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INTRODUCTION

Genetic algorithms (GAs) are used for their efficiency to solve problems of the construction of optimal
game strategies, configuring and training of neural networks, query optimization in databases, scheduling
[1, 2], and machine learning [3], as well as to solve various tasks on graphs (coloring, the traveling sales�
man problem, and finding matchings), etc. However, in developing a GA for the solution of a particular
task, it is necessary to solve several problems [1]. One of them is choosing the values of the probabilities of
the mutation and crossover (these values have a profound effect on the efficiency of the algorithm). At
present, no theoretical results that make it possible to solve this problem have been found. In most prac�
tical applications of GAs, the parameter values of the operations of crossover and mutation are chosen
experimentally.

Self�learning random�search algorithms for solving problems of continuous mathematical program�
ming were proposed by L.A. Rastrigin in the 1960s [4]. In the work, such algorithms are adapted to the
relief of the target function. The basis of random�search methods is the iterative process

where X k is the vector of optimized parameters after the kth step, αk is a certain real coefficient, and ε is
an equiprobable random vector.

Self�learning algorithms for a random directed search suggest the restructuring of the probabilistic
characteristics of the search, i.e., a specific purposeful action on the random vector ε. It ceases to be
equiprobable and (as a result of the self�learning) acquires a certain advantage in the directions of the best
steps. This is achieved by introducing a memory vector. The algorithm recurrently corrects the values of
the components of this vector in each iteration according to the measure of the success or failure of a step.

The present paper suggests the introduction of the probability matrices of mutation and crossover into
the classical GA and an algorithm for changing the values of the elements of these matrices according to
the measure of success of applying a corresponding operation to a certain element of the solution.

1. GENETIC ALGORITHM WITH PARTICULAR PARAMETERS OF PROBABILITIES 
OF MUTATION AND CROSSOVER

1.1. Scheme of Algorithm

In the Holland classical GA [5], the probabilities of mutation and crossover are assigned, and the prob�
abilities at hand serve as the probabilistic thresholds of these operations. In each iteration of the classical
GA, the same values of these parameters are used. Each element S of a population represents a coded solu�
tion row X:

.
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The idea of a self�learning GA consists in introducing particular parameters of the probability of muta�
tion and crossover for each element xi of a solution row and in the subsequent correcting of these elements
in each iteration of the algorithm according to the measure of success or failure of applying a particular
operation (mutation or crossover) to an element of the solution.

The matrices Mmut and Mcr of the probabilities of the mutation and crossover are N × P matrices, where
N is the number of optimized parameters (usually it is identical to the number of the elements of a solution
row) and P is the population size. The elements of these matrices are the probabilities of the mutation and
crossover for each ith element xi of the solution in the jth row of the population:

The general scheme of a self�learning GA can be represented as follows.
1. Randomly generate the original population.
2. Compute the fitness function for each row of the population.
3. Select and permute rows of the matrices of mutation and crossover.
4. Perform the operation of crossover.
4.1. Choose pairs for crossing.
4.2. For each chosen pair, do the following:
(1) perform (with the assigned probability) crossover and obtain two descendants;
(2) correct the values of the corresponding elements of the probability matrix of crossover and permute

the elements of the rows corresponding to the crossed solutions;
(3) replace parents by their descendants in the population.
5. Perform the operation of mutation and correct the value of a corresponding element of the proba�

bility matrix of mutation.
6. If the stop condition is not satisfied, then go to step 2; otherwise terminate the work.
Now, we describe the basic operations of a self�learning GA.

1.2. Mutation

Denote by X = (x1x2 … xn) parent solution having number j in the population. For elements xi, the
limitations Ai ≤ xi ≤ Bi are assigned. Each of the values xi is an integer. We introduce the mutation’s degree Sm,

which specifies the degree the values of elements of vector X are changed. The operator of mutation  =

m(X, Mmut, Sm) generates a new solution  = ( … ) according to the following scheme:

(i) for each i = , a random number ri ∈ (0, 1) is chosen in accordance with the uniform distribution
law;

(ii) the new solution is found by the formula

Here, ms(xi, Sm) is the function of mutation of an integer value; this function mutates particular elements
of the solution vector X as follows [2]:

(1) xi is represented as a bit string; in this case, the minimum number of bits required for this purpose
is found: bi = log2⎡Bi – Ai⎤, where by Ai and Bi are denoted the lower and upper bounds of xi, respectively,
while the minimum integer greater than or equal to x is denoted by ⎡x⎤;

(2) xi is represented as

where αk is the kth bit of the string;

(3) the maximum number of mutating bits is found: ni = [(bi – 1)(Sm + 0.5)];
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(4) in accordance with the uniform distribution law, a random number li (1 ≤ li ≤ bi) is taken and the bit
having number li is inverted in the bit string:  = 1 – ; this step is repeated ni times;

(5) the preliminary result ti of the function of mutation is found using the mutated bit string:

(6) the result is corrected, since it is necessary to fall into the interval Ai ≤  ≤ Bi:

Hence, the operator of mutation  = m(X, Mmut, Sm) indeed depends on two parameters, namely,
Mmut representing the probability matrix of the mutation and Sm > 0 representing the degree of mutation
(the greater this number, the higher the probability that the changes in elements of the parent solution will
be large).

1.3. Crossover

Denote by X = (x1x2 … xn) and Y = (y1y2 …yn) parent solutions chosen for the crossover and having
in the population the numbers p and q, respectively. Here, xi and yi are certain integer values. The param�
eters PMIN and PMAX specify the thresholds of the probability of the crossover that are responsible for various
versions of the exchange fragments of rows. The operator of crossover cr(X, Y, Mmut, PMIN, PMAX) generates

two new solutions = ( … ) and  = ( … ) according to the following scheme:

1. In accordance with the uniform distribution law, a random number k (1 ≤ k ≤ n) is chosen.

2. The average probabilities of crossover of the right sides of the rows are calculated:

3. For the parent solutions, a random number r with the uniform distribution law is chosen.

4. Elements of the new solution are found by the following formulas:

if  > PMAX and  < PMIN, then

if  < PMIN and  > PMAX, then

αli
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;
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if r <  and r < , then

The operator of the crossover depends on one parameter, namely, Mcr representing the probability
matrix of the crossover.

Since the operation of crossover permits optimized parameters xi among strings of the population, the
corresponding permutations after performing the operation must also be made in the probability matrices
of mutation and crossover.

Let us describe several methods for correcting the elements of probability matrices; these methods are
used in self�learning random�search algorithms [4].

1.4. Absolute Method for Correcting Probability Matrices of Mutation and Crossover

We assign the parameter δ of varying the values of elements of the probability matrices of mutation and
crossover; this parameter specifies the speed of their reconstruction. The values of the elements of the
probability matrices vary in the course of operation of a GA as follows (thereby the mechanism of self�
learning is implemented).

If after the operation of mutation of the ith solution’s element having number j in the population, the

value of the fitness function decreases, then element  of the probability matrix of mutation (this ele�
ment corresponds to the probability of mutation of this element of the solution) increases by δ; otherwise,

it decreases by δ. In this case, the values of  must lie in the range from 0.1 to 0.9.

The elements  and  of the probability matrix of crossover, which specify the probabilities of
crossover for the ith and kth solution’s elements in the rows having numbers j and l, respectively, vary anal�
ogously to the case of mutation. In this case, their values must lie in the range from 0.1 to 0.9.

In contrast to the classical GA, this method assigns the values of parameters of mutation and crossover
specifically for each solution’s element. Self�learning is conducted in two contradictory modes: the pro�
motion of an operation (for ΔF < 0) and the punishment of an operation (for ΔF > 0), where ΔF is the dif�
ference between the values of the fitness function before and after performing the operation. Both modes
increase the probability of a favorable step of the self�learning GA.

1.5. Relative Method for Correcting Probability Matrices of Mutation and Crossover

In the above�considered method for correcting the values of elements of the probability matrices of
mutation and crossover, with any change in the fitness function, the values change by the constant equal
to δ. However, the need for correcting a particular element of the probability matrices depends primarily
on the degree of change in the fitness function after the operation on the solution’s element corresponding
to this particular element. Therefore, it is often more reasonable to use the relative self�learning algorithm.

Let us find the changes in the values of elements of the probability matrices analogously to the case of
the absolute method for correcting elements of the probability matrices; however, here instead of assigning

the fixed parameter δ we use the difference df =  – F between the values of the fitness function before (F) and

after ( ) performing a particular operation. Assume that mi, j is an element of the probability matrix of
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mutation or crossover and this element corresponds to the ith solution’s element in the row having number j.
Then,

The constants c1 and c2, which limit the change in the elements of the memory vector, exclude redeter�
mining the search in the course of self�learning.

With the introduction of such dependence, the self�learning process of a GA becomes more sensitive
to changes in the quality of a solution. In fact, at a small change in the fitness function, the corresponding
probabilities of the operations of mutation and crossover also have minor changes, and vice versa.

1.6. Relative Method for Correcting Probability Matrices of Mutation and Crossover with Forgetting

The above�considered algorithms for correcting elements of the probability matrices memorize and
store the entire previous experience of a GA. Evidently, there is no need for this. Moreover, changing the
operating conditions of the GA (approaching the global extremum of an objective function or moving
away from this extremum) requires sufficiently fast forgetting of information on the fitness function’s
changes determined before, because this information is obtained under other conditions and is now out
of date. Therefore, it is reasonable to introduce forgetting into the learning algorithm.

Let us determine the changes in the values of the elements of the probability matrices of mutation and
crossover analogously to the case of the relative method for correcting a memory vector. We introduce
parameter s of memorizing the results of previous steps of a self�learning GA:

Note that choosing the value of the memory parameter s defines the speed of reconstructing the prob�
ability matrices of mutation and crossover in accordance to approaching (moving away from) extremums
with the space of the search. With the values of s close to one, forgetting is almost absent. At the same time,
with the small values of this parameter, the probability of the determination of a local extremum increases.

1.7. Selection

The operation of selection allows generating a new population in the next iteration of the algorithm,
from the strings obtained at steps 4 and 5. For determining the integer number of the descendants and dis�
tributing the remainder, the proposed algorithm uses the schemes of proportional selection and a roulette,
respectively. Here, the parameter Nbest is added to the algorithm; this parameter specifies the number of
exemplars of the best string that necessarily remains in the population [2]. The scheme of performing the
operation can be presented as follows:

1. At the stage of determining the fitness function, the string of the population  with the best value

of the fitness function  is chosen; the value of the fitness function is compared with the value of the

fitness function of the best string in previous iterations Fbest. If  > Fbest or if this is the first iteration of

the algorithm, then  is memorized as the best string sbest = .

2. In the population, the number of strings identical to sbest is found and is memorized as Nbest_exist.

3. By the scheme of proportional selection, the number of descendants for each string is found. If the
number of strings in the new population is Npop, where Npop is the population size, then (Nbest – Nbest_exist)
the worst strings in the population are chosen (because the Nbest_exist available best strings will always pass
to the new population by the definition of the scheme of proportional selection) and are replaced by copies
of the best string sbest (and the operation of selection is finished); otherwise go to item 4.
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4. By the roulette scheme, Npop – Nsel1 – (Nbest – Nbest_exist) the descendants are distributed, where Nsel1 is
the number of strings obtained by the scheme of proportional selection. Then Nbest – Nbest_exist best strings
sbest are added to the population; if this value is negative, such an addition does not proceed.

The solution�coding method, the fitness function, and the stop condition are assigned specifically for
each problem.

2. EXAMPLES OF SELF�LEARNING GENETIC ALGORITHMS

In this section we consider GAs for solving two problems: job scheduling and subset sum problem.

2.1. Problem of Building a Schedule with Minimum Execution Time for a Fixed Number of Processors

Model of application program H(PR) [1, 6–8] is represented by an acyclic oriented marked graph
whose vertices P = p1 ∪ p2 ∪ … ∪ pN are matched by processes and arcs � = {�ik = (pi, pk)  are

matched by connections that specify interactions among processes from set P.
Each vertex has its unique number and the mark (the computational complexity), which assigns the

execution time of a given process ti. An arc is defined by the numbers of adjacent vertices and has a mark
corresponding to the amount of data exchange vij.

The model of application program H(PR) is assigned as follows:
(1) by the set of processes constituting program PR:

(2) by a partial order on P (on which the acyclicity and transitivity conditions are imposed):

(3) by the computational complexities of processes from P:

(4) by the amounts of data exchange for each connection from the set �:

A schedule of the program execution [1] is defined if sets of processors and operating ranges, a binding,
and an order are assigned. The binding is a completely defined function on the set of processes; this func�
tion assigns the distribution of the processes among the processors. The order specifies limitations on the
sequence of executing the processes and represents a partial ordering relation on the set of processors;
here, this relation satisfies the acyclicity and transitivity conditions. The order relation on the set of pro�
cesses distributed on the same processor is a complete�ordering relation.

A model of schedule HP of the program execution [1] is defined by a set of simple chains and the partial
order relation �HP on set P:

where {SPi  is a set of simple chains (branches of a parallel program). They are produced by pro�

cesses distributed on the same processor (M is the number of processors in the computer system). In the
model of schedule HP, the numbers of vertices, arcs, and their marks remain the same as in the model of
the behavior of program H(PR).

Schedule HP is called feasible if the following requirements are met for it:
(1) each process must be assigned to a processor (in SPi):

(2) each process must be assigned only to one processor (only in one SPi):

}
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(3) the partial order assigned in H must remain in HP:

� ⊂ , where  is a transitive closure of the relation �HP ,

(4) schedule HP must be open�ended, i.e., the graph of HP cannot have any circuits:

�HP is acyclic.

The problem of building a schedule with minimum execution time is formulated as follows. Assume
that one assigns the model of application program H(PR) = (P, �), the number of processors M, and the
function T = f(M, HP) of calculating the execution time of schedule HP for M processors. It is necessary
to build a correct schedule of executing program HP = ({SPi , �HP) for the assigned number of pro�

cessors M such that (M, HP).

In the coding of a solution as a string in a GA [9], it is necessary to code the schedule. We point out two
ways of representing a schedule: the direct representation (for each process, values of the binding and
order number are assigned explicitly, in the integer form) and the parametric representation (for each pro�
cess, the binding and order number are assigned by values of certain parameters from which the values of
the binding and order number are determined using the algorithm for restoring a schedule).

It is suggested to use the parametric representation of a schedule, and for restoring the order we propose
to apply the well�known algorithm for restoring a partial order by priorities; this algorithm is described in
[1, 2]. Such a way of representing a schedule allows independently changing all parameters that assign the
schedule; here, schedules obtained by operating remain correct and the third requirement of the correct�
ness of a schedule is not violated.

The coding can be performed as follows:

Here, N is the number of processes in H, ∪ is the operator of concatenation of strings, and Ytask and Yprio

define the schedule.

The parameter 〈YE〉i ∈  ⊂ Z contains the number of a processor on which the ith process is per�
formed; i.e., parameters 〈YE〉i uniquely define the distribution of processes among SP (the binding). The
parameters 〈YE〉i can take values from 1 to M.

The parameters 〈YP〉i ⊂ Z are used by the algorithm for restoring a schedule (for the given representa�
tion of the schedule it means finding the complete�ordering relation in each SPi) as priority processes.

We define the matrices of the probabilities of crossover and mutation for this problem as follows.

1. The matrix Mmut of the probability of mutation is a 2N × P matrix that consists of the values of the
parameters of mutation for each ith parameter of the solution in the jth row:

In particular, the row  of the matrix Mmut corresponds to the probabilities of mutation for
2N parameters of the binding and the priorities of the fifth population’s solution.

2. The matrix Mcr of the probability of crossover is a 2N × P matrix that consists of the values of the
parameters of crossover for each ith parameter of the solution in the jth row:

�HP
T �HP

T

}
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It is clear that minimizing the downtime of processors causes minimizing the time of executing a
schedule for the processors. In this respect, for the fitness function we propose a linear combination of the
following criteria:

(i) the collection of the downtime coefficients of the processors of a computer system (the ratio of the

downtime of the processors to their total operating time): ;

(ii) the execution time of a schedule: T = f(M, HP).

Note that occurrences of the values  and T (which have different measuring units) in the fitness
function must be normalized, because for various problems they can differ several times. Each downtime

coefficient  is already normalized in the range [0, 1]. In order to normalize T, we multiply it by the

coefficient 1/(t1 + … + tN), where  are the computational complexities of processes.

Hence, the fitness function has the form

In this case, the fitness function is bounded above by one:

For the stop condition, we propose using a limitation on the number of iterations of the algorithm with�
out improving; i.e., the algorithm stops operating if in I0 steps it cannot improve the value of the fitness
function in the population.

2.2. Subset Sum Problem

For a subset sum problem [10], a set of weighting coefficients wi is specified, each being a positive num�
ber. The aim of the problem is to construct a subset of weights such that the sum of its elements is closest
to the given value G:

The weighting coefficients wi are usually defined as the values of independent random variables uni�
formly distributed on the interval [0, 1].

The solution row of a GA for solving this problem includes indicators xi ∈ {0, 1} of belonging to a
weighting coefficient of wi for the sought subset. Each element S of the population represents a coded solu�
tion row X:

The matrices of the probabilities of mutation and crossover of a GA for solving the subset sum problem

are N × P matrices, where N is the number of weighting coefficients  and P is the population size.

As the mutation operation of a GA for solving the subset sum problem, we can use the above standard
version: the operation of mutation inverts bits of the ith element of the jth string of the population with the

probability .

The most workable scheme of crossover to solve the subset sum problem is a scheme of uniform
crossover, namely, for the strings with numbers k and l independently for each number i (1 ≤ i ≤ N),
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a random number r (0 ≤ r < 1) with the uniform distribution law is chosen; then elements of a new solution
are found:

The fitness function Fα of the string having the number α has the form

As the selection operation of a GA for solving the subset sum problem, it is proposed to employ the
above mixed strategy of selecting: for calculating the integer number of descendants and distributing the
remainder, one uses the schemes of proportional selection and a roulette, respectively. The probability of
the choice of the string having the number α is determined by the value of the fitness function F α of this
string.

For the stop condition, we use a limitation on the number of iterations of the algorithm without
improving the solution; i.e., the algorithm stops operating if in I0 steps it cannot improve the value of the
fitness function in the population.

3. EXPERIMENTAL COMPARISON OF ALGORITHMS

3.1. Description of Initial Data

Experimental studies were conducted for randomly generated test data. The initial data of the experi�
mental studies of GAs for solving the problem of building a schedule with the minimum execution time
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Table 1.  Characteristics of tests (scheduling problem)

Number 
of test K D M C Execution time for optimal schedule 

in cycles

1 13 [1, 10] 2 3 26
2 14 [1, 10] 3 7 13
3 19 [1, 10] 3 8 30
4 30 [1, 10] 5 6 30
5 44 [1, 10] 6 11 37
6 86 [1, 10] 11 34 40
7 573 [1, 10] 57 51 52
8 107 [1, 10] 20 0 30
9 86 [1, 10] 11 8 40

10 86 [1, 10] 11 17 40
11 86 [1, 10] 11 25 40
12 86 [1, 10] 11 34 40
13 86 [1, 10] 11 43 40
14 85 [1, 3] 11 40 12
15 86 [5, 10] 26 42 25
16 97 [3, 14] 17 15 56
17 94 [1, 15] 11 29 63
18 100 [1, 20] 11 30 86
19 100 [1, 15] 11 30 109
20 100 [1, 10] 2 41 225
21 93 [1, 10] 6 12 75
22 86 [1, 10] 11 34 40
23 81 [1, 10] 21 23 21
24 101 [1, 10] 29 20 20
25 78 [1, 10] 39 25 11
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for the fixed number of processors are randomly generated tests, which represent graphs with arbitrary
connections. The following characteristics of the problem and the graphs are randomly changed:

the number of processes (K);

the dispersion of the computational complexity of a process in cycles (D);

the number of processors (M);

the number of connections among processes (C).

Tests used to conduct the studies are presented in Table 1.

For the subset sum problem, a set of weights is randomly generated. The tests differ in the following
characteristics:

the number of elements of the weights’ set (N);

the value of the desired sum (G).

Here, elements of the set (the weighting coefficients wi) are defined as values of independent random
variables uniformly distributed on the interval [0, 1].

The tests used to conduct the studies are presented in Table 2.

Table 2.  Characteristics of tests (constructing a subset)

Number of test N G

1 100 17.494

2 200 35.737

3 300 53.043

4 400 68.196

5 500 89.594

6 600 104.920

7 700 118.219

8 800 139.136

9 900 154.363

10 1000 178.294

11 1500 262.186

12 2000 346.875

13 2500 441.852

14 500 0.000

15 500 24.465

16 500 49.199

17 500 72.937

18 500 98.891

19 500 145.436

20 500 176.688

21 500 204.148

22 500 230.896

23 500 109.501

24 500 139.650

25 500 258.899
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3.2. Scheme for Conducting Experiments

The experimental studies of the developed algorithms consist in conducting a series of 100 experiments
for each considered problem. In this case, we use the tests obtained by the generator of the test data for the
corresponding problem. The algorithm stops operating if in 250 iterations it cannot improve the value of
the fitness function in the population. In each experiment, the following values are measured:

(1) R representing the result of the GA’s operation:

for the problem of building a schedule with the minimum execution time for a fixed number of proces�
sors, it is the execution time of the obtained schedule in cycles;

for the subset sum problem, it is the absolute difference between the assigned value and the sum of the
obtained subset;
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Fig. 1. Accuracy of resulting schedule.
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Fig. 2. Time of resulting schedule.
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(2) T representing the algorithm’s operating time in seconds.

All experiments were conducted using the same computer system under the same conditions in the
absence of any extraneous background problems. Hence, the measurements of the operating time of the
algorithms are representative. The population size in each experiment comprised 100.

The brief description of the used computer system:

—The size of the main memory: 32 GB;

—The type of processor: Intel Itanium 2, 1.6 GHz, 8 core;

—The version of the operating system: Red Hat Enterprise Linux Server release 5.9.
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All the obtained data were processed using the method of the statistical hypotheses test [11]. As a result
we obtain that with a probability of at least 0.85, a GA with a memory vector solves each considered prob�
lem more efficiently than the corresponding classical algorithm. In the course of the experimental studies,
the following hypotheses were tested:

1. For the problem of building a schedule with the minimum execution time for the fixed number of
processors:

H1 (the accuracy of a self�learning GA is not lower than the accuracy of the classical GA);

H2 (the average operating time of a self�learning GA is not longer than the operating time of the clas�
sical GA).

2. For the subset sum problem:

H3 (the accuracy of a self�learning GA is not lower than the accuracy of the classical GA);

H4 (the average operating time of a self�learning GA is not longer than the operating time of the clas�
sical GA).

3.3. Results of the Experiments

The results of the comparative experimental studies of the self�learning GA and the Holland classical
GA for the problem of building a schedule with the minimum execution time for the fixed number of pro�
cessors are shown in Figs. 1 and 2. The absolute values of the results of the experimental studies are pre�
sented in the Appendix; these values are the foundation of the graphs.

The graphs demonstrate the results of operating the self�learning GA for three above�considered meth�
ods of correcting a memory vector (the results are averaged over the number of starts). For the basic results,
the outcome of the classical GA is taken. The accuracy specifies the number of cycles by which the exe�
cution time of a schedule obtained by the considered algorithm was improved in comparison with the clas�
sical GA. The operating time of the algorithm specifies the increase or the decrease of the operating time
of the algorithm compared to the classical GA (in percentage terms). In 100% of the cases, the accuracy
of the self�learning GA is not lower than the accuracy of the classical GA, and this confirms the hypothesis H1.
The best algorithm both for the accuracy and for the execution time is the self�learning GA with the use
of the relative method for correcting the probability matrices of mutation and crossover with forgetting.
For this algorithm the hypothesis H 2 is true.

The results of the comparative experimental studies of the self�learning GA and the Holland classical
GA for the subset sum problem are shown in Figs. 3 and 4. Absolute values of the results of the experimen�
tal studies are presented in the Appendix; these values are the foundation of the graphs.

As before, the graphs demonstrate the results of operating the self�learning GA for the three above�
considered methods of correcting a memory vector (the results are averaged over the number of starts).
For the basic results, the outcome of the classical GA is taken. The accuracy specifies the degree of the
improvement of the solution’s quality. This quality is defined by the absolute difference between the
assigned value and the sum of the obtained subset. The accuracy of the self�learning GA is higher than the
accuracy of the classical GA approximately in 85% of the cases. The difference in the accuracy is partic�
ularly noticeable for the experiments with the sets of a large size (the numbers of tests ranges from 10
to 13). The operating time of the self�learning GA with the use of the relative method for correcting the
probability matrices of mutation and crossover with forgetting is always shorter than the operating time of
the classical GA. Thus, hypotheses H3 and H4 are also true.

CONCLUSIONS

In this work, the self�learning GA is proposed. The experimental studies of the proposed self�learning
GA and the Holland classical GA were conducted for job scheduling problem and subset sum problem.
The experimental studies show the advantage of the self�learning GA in the quality of the obtained solu�
tions and operating time.
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APPENDIX

Since the number of experiments is 100, each of the 25 tests was started 4 times. Tables 3 and 4 present
the results averaged over the number of starts. In these tables, the following notation is used: GA1 = the
classical GA, GA2 = the self�learning GA (the method for correcting elements of memory matrices is
absolute), GA3 = the self�learning GA (the method for correcting elements of memory matrices is rela�

Table 3.  Problem of multiprocessor scheduling

Number 
of test

Result (execution time for obtained schedule in cycles) Operating time of algorithm, s

GA1 GA2 GA3 GA4 GA1 GA2 GA3 GA4

1 26.00 26.00 26.00 26.00 0.512 0.519 0.521 0.161

2 13.00 13.00 13.00 13.00 0.618 0.628 0.608 0.187

3 30.50 30.25 30.25 30.00 1.075 1.035 1.040 0.297

4 31.50 30.75 30.75 31.00 3.402 3.240 3.015 0.851

5 39.75 39.25 39.25 39.00 7.927 8.325 6.801 1.720

6 50.50 48.25 47.75 45.75 23.127 25.685 29.868 7.741

7 79.75 78.75 77.25 76.00 1023.81 1009.47 1024.71 333.026

8 40.50 39.25 40.50 37.75 39.915 46.943 41.075 8.674

9 48.75 46.25 46.00 45.00 25.666 29.624 35.423 6.207

10 48.50 46.25 47.00 45.25 23.758 32.493 32.773 7.630

11 50.50 49.75 48.00 47.00 26.074 28.299 28.755 6.825

12 50.00 49.25 48.75 46.75 36.287 35.262 33.655 8.683

13 50.50 49.25 49.25 46.75 30.210 30.636 35.195 6.886

14 14.75 14.75 14.75 14.00 26.634 22.105 25.614 5.629

15 40.25 40.25 39.25 37.50 46.340 34.110 40.224 8.452

16 72.00 70.75 71.25 69.00 35.872 46.539 30.001 7.732

17 78.00 74.50 75.00 71.75 25.803 31.606 40.219 7.951

18 104.00 101.25 102.75 96.50 49.189 39.113 45.125 12.671

19 133.25 127.25 127.25 121.25 33.206 42.280 57.909 11.241

20 225.00 225.00 225.00 225.00 23.636 23.928 23.540 5.535

21 80.25 78.50 78.50 78.00 28.790 28.205 29.799 6.399

22 49.25 47.00 48.75 45.75 33.925 41.588 29.726 9.040

23 31.75 30.50 30.75 29.50 34.233 29.481 35.675 6.474

24 31.50 31.25 31.00 30.00 48.810 52.410 54.915 9.970

25 21.75 21.25 21.75 18.75 31.395 30.243 26.575 8.560
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tive), and GA4 = the self�learning GA (the method for correcting elements of memory matrices is relative
to forgetting).
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Table 4. Subset sum problem

Number 
of test

Result (absolute deviation from the value of the desired sum) Operating time of algorithm, s

GA1 GA2 GA3 GA4 GA1 GA2 GA3 GA4

1 0.004 0.001 0.002 0.000 0.192 0.186 0.196 0.073

2 0.036 0.002 0.038 0.001 0.602 0.612 0.625 0.189

3 2.392 0.044 0.620 0.004 1.262 1.295 1.303 0.365

4 4.497 0.046 3.621 0.006 2.170 2.217 2.223 0.599

5 9.016 0.186 8.636 0.035 3.323 3.375 3.380 0.886

6 16.694 1.132 12.233 0.026 4.726 4.778 4.792 1.230

7 17.501 3.128 14.541 0.058 6.374 6.412 6.446 1.638

8 24.220 5.304 19.625 1.653 8.254 8.309 8.354 2.101

9 29.225 7.670 22.046 3.755 10.391 10.455 10.496 2.619

10 34.365 11.151 31.372 9.506 12.762 12.783 12.877 3.203

11 62.695 28.287 57.108 28.843 28.303 28.287 28.506 6.937

12 95.279 45.310 80.399 52.643 49.951 49.778 50.256 12.099

13 123.630 61.054 113.742 79.745 77.749 77.514 78.152 18.703

14 96.598 83.846 90.708 74.051 3.327 3.384 3.385 0.891

15 71.443 59.336 64.700 50.169 3.329 3.381 3.385 0.891

16 44.757 34.374 41.646 26.701 3.332 3.375 3.378 0.888

17 21.591 10.892 17.065 1.794 3.329 3.373 3.387 0.885

18 0.266 0.005 0.036 1.439 3.328 3.313 3.394 0.885

19 0.003 1.360 0.003 2.784 3.806 3.127 3.397 0.926

20 0.002 2.286 0.001 0.001 4.217 3.163 3.694 0.889

21 0.250 0.002 0.122 1.148 3.860 3.449 4.722 0.967

22 22.437 8.997 18.145 1.728 5.647 5.433 4.382 2.505

23 45.916 35.893 41.553 27.270 5.157 5.084 5.700 1.416

24 71.839 59.810 68.549 52.726 7.847 6.814 5.980 1.450

25 100.679 85.202 96.180 78.445 5.001 5.599 6.078 1.450


