ∈ Zmi be one of the
roots of the comparison f(x) = 0 mod mi, i = 1, . . . , k. In accordance with Theorem 1, such solution can be
found with the complexity O(dM(niλ(pi)) providing pi is fixed and ni → ∞. If xi, i = 1, . . . , k, are known,
then the corresponding solution x ∈ Zn, x mod ni = xi, can be found in the following well-known way.

For each i = 1, . . . , k, assume

Mi = n/mi =
∏

j,j �=i

mj, ai = Mi mod mi.

It is evident that (ai,mi) = 1 and, therefore, there exists bi = a−1
i mod mi, and then biMi = 1 mod mi,

biMi = 0 mod mj for all j 	= i; and for

x =

k∑

i=1

xibiMi mod n

the equalities x = xi mod mi are valid, which implies f(x) = f(xi) = 0 mod mi,i = 1, . . . , k, and hence
f(x) = 0 mod n. Use the following well-known result (its polynomial version can be found, e,g,. in [9]).

Lemma 2. The complexity of the inverse Chinese algorithm of calculation of x = xi mod mi, i = 1, . . . , k,
equals

O

(

M(λ(n)) log2 k + λ(n)
k∑

i=1

M(λ(mi))

λ(mi)

)

.

Proof. Assume Ai = n mod m2
i . It is evident that Ai = mici mod m2

i , ci ∈ Zmi . Since

mici − n = mici −miMi = mi(ci −Mi) = 0 mod m2
i ,

then ci = Mi mod mi = ai, therefore, ai = Ai/mi.
The Boolean complexity of calculation of Ai = n mod m2

i , i = 1, . . . , k, is equal to O(M(λ(n)) log2 k).
This can be proved by the bisection method (see, e.g., [7–9]): assume

N0 = m2
1 . . .m

2
�k/2�, N1 = m2

�k/2�+1 . . .m
2
k, Ci = n mod Ni, i = 0, 1,

then
Ai = C0 mod m2

i , i ≤ �k/2�, Ai = C1 mod m2
i , i > �k/2�.

The complexity of calculation of N0, N1 by the bisection method is equal to O(M(λ(n)) log2 k) (and interme-
diate results obtained during this calculation can be also used in recursion), the complexity of calculation of
Ci = n mod Ni equals O(M(λ(n))) (see [8]), after that the problem is recursively reduced to two subproblems
whose complexities are estimated as O(M(λ(n))(log2 k − 1)) by the inductive hypothesis.

The complexity of calculation of ai = Ai/mi, i = 1, . . . , k, is equal to

O

(
k∑

i=1

M(λ(mi))

)

= O(M(λ(n))).

In accordance to Lemma 1, the complexity of calculation of bi = a−1
i mod mi i = 1, . . . , k, is also equal to

O

(
k∑

i=1

M(λ(mi))

)

= O(M(λ(n)))

for fixed pi and for ni → ∞. The complexity of multiplication of an a-place number by a b-place number
for b ≥ a and also the complexity of the division of an (a + b)-place number by a b-place number with
a remainder can be estimated as O(bM(a)/a) (see, e.g., [8]). Using this inequality, we obtain that the
complexity of calculation of the numbers Mi = n/mi, i = 1, . . . , k, equals

O

(

λ(n)

k∑

i=1

M(λ(mi))

λ(mi)

)

.
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We can similarly get that the order of complexity of calculation of the remainders biMi mod n, i = 1, . . . , k,
is also equal to

λ(n)
k∑

i=1

M(λ(mi))

λ(mi)
.

Further, calculate xibiMi mod n, i = 1, . . . , k, with the same order of complexity and then find

x =
k∑

i=1

xibiMi mod n

with the complexity O(kλ(n)). �

THE COMPLEXITY OF INTEGER SOLUTION OF DIOPHANTINE EQUATIONS WITH A SINGLE
VARIABLE

An algorithm solving equations in the rings Zpn can be applied to solve equations in the ring Z. This
idea had been proposed by Legendre and was implemented by Zassenhaus in [10] to obtain factorization in
the polynomial ring Z[X ]. Let f(x) = adx

d + ad−1x
d−1 + . . .+ a0, ai ∈ Z, |ai| < 2n, i = 0, . . . , d, a0 ≥ 0. An

algorithm of complexity dO(1)n3 factorizing a polynomial f into irreducible factors with integer coefficients
was presented in [11]. Using Theorem 1, one can propose an elementary algorithm calculating integer roots
of low degree equations with large coefficients with the order complexity equal to that of multiplication of
n-bits numbers.

Theorem 3. The Boolean complexity of calculation of integer roots of the polynomial f(x) is equal to
Od(M(n)).

Proof. One can represent f(x) in the form

f1(x)f2(x)
2 . . . fd(x)

d,

where fi(x) ∈ Z[X ] are polynomials without multiple roots, with the complexity Od(M(n)) (more accurate
estimates can be obtained using [9]). Therefore, below we can assume that f(x) has no multiple roots and
a0 > 0.

In the case d = 1 the complexity of calculation of the unique root evidently equals O(M(n)). Choose
prime p so that pm > 2a0 > pm−1. Integer roots of the equation f(x) = 0 evidently divide a0 and hence
belong to the segment [−a0, a0] (by means of known methods of determination of boundaries for roots or by
Mignotte’s inequality this segment can be shortened), but determination of roots by exhaustive search can
be difficult (an evident approach uses the prime factorization of a0). However, searching for such roots can
be easily reduced to solving the comparisons f(x) = 0 mod pm and rejecting irrelevant roots (the verification
by Horner’s method whether x ∈ [−a0, a0] is a root can be performed with the complexity O(d2M(n)), and
the bisection method has the complexity estimate O(M(dn) log2 d) for the complexity of this computation).

To solve the comparison f(x) = 0 mod pm, we can use Theorem 1. In the case when all integer roots
x1, . . . , xk, k ≤ d, of the equation f(x) are pairwise distinct modulo p, it is possible to find each of them with
the complexity O(dM(n)) for fixed d and for n → ∞. Indeed, in this case the comparison f(x) = 0 mod p has
the roots xi mod p, i = 1, . . . , k (among others). Compute the derivative f ′(x) ∈ Z[X ]. Apply the Euclidean
algorithm to the pair of polynomials (f, f ′). To perform calculations over the ring Z, at each step of the
algorithm we pass from a pair of polynomials (g, h), where g = asx

s + . . ., h = blx
l + . . ., s ≥ l, to the

pair (h, blg − hasx
s−l) such that the sum of the degrees of the polynomials is less than s + l. It is evident

that any common divisor of the first pair of polynomials is also a common divisor of the second pair. The
algorithm stops either if a pair of polynomials (h, 0) appears (then the polynomial h is the common divisor
of f and f ′), or if a pair (h, c) appears, where c ∈ Z, c 	= 0 (then the polynomials f and f ′ have no common
roots over the field Q because they are relatively prime). In the first case we obtain a decomposition of f
into two factors, and the problem of root searching is reduced to the same one, but for polynomials of lesser
degrees. In the second case we choose prime p with the additional condition c 	= 0 mod p. Then (performing
all the calculations in the Euclidean algorithm modulo p) we obtain that the polynomials f(x) mod p and
f ′(x) mod p have no common roots over the field Zp and hence f ′(xi) 	= 0 mod pm for m = 1, and so for
any m. Hensel’s lifting of the root xi ∈ Zp to a unique root over Zpm , which is equal to xi modulo p, can be
implemented by methods of Theorem 1 with the complexity O(dM(mλ(p))) for fixed d and m → ∞ providing
f ′(xi) 	= 0 mod pm. If the comparison f(x) = 0 mod p has roots distinct from xi mod p, i = 1, . . . , k, for
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10 GASHKOV, GASHKOV, AND FROLOV

example, a root xk+1 ∈ Zp, then it also satisfies the condition f ′(xk+1) mod pm 	= 0 and can be lifted to a
root of f(x) mod pm for any m. However, if

pm > |adad0|+ |ad−1a
d−1
0 |+ . . .+ |a0|,

then any integer root of the polynomial f(x) = adx
d + ad−1x

d−1 + . . . + a0 is evidently a root of the
comparison f(x) mod pm satisfying one of the inequalities 0 ≤ x ≤ a0, pm − a0 ≤ x < pm, and vice versa.
Therefore, to find all integer roots of f(x), it suffices to find all roots of f(x) mod p, lift them to the roots of
the comparison f(x) = 0 mod pm, and throw away those not satisfying any of the inequalities 0 ≤ x ≤ a0,
pm−a0 ≤ x < pm. All the roots xi, i = 1, . . . , k, of the polynomial f(x) are contained among the solutions of
the comparison f(x) = 0 mod pm already for m satisfying the inequalities pm > 2a0 > pm−1, and each root
of the comparison f(x) = 0 mod pm can be obtained by lifting of the corresponding root of the comparison
f(x) = 0 mod p.

In accordance to Theorem 1, the complexity of calculation of a root of the comparison f(x) = 0 mod pm

equals
O(dM(mλ(p)) +M(λ(p))λ(λ(p)) log2 m+ dpM(λ(p))).

The latter term dpM(λ(p)) estimates the complexity of calculation of all roots of the comparison f(x) =
0 mod p by full search of all elements of the field Zp. Since the number of roots of the polynomial f(x) does
not exceed min(d, p), then the complexity of determination of all integer roots of f(x) can be estimated as

O(min(d, p)(dM(mλ(p)) +M(λ(p))λ(λ(p)) log2 m) + dpM(λ(p))),

where pm > |adad0|+ |ad−1a
d−1
0 |+ . . .+ |a0| ≥ pm−1, i.e., mλ(p) = O(nd). Therefore, for pm > 2a0 > pm−1,

i.e., for mλ(p) = O(n) one can find all roots of the comparison f(x) = 0 mod pm with the complexity

O(min(d, p)(dM(mλ(p)) +M(λ(p))λ(λ(p)) log2 m) + dpM(λ(p)))

and then throw away extraneous roots with the additional complexity O(min(d, p)d2M(n)), find all integer
roots of the polynomial f(x) with the coefficients whose absolute values are less than 2n with the complexity

O(min(d, p)(d2M(n) +M(λ(p))λ(λ(p)) log2 n) + dpM(λ(p))).

To calculate the number p, it is necessary to calculate the pair (h(x), c), c ∈ Z, at the last step of the
Euclidean algorithm and find the minimal prime p not dividing the number c. The number of steps of the
algorithm does not exceed 2d − 1, the coefficients of polynomials calculated at the ith step do not exceed
22

i(n+1)−1 (this estimate can be proved by induction) and hence log2 |c| < 22d(n+1), and the complexity of
calculation of c equals O(M(22dn)). To find the minimal prime p not dividing the number c, we consequently
generate prime numbers p1, p2, . . . by means of the sieve of Eratosthenes and divide the number c by pi.
Estimate from above the minimal value of such p. Let the number c be divisible by p1 . . . pk but not divisible
by pk+1. Since

|c| ≥ p1 . . . pk > apk , a > 1,

in accordance with the well-known number-theoretic Mertens inequality, then pk < log2 |c| = 22d(n+1), and
due to Bertrand’s postulate, p = pk+1 < 2pk < 22d+1(n + 1), therefore, λ(p) < 2d+ log2 2(n + 1) (one can
obtain slightly more accurate estimates). The complexity of generation of first k+1 primes by means of the
sieve of Eratosthenes can be estimated (using Mertens and Chebyshev inequalities) as

O(λ(p))

k∑

i=1

p

pi
= O(pλ(p)λ(λ(k))) = O(kλ2(k)λ(λ(k))) = O(22dn(d+ λ(n))2λ(d+ λ(n))).

The complexity of the test divisions of the number c by the primes p1, . . . , pk+1 can be estimated as

O(λ(c))

k+1∑

i=1

M(λ(pi))/λ(pi) = o(24dn2).

In the worst case the latter implies the estimate

O(d3M(n) + d22dnM(d+ λ(n)) + o(24dn2) = Od(n
2)

for fixed d and n → ∞.
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This estimate can be improved by rearranging the algorithm as follows. Instead of calculation of the
constant c by means of the Euclidean algorithm over the ring Z and verification whether the next prime
pi divides the number c, it suffices to find the greatest common divisor of the polynomials f mod pi and
f ′ mod pi by means of the Euclidean algorithm. The complexity of this calculation equals O(d2M(λ(pi))) (if
one uses Strassen’s fast version of the Euclidean algorithm, then the estimate of the complexity decreases to
O(M(d)M(λ(pi)) log2 d)). If c = 0 mod pi, then the degree of this greatest common divisor is greater than
0, and if c 	= 0 mod pi, then the polynomials f mod pi and f ′ mod pi are relatively prime and hence they
have no common roots over the field Zp (in the case c = 0 mod pi the degree of the greatest common divisor
can be greater than 1, and then the polynomials f(x) mod pi and f ′(x) mod pi could have no common
roots, and hence calculations modulo pmi can be used to find integer roots of f(x)). Therefore, one can
find the roots of the comparison f(x) mod pi

m as above, where pmi > 2a0 > pm−1
i , p1 . . . pi−1 | c and,

throwing away extraneous roots, find all integer roots of f(x). The estimate of the complexity of all GCD of
(f mod pj, f

′ mod pj), j = 1, . . . , i, is equal to

O(d2)

i∑

j=1

M(λ(pj)) = O(d2)(M(λ(p1) + . . .+ λ(pi−1)) +M(λ(pi)))

= O(d2)(M(λ(p1 . . . pi−1)) +M(λ(pi)))

= O(d2)(M(λ(c)) +M(λ(pi))) = O(d2)(M(22dn) +M(2d+ log2(n+ 1))) = O(d2M(22dn)).

Therefore, the final complexity estimate of the calculation of all integer roots of f(x) equals

O(d3M(n) + d22dnM(d+ λ(n)) + d2M(22dn)) = Od(M(n)). �

EXAMPLE OF FINDING INTEGER ROOTS OF THE POLYNOMIAL
f(x) = x3 + 22551x2 − 408321x− 109039822871

Calculate f ′(x) = 3x2 + 45102x− 408321, then apply the Euclidean algorithm, i.e.,

3(x3 + 22551x2 − 408321x− 109039822871)− x(3x2 + 45102x− 408321)

= 22551x2 − 816642x− 327119468613,

3(22551x2 − 816642x− 327119468613)− 22551(3x2 + 45102x− 408321)

= −1019545128x− 972150358968,

(−1019545128x− 972150358968)14355691095384

+1019545128(14355691095384x− 138767228736696) = 14097369703595836729420800.

Further, notice that 14097369703595836729420800 is divisible by 2, 3, 5 and is not divisible by p = 7.
Solving consequently the comparisons f(x) = 0 mod 7, f(x) = 0 mod 72, f(x) = 0 mod 74, f(x) = 0 mod 78,
f(x) = 0 mod 716, lift the roots 0, 4, 6 ∈ Z7 of the first one to the roots −22351, 2111,−2311 ∈ Z716 . Since
714 > 2 · 109039822871 > 713, then it is possible to choose the following sequence of calculations: f(x) =
0 mod 7, f(x) = 0 mod 72, f(x) = 0 mod 74, f(x) = 0 mod 77, f(x) = 0 mod 714. If one manages to obtain
an estimate for the roots which is more accurate than the trivial one used above, then the power 14 could
be decreased to 6, i.e., it would be sufficient to proceed the following chain of “lifts”: f(x) = 0 mod 7, f(x) =
0 mod 72, f(x) = 0 mod 73, f(x) = 0 mod 76, and at the end of the chain the roots −22351, 2111,−2311 ∈
Z76 already appear. Using the second version of the algorithm it suffices to calculate the following GCDs:
(x3+x2+x+1, x2+1) = x+1 mod 2, (x3+1, 0) = x3+1 mod 3, (x3+x2−x−1, 3x2+2x−1) = x+1 mod 5,
(x3 +4x2 + 3x, 3x2 + x+ 3) = 1 mod 7, and then solve the comparisons f(x) mod 7m as in the first version.

REMARK ON OTHER ELEMENTARY WAYS OF SOLVING COMPARISONS
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Calculation of a−1 mod m for (a,m) = 1 is equivalent to solving the comparison ax = 1 mod m, or to
solving of the equation ax+my = 1 under the conditions 0 < x < m, −a < y < 0. This solution is unique,
x = a−1 mod m. It can be found by the extended Euclidean algorithm. The estimate of the complexity of
this algorithm is O(λ(am))2, but the fast Shenhage modification of this algorithm is known (see, e.g., [7]).
Its complexity is λ(λ(am))M(λ(am)). However, it is hard to implement it as a Boolean circuit. Such a
circuit easily realizes calculations by the formula a−1 mod m = aφ(m)−1 mod m providing the values of the
Euler function φ(m) are known. The complexity of this circuit is equal to O(λ(m)M(λ(m))). If the canonical
factorization m = m1 . . .mk, mi = pni

i , i = 1, . . . , k, into prime factors are known, then φ(m) can be
calculated with the complexity O(λ(k)M(λ(m))) = O(λ(λ(m))M(λ(m))).

Consider the dual problem of calculation of m−1 mod a. Its solution can be obtained by simultaneous
calculation of a−1 mod m by means of the extended Euclidean algorithm as a solution to the equation
ax+my = 1 under the conditions 0 < x < m, −a < y < 0 because of m−1 mod a = −y mod a. If we find the
number x = a−1 mod m by some other algorithm, then m−1 mod a = −y = �(ax− 1)/m� can be calculated
with the complexity O(M(λ(am))).

In [12], the following formula was given in one of problems:

a−1 mod p = (−1)a−1 (p− 1) . . . (p− a+ 1)

a!
= (−1)a−1

(
p
a

)

p
mod p.

Performing calculations with the use of Pascal triangle modulo p2, one can find a−1 mod p with the Boolean
complexity O(a2λ(p) +M(λ(p)), which could be faster than the calculation of the (p− 2)th power for small
a.

A method to solve the comparison pkx = b mod m, where p is a prime, was presented in [12] in the
form of a problem. This method is based on the following recurrent algorithm. Let b + mt=0 mod p, i.e.,
t=−b ·m−1mod p. Find the maximal number δ such that pδ | (pk, b +mt). The problem can be reduced to
solution of the comparison pk−δx = b+mt

pδ mod m. If these calculations are executed in the base p numeral
system, then the complexity of the algorithm can be estimated as O(k2(M(λ(p)))). To estimate the Boolean
complexity, it is necessary to add the complexity of transformation from the binary system to the base
p system and backward. The latter can be estimated as O(λ(λ(m))M(λ(m))) by means of the Shenhage
algorithm. Therefore, the complexity of calculation of (pk)−1 mod m can be estimated as O(k2M(λ(p))) +
O(λ(λ(m))M(λ(m))). Therefore, the complexity of calculation of m−1 mod pk equals

O(k2M(λ(p)) + λ(λ(m))M(λ(m)) +M(λ(m) + kλ(p)) + λ(p)M(λ(p))).

For fixed p, m < pk, and k → ∞ this estimate equals O(k2M(λ(p)).
Algorithms solving the comparisons x2 = a mod 2k and x2 = a mod pk were also presented in [12] in the

form of problems. The Boolean complexity of the first one is equal to O(k2) and for the second one it is
equal to O(k2λ2(p)). Both the algorithms are versions of Hensel’s lifting.

Another algorithm solving the comparison x2 = a mod pk was given in [11] in the form of problem and
representing the solution by the explicit formula x = ±PQ′ mod pk, where

P = 2k−1√a
k
, Q = 2k−1√a

k−1
,
√
a = b ∈ Zp, b

2 = a,QQ′ = 1 mod pk.

Since the Boolean complexity of calculations of Q′ and of multiplication PQ′ mod pk equals O(M(kλ(p))),
the complexity of calculation of

√
a over the field GF (p) equals O(λ(p)M(λ(p))), and the complexity of

calculation of the remainders P,Q mod pk equals O(λ(k)(M(kλ(p))), then the complexity of square root
extracting modulo pk by this algorithm equals O(λ(k)(M(kλ(p))).
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