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Abstract—We present the results of calculations of theoretical absorption-line profiles and radial-velocity
curves for optical components in X-ray binary systems. Tidal distortion of the optical star and X-ray heating
by incident radiation from the relativistic object are taken into account. An emission component forms
whose intensity varies with orbital phase in the absorption-line profile in the presence of significant X-ray
heating. As a result, the width of the line decreases rather than increases at quadrature. The line profiles and
equivalent widths and the radial-velocity curves depend substantially on the parameters of the binary sys-
tems. This provides the possibility of directly determining component masses and orbital inclinations from
high-resolution spectroscopic observations of X-ray binary systems. c© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Antokhina and Cherepashchuk [1] and Shah-
baz [2] suggested a new method to estimate the
component-mass ratios q and orbital inclinations i
of X-ray binary systems using data on the orbital
variability of absorption-line profiles in the spectrum
of the optical component. This variability is due to the
finite size of the optical star, tidal distortion by the
companion, and the complex pattern of its surface-
temperature distribution. In point-source or spherical
models for binary components, the line profile and,
accordingly, the shape of the radial-velocity curve,
does not depend on the orbital inclination i. For
this reason, radial-velocity curves can yield only the
product m sin3 i (where m is mass of the star). If a star
with a significant size is tidally distorted, the shape of
the line profiles and radial-velocity curve depend on
i and q. In principle, this provides the possibility of
deriving both the component masses and the orbital
inclination from the orbital variations of line profiles
(or from the corresponding radial-velocity curve).
Recently, Abubekerov et al. [3] used this approach to
estimate the mass of the black-hole component of the
X-ray binary Cyg X-1 and the orbital inclination of
the system based on a high-precision radial-velocity
curve.

In our earlier work [1, 4, 5], we calculated line pro-
files for tidally-distorted components of binary sys-
tems using theoretical hydrogen-line profiles for var-
ious effective temperatures Teff and surface gravities
g computed by Kurucz [6]. The reflection effect was
taken into account using a model implementing a
simple summation of the radiated and incident fluxes,

without considering the transfer of the incident radi-
ation in the atmosphere of the externally heated star.
This approach is not completely correct; in particular,
it does not enable us to take into account emission
components of the lines that may arise in the case
of strong heating by incident radiation. For X-ray
binaries, such a crude model is valid only in the case of
weak X-ray heating, when the ratio of the bolometric
luminosities of the X-ray source (Lx) and optical star
(Lv) is kx = Lx/Lv < 1.

In the present study, we have computed absorp-
tion-line profiles for a tidally-distorted optical star in
an X-ray system by correctly solving for the radiative
transfer in the line at a given point of the stellar
surface in the presence of external X-ray irradiation.

2. MODEL OF THE BINARY SYSTEM
The basic idea behind the synthesis of theoretical

light curves and stellar spectral-line profiles is the
decomposition of the complex stellar surfaces into
thousands of area elements for which the outgoing
local flux is computed. The contributions of the areas
are summed for each orbital phase, taking into ac-
count the Doppler effects and visibilities of the areas.
Thus, for each orbital phase, we can find the radiation
flux in the continuum directed toward the observer
and the rotationally broadened spectral line profiles,
which enables us to determine the radial velocity of
the star. Line synthesis is able to allow for effects
related to the proximity of the components in a binary
system: tidal–rotational distortion of the stars (the
ellipticity effect), the nonuniform temperature distri-
bution over the stellar surface due to gravitational
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darkening, heating due to irradiation by a companion
(the reflection effect), and other effects.

The first version of our line-synthesis algorithm
for X-ray binaries with circular orbits was described
in [7]. Here, we present a new algorithm for the com-
putation of theoretical line profiles and the construc-
tion of radial-velocity curves. The line profiles of area
elements on the surface of a star are computed using
models in which their atmospheres are subject to
incident X-ray radiation. This new algorithm for com-
puting theoretical spectral-line profiles opens broad
possibilities for more correct interpretations of spec-
troscopic observations and the derivation of reliable
physical parameters of close binaries. It also makes it
possible to derive theoretical line profiles for stars that
are subject to ultraviolet or optical irradiation.

We consider here an X-ray binary system. Let
us describe the main features of our algorithm for
modeling theoretical line profiles for the optical star
in the binary and the construction of the binary’s
radial-velocity curve. The binary consists of an optical
star and a relativistic object, which usually move in
elliptic orbits about their center of mass. The orbital
inclination is i and the component-mass ratio is q =
Mx/Mv , where Mx is the mass of the relativistic ob-
ject and Mv the mass of the optical star. The surface
of the star coincides with the Roche equipotential
surface, and the size of the star is determined by
the Roche-lobe filling factor µv, where µv = R/R∗

is the ratio of the polar radii for partial and total
Roche-lobe filling. The star’s rotation can be asyn-
chronous with the orbital motion [5], with the degree
of asynchronous rotation specified by the parameter
F = ωrot/ωK , where ωrot is the angular velocity of
the rotation, ωK is the mean Keplerian orbital angular
velocity (ωK = 2π/P ), and P the orbital period of the
binary.

We introduce a Cartesian coordinate system
(X,Y,Z) with its origin at the center of mass of
the optical star. The X axis is directed along the
line passing through the component centers, the
Y axis lies in the orbital plane, and the Z axis is
perpendicular to the orbital plane. We also introduce
a spherical coordinate system (r, η, ψ) with its origin
at the center of the optical star. The stellar surface
is decomposed into a large number of area elements.
Let r be the radius vector of a surface element, and
λ, ν the direction cosines of r relative to the X,Z axes
(see [5] for more details). In the spherical coordinate
system (r, η, ψ), the equation for the equipotential
surface of the star is [8]

Ω =
1
r

+ q

(
1√

D2 + r2 − 2Drλ
− rλ

D2

)
(1)

+
1
2
(1 + q)r2F 2(1 − ν2).

Here, D is the instantaneous distance between the
centers of the stars moving in elliptical orbits and r
is measured in units of D.

The equation for the equipotential surface is solved
numerically for every surface element for fixed η, ψ,
and the radius vector r and coordinates x, y, z are
found. The local surface gravity g(r) = |gradΩ| is also
computed for every surface element (in relative units;
it is converted into absolute units later), as well as the
coordinates of the unit normal vector

n = − gradΩ
|gradΩ| . (2)

In the first stage of the computations, the temperature
of a surface element is found, taking into account
only gravitational darkening. The effect of the incident
radiation is taken into account later, when the model
atmosphere is computed for every element:

T (r) = T0

(
g(r)
g0

)β

, (3)

where T0 is the mean effective temperature of the star,
g(r) and g0 are the local gravity and the effective
gravity averaged over the stellar surface, and β is
the gravitational-darkening coefficient. For a star in
radiative equilibrium, β = 0.25 [9], while β = 0.08 for
a star with a convective envelope [10].

We can compute for each surface element the pa-
rameter K loc

x : the ratio of the incident X-ray flux H
and the total flux radiated by the corresponding non-
irradiated atmosphere H0:

K loc
x =

H

H0
=

kxLv cos θ

4πρ2σT 4(r)
. (4)

Here, kx is the ratio of the X-ray luminosity of the
compact object and the bolometric luminosity of the
star, Lv is the bolometric luminosity of the optical
star, σ is the Stefan–Boltzmann constant, T (r) is the
effective temperature of the surface element, θ is the
angle between the normal to the surface and the di-
rection to the X-ray source, and ρ is the distance from
the center of the surface element to the X-ray source.
For surfaces that are not subject to incident radiation,
K loc

x = 0. The value of K loc
x is an input parameter for

the routine that computes the local model atmosphere
for a surface element; this procedure will be described
in the next section.

To compute the stellar emission at various orbital
phases, we introduce a stationary Cartesian coordi-
nate system (X,Y ,Z) with its origin at the star’s
center of mass. The relative rotation angle of the
components θorb is the angle between the X and X
axes. At orbital phase ϕ = 0, the first star eclipses
the secondary and θorb = 0◦. The coordinates of a unit

ASTRONOMY REPORTS Vol. 49 No. 2 2005



LOW-MASS CLOSE X-RAY BINARY SYSTEMS 111

vector pointing in the direction of the observer in the
moving (X,Y,Z) coordinate system are

a0 = (− sin i cos θorb,− sin i sin θorb, cos i) (5)

= (ax, ay, az).

The cosine of the angle γ between the normal to the
surface element and the direction to the observer is
then defined as the scalar product cos γ = (a0,n).
If cos γ > 0, a surface element can be seen by the
observer. The total observed emission of the star is
obtained by summing the fluxes from all observable
surface elements in the direction toward the observer
at each orbital phase.

Let consider the procedure for computing the ve-
locities of the surface elements relative to the star’s
center of mass. Let us take a surface element with
its center at the coordinates (x, y, z). The velocity of
the element v relative to the center of mass in the
stationary coordinate system (X,Y,Z) is

v = [ωrot, r] = (ωroty,−ωrotx, 0). (6)

Here, ωrot is the angular velocity of the stellar ro-
tation, ωrot = (0, 0, ωz = ωrot = ω). The projection
of v onto the line of sight directed away from the
observer (when the velocity is positive away from the
observer) is

vr = (−v · a) = (ωroty,−ωrotx, 0) (7)

× (−ax,−ay,−az) = −ωrotyax + ωrotxay.

Let the radial velocity of the center of mass of the star
be Vc. The resultant velocity of the surface element
relative to the center of mass of the system (projected
onto the line of sight) is then

Vr = vr + Vc. (8)

Thus, it is possible to compute the radial velocities
of all the surface elements over the star for every
orbital phase. The summation of the local spectral-
line profiles and computation of the total line profile
for a star at different orbital phases is done taking into
account the Doppler shifts of the local profiles relative
to the velocity of the center of mass of the star.

Let us now describe the procedure for computing
the local absorption-line profile of a surface element
with effective temperature T , local effective gravity
g, and irradiation parameter K loc

x , which is the ratio
of the incident X-ray flux to the emitted flux (in the
absence of irradiation).

3. COMPUTATION OF THE MODEL
ATMOSPHERE AND THE EMISSION

SPECTRUM FOR A SURFACE ELEMENT

To correctly compute the continuum emission and
line profiles of the local surface elements, it is neces-
sary to make a preliminary estimate of the structure
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Fig. 1. (a) Comparison of the distributions of the electron
temperature Te in models computed using the method
of heating- and cooling-function balance (dashed) and
in precise blanketed models with atmospheric param-
eters Teff = 4752 K, log g = 2.63 and various irradi-
ation coefficients Kloc

x (solid). (b) Comparison of the
CaI λ6439.075 Å line profiles computed for the atmo-
spheres shown in (a).

of the stellar atmosphere in the presence or absence
of irradiation. In general, this requires that we solve
the radiative-transfer equations

µ
dIν

dr
= αν(Sν − Iν) (9)

for a set of frequencies ν, some of which are present
in the incident flux, which has angle of incidence θ
(µ = cos θ) and power µI+

ν .

The standard conditions of radiative and hydro-
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static stability are fulfilled for each atmospheric layer:
∞∫
0

1∫
−1

ανIνdµdν =

∞∫
0

1∫
−1

ανSνdµdν, (10)

dp

dm
= g, (11)

where m is the mass of a unit column of gas measured
down from the upper boundary. The solution of this
problem using standard software packages developed
for nonirradiated atmospheres (e.g., ATLAS 9 [11])
encounters considerable difficulties, due to the de-
pendence of the incident radiation on the angle θ,
which is close to a δ function. This contradicts the
basic assumption that the radiation intensity depends
smoothly on µ, which is applied in subroutines for the
numerical solution of the radiative-transfer equation
in ATLAS-type software packages.

For this reason, we suggest a different approach
to computing the atmospheric structure, which takes
into account the lack of any direct interaction be-
tween the incident radiation and the intrinsic stellar
radiation. In the first step of this procedure, the set of
equations (9) is solved with a nonzero upper boundary
condition, specified values of µ, and a source function
Sν that is equal to zero. This yields the dependences
of the distributions of the mean intensity Jν and the
flux Hν on the optical depth τν at the frequency ν in
the form

J+
ν (τν) = I+

ν exp(−τν/µ), (12)

H+
ν (τν) = µI+

ν exp(−τν/µ). (13)

In the second step, Eqs. (9) are solved again, but
with a zero upper boundary condition, a set of µ
values, and a source function determined by the sum
of the total scattered (including external) radiation
and the Planck function for each layer:

Sν =
2α

′
νBν(τv) + σe

1∫
−1

Iνdµ

2(α′
ν + σe)

, (14)

where α
′
ν and σe are the true-absorption and electron-

scattering coefficients.
A simple expression for the distribution of the

source function over optical depth is given in [12],
where this problem is solved for a gray model with
mean opacity coefficients for the external and intrinsic
radiation αx and αv:

S(τv) = S0(τv) + I+ αx

αv
exp

(
−αxτv

αvµ

)
(15)

+
1
2
µI+ +

3µαv

4αx
µI+

[
1 − exp

(
−αxτv

αvµ

)]

or

S(τv) = S0(τv) + a2S2(τv) + a3S3(τv) (16)

+ a4S4(τv),

where S0(τv) = σT 4
e is the distribution for a non-

irradiated atmosphere.
The presence in Eq. (15) of the term S2(τv), which

decreases exponentially with depth, results in a neg-
ative gradient dS(τv)/dτv in the upper layers of the
stellar atmosphere; i.e., in the formation of a high-
temperature chromosphere. Equation (15) shows that
the source-function excess in the chromosphere is
proportional to the ratio αx/αv. As was shown in [12],
the absorption coefficient of stellar material with Te

below 100 000 K in the X-ray range depends on ν as
a power-law with an exponent close to −2.3. There-
fore, the presence in the incident flux of even a weak
soft component with E < 2.0 keV (with αx/αv � 1)
results in the rapid growth of the temperature in the
chromospheric layers and the development of strong
emission features in the emitted stellar spectra. This
circumstance demands a rigorous determination of
the frequency distribution in the incident flux in the
course of the modeling (see also [13]).

Subsequent computations of exact blanketed
model atmospheres with irradiation [14] have shown
that their temperature structure is described well by
Eq. (16). In this case, the terms S2, S3, and S4 must
be written in quadrature form:

S2(τv) =

ν2∫
ν1

dH+
ν (τv)
dτv

dνx, (17)

S3(τv) =

ν2∫
ν1

H+
ν (τ

′
v = 1)dνx, (18)

S4(τv) =

ν2∫
ν1

τv∫
0

(
S2(τ

′
v) + H+

ν (τ
′
v)

)
dτ

′
vdνx. (19)

They are easily found numerically for a given fre-
quency distribution for the incident flux H+

ν , inci-
dence angle θ, and ratio of the absorption coefficients
at the frequencies of the external and intrinsic ra-
diation αx(τv)/αv(τv), which is found in the course
of the computations. In our method, the absorption
coefficient αx at the frequencies of the incident ra-
diation is computed allowing for ionization from the
inner and outer shells of hydrogen, helium, and the
20 most abundant heavy elements in five ionization
stages in accordance with Yakovlev et al. [15], and
also including Thompson scattering. As was shown
by Sakhibullin and Shimanskii [14], the absorption
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Fig. 2. Orbital-phase variations of the CaI λ6439 Å line profile in the spectrum of an X-ray-irradiated star (kx = 10) for the
two orbital inclinations (a) i = 90◦ and (b) i = 45◦. The profiles are normalized to the continuum, and Doppler shifts have been
subtracted. At phase ϕ = 0, the optical star is in front of the X-ray source. The parameters of the optical star are Mv = 1M�,
µv = 1, and T = 5000 K. Line profiles are shown for the two component-mass ratios q = 10, Mx = 10M� (solid) and q = 1,
Mx = 1M� (dashed).

coefficient at the frequencies of the intrinsic atmo-
spheric radiation αv can be represented with high
accuracy by combinations of Planck and Rosseland
absorption coefficients, αp and αr. Fitting our models
of irradiated atmospheres obtained using this method
and of exact blanketed models obtained using the
BINARY 3 code [14] yielded the following expression
for αv [16]:

αv = (α5.97+0.73 log τr
r αp)

1
6.97+0.73 log τr . (20)

Simultaneously, the weight coefficients for the

components of the complete source function (16)
were found: a2 = 0.67, a3 = 0.51, and a4 = 0.63. Our
method for modeling the atmospheres of irradiated
stars has certain advantages when applied to binary
stars.

(1) The determination of the temperature structure
of the irradiated atmosphere is based on the balance
of the gas heating and cooling functions, but not on
the standard methods of temperature correction. As is
noted in [14], the temperature correction diverges for
models of irradiated atmospheres if the flux gradients

ASTRONOMY REPORTS Vol. 49 No. 2 2005
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Fig. 2. (Contd.)

in high layers are large. Therefore, as a rule, correction
methods cannot be used to compute model atmo-
spheres with strong irradiation. At the same time,
the method of heating- and cooling-function balance
remains stable even for irradiation coefficients K loc

x in
the hundreds. Moreover, since it is not necessary to
solve the radiation-transfer equation for optical fre-
quencies, the required computational time decreases
by a factor of 30–80, which is especially important for
close binary systems.

(2) The source function of the irradiated atmo-
sphere S(τv) is determined by the change of the initial
source function of an ordinary atmosphere S0(τv),
when the terms S2, S3, and S4, which depend linearly

on H+
ν , appear. As a result, the temperature structure

characteristic of a nonirradiated atmosphere is pre-
served in the case of small or zero incident fluxes. This
makes it possible to use our method to study binary
stars and single stars with weak reflection effects.
Note that the initial models for the nonirradiated
atmospheres were found by interpolating the grids
of Kurucz [11] for blanketed models for specified Teff

and log g values, as is described in [17].
(3) Our method is able to compute models of stel-

lar atmospheres irradiated by X-ray, UV, and optical
radiation with an accuracy sufficient for numerical
studies of close binary stars. It was shown in [16]
that the errors in the temperature distribution do not
exceed 4% for model atmospheres with incident fluxes
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Fig. 3. Dependence of the CaI λ6439 Å line profiles on q and kx for the two orbital inclinations (a) i = 90◦ and (b) i = 45◦.
The model parameters cover the ranges q = 1−20, kx = 0−50, µv = 1, and T = 5000 K, i = 90◦. The profiles are shown for
the three orbital phases ϕ = 0, when the X-ray source is behind the optical star (solid), ϕ = 0.25, when the star is viewed from
the side (dashed), and ϕ = 0.5, when the X-ray source is in front of the optical star (dotted).

with K loc
x < 100 and for wavelengths 0.30 Å ≤ λ ≤

50.0 Å, 250 Å ≤ λ ≤ 3000 Å. The corresponding er-
rors in the total radiated fluxes in the regions of the
Balmer and Paschen continua are 1−3%.

We compared model atmospheres computed us-
ing the above method and blanketed models com-
puted using the BINARY 3 code [14]. Figure 1 shows
the results for two sets of input atmospheric pa-
rameters for the models in which we are directly
interested: Teff = 4752 K, log g = 2.63, and K loc

x =
2.0 and 20.0. Figure 1a shows the temperature dis-

tributions in the irradiated and nonirradiated atmo-
spheres, while Fig. 1b shows the corresponding CaI
λ6439.075 Å line profiles. This comparison shows
that the maximum errors in Te are less than 4%
and are larger in the model with weaker irradiation
(K loc

x = 2.0), in particular, in the narrow transition
region from the chromospheric layers to the temper-
ature minimum. The difference in the CaI line profiles
that arise when the two different computational meth-
ods are applied results in variations of the equivalent
widths that are less than ∆Wλ = 8 mÅ. Thus, we
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conclude that our method is fully adequate for the
modeling of irradiated atmospheres.

The specific intensity of the radiation in the com-
puted model atmospheres was found at three main
angles θ

′
(for cos θ

′
= 0.11, 0.50, 0.89) by solving

the radiative-transfer equation using the Hermitian
method. The emission in the direction of the observer
was subsequently computed by interpolating between
the intensities for the three angles θ

′
for the real

surface-element viewing angle γ. In this way, we
physically accurately determined the emitted fluxes
taking into account limb darkening using the model
atmospheres.

The solution of the radiative-transfer equation
included all sources of continuum absorption tab-
ulated in the ATLAS 5 [18], STARDISK [19], and
SPECTR [20] software packages, as well as the
strongest lines and main molecular bands, according
to the theoretical analysis of Nersisyan et al. [21]; the
line and molecular-band data were derived and kindly
provided to us by Ya. Pavlenko (Main Astronomical
Observatory of the National Academy of Sciences of
Ukraine). When computing the Balmer lines of HI,
we applied the theory of Griem [22]; the oscillator
strengths for HeI lines were taken from [23, 24], and
the corresponding broadening parameters were found
using the approximation of Barnard et al. [25] and
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Fig. 4. Dependence of the CaI λ6439 Å line profile on i and kx for the two orbital inclinations (a) i = 90◦ and (b) i = 45◦. The
model parameters are i = 30◦−90◦, kx = 0−10, q = 10, µv = 1, and T = 5000 K. Profiles are shown for orbital phases ϕ = 0
(solid), 0.25 (dashed), and 0.5 (dotted).

Mihalas et al. [26]. The oscillator strengths for lines
of heavy elements were taken from Kurucz [11], the
van der Waals broadening constants C6 were found
using the classical formula of Unsold [27] with the
scaling factor ∆ log C6 = 0.7, and the Stark broaden-
ing constants C4 were found using the approximation
of Kurucz and Furenlid [28]. All the line-profile
computations took into account Doppler broadening
due to thermal motions and microturbulence (which

was assumed constant with ξturb = 1.5 km/s), as well
as natural damping, and assumed the solar chemical
abundance given in [29].

4. MODELING OF THE THEORETICAL
SPECTRAL-LINE PROFILES

FOR THE OPTICAL STAR
IN AN X-RAY SYSTEM

Let us list the main input parameters for the syn-
thesis of theoretical line profiles for a close binary
system containing an optical star and a pointlike
compact object that is a source of X-ray emission.
The masses of the optical star Mv and X-ray source
Mx and the orbital period are given in absolute units.
The other input parameters are the Roche-lobe filling
factor µv, mean effective temperature of the star T
(without allowance for heating), ratio of the X-ray
luminosity of the compact object and the bolomet-
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ric luminosity of the normal star kx, gravitational-
darkening coefficient β, orbital inclination i, orbital
eccentricity e, longitude of periastron ω, and degree of
asynchronous rotation F . The data on spectral lines
and the spectrum of the compact object are also used
as input data.

We selected input parameters that were close to
the parameters of low-mass X-ray novae to model
the theoretical line profiles. The mass Mv = 1M� and
temperature T = 5000 K of the optical star were kept
fixed. The gravitational-darkening coefficient was as-
signed the value β = 0.08 (standard for stars with
convective envelopes). The stellar rotation was as-
sumed to be synchronous with the orbital revolution
(F = 1), and the orbit to be circular. The orbital period
was taken to be P = 5d (P = 12d for the computation

of the radial-velocity curves). The spectrum of the
external compact object in the wavelength range 12–
0.5 Å (photon energies of 1–20 keV) was given by the
function

Ix(ν) = Ixν−0.6. (21)

We studied the behavior of the line profiles of the
optical star during the orbital motion for various pow-
ers of the incident X-ray flux kx. The component-
mass ratio q = Mx/Mv, Roche-lobe filling factor µv,
and orbital inclination i were varied as well. Theoret-
ical profiles were computed for the CaI λ6439.075 Å
absorption line. We did not include non-LTE effects
when modeling this line for a star with T = 5000 K.
In their recent study of the formation of lines of heavy
elements in the spectra of X-ray-irradiated cool stars,
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Fig. 5. Dependence of the CaI λ6439 Å line profiles on µv and kx for the two orbital inclinations (a) i = 90◦ and (b) i = 45◦.
The model parameters are µv = 0.7−1.0, kx = 0−10, and q = 10. Profiles are shown for orbital phases ϕ = 0 (solid), 0.25
(dashed), and 0.5 (dotted).

Sakhibullin and Shimanskii [30] showed that non-
LTE effects do appear in the atmospheres of such
cool stars, but, although the numerical parameters
change by 10–20%, the results obtained assuming
LTE remain qualitatively correct.

Figure 2 shows the variations of the shape and
intensity of the line profile with orbital phase for kx =
10 and i = 45◦ and 90◦ using a dense grid in phase.
We can clearly see the evolution of the summed line
profile of the optical star as it turns the X-ray-heated
side toward the observer. At phase 0, the optical star
is in front of the X-ray source, and the unheated
portion of the surface of the optical star is observed.
Starting from about ϕ = 0.1, we begin to see the
part of the star that is heated by external radiation.
At ϕ = 0.25 (quadrature), the size of the star in the
frontal plane is maximum, and both unheated and

heated parts of the star are observed. At phase 0.5,
the part of the star that is maximally heated by the
incident X-ray radiation is fully turned toward the
observer. As the phase increases from 0 to 0.5, an
emission component of the profile forms in the region
of the star heated by the incident radiation, becoming
increasing prominent in the summed line profile. After
phase 0.5, the contribution of the emission feature
begins to diminish. The line profiles are symmetric
about phase ϕ = 0.5. At orbital phases when both
heated and unheated regions of the star moving with
different velocities can be observed, the absorption
profile becomes narrower due to the formation of the
emission component.

We emphasize that, in the case of a pure ellipticity
effect for an optical star without X-ray heating, the
width of the line increases at quadrature, when the

ASTRONOMY REPORTS Vol. 49 No. 2 2005



120 ANTOKHINA et al.
 

0.8

6438 6440

0.9

1.0

0.8

0.9

1.0

0.8

0.9

1.0

 

µ

 

υ

 

 = 1.0

 

µ

 

υ

 

 = 0.9

 

µ

 

υ

 

 = 0.7

6438 6440

 

µ

 

υ

 

 = 1.0

 

µ

 

υ

 

 = 0.9

 

µ

 

υ

 

 = 0.7

6438 6440

 

µ

 

υ

 

 = 1.0

 

µ

 

υ

 

 = 0.9

 

µ

 

υ

 

 = 0.7

 
k

 

x

 
 = 10

 
k

 

x

 
 = 1

 
k
 

x

 
 = 0

 

F

 

λ

 

λ

 

, 

 

Å

 

(b)

Fig. 5. (Contd.)

star is viewed from the side, since it has its maxi-
mum extent along the line connecting the component
centers. The X-ray heating results in a more complex
temperature distribution over the stellar surface and
more complex orbital variability of the line profile due
to the formation of the emission component. As a
result, if the relative luminosity of the X-ray source
is significant, the line profile becomes narrow rather
than broader at quadrature.

The line profiles plotted in Fig. 2 show that the
behavior of the line is similar for q = 1 and q = 10, but
the depth of the profile increases when q is increased.
The emission component of the profile remains fairly
prominent when the orbital inclination is decreased
from i = 90◦ (Fig. 2a) to i = 45◦ (Fig. 2b).

Figures 3–5 show the dependence of the line pro-
files on the binary parameters q, i, and µv and the
parameter kx characterizing the power of the incident
X-ray flux.

The dependence of the theoretical profiles on q =
Mx/Mv and kx is shown in Fig. 3. The component-
mass ratio was varied from 1 to 20, and the value
of kx from 0 (no X-ray heating) to 50 (very strong
X-ray heating). The star completely filled its Roche
lobe (µv = 1). The orbital inclination was specified to
be i = 90◦ (Fig. 3a) or i = 45◦ (Fig. 3b). For each set
of parameters, the figures show line profiles for three
typical orbital phases: ϕ = 0 (when the X-ray source
is behind the optical star), ϕ = 0.25 (quadrature), and
ϕ = 0.5 (the X-ray source is in front of the optical
star). Similarly, Figs. 4 and 5 show line profiles for
other sets of system parameters.

The plots in Fig. 3 show that, in the absence of
X-ray heating, the width of the absorption profile is
nearly the same for different q values, decreasing only
very slightly when q is increased from 1 to 20. The
increased contribution of the emission component
when the X-ray heating is increased from kx = 0 to
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is T = 5000 K.

kx = 50 with q constant is clearly visible. The emis-
sion component is more prominent for lower q, kx

being the same. This effect is already clearly visible
when kx = 1 (compare the profiles for q = 1 and q =
20); the effect first becomes more pronounced as kx

is increased (kx = 10−20), but then weakens. When
the X-ray heating is very strong (kx = 50), the dif-
ferences between the profiles for different q values are
small.

Figure 4 shows the dependence of the line profiles
on the power of the X-ray heating (kx = 0, 1, 10)
and the orbital inclination (i = 30◦, 60◦, 90◦). Com-
putations were carried out for the two component-
mass ratios q = 10 (Fig. 4a) and q = 1 (Fig. 4b). We
draw the following main conclusions: (1) the width
of the profile increases and the depth decreases with
increasing i; (2) the profiles vary with orbital phase
more strongly when i is larger; (3) the emission com-
ponent of the line profile that forms as the X-ray

heating becomes more powerful is appreciable even
at low orbital inclination i = 30◦; (4) the profiles vary
more with orbital phase for q = 1 than for q = 10,
i being the same.

Figure 5 shows the dependence of the line pro-
files on the size of the star (defined by the Roche-
lobe filling coefficient). The rotation of the star is
assumed to be synchronous with the orbital motion
for both µv = 1 and µv < 1. Theoretical line profiles
are shown for µv = 0.7, 0.9, 1 and kx = 0, 1, 10. The
data for i = 90◦ are plotted in Fig. 5a, and those for
i = 45◦ in Fig. 5b. The component-mass ratio was
fixed at q = 10. We draw the following conclusions:
(1) the variability with orbital phase becomes more
pronounced when the X-ray heating is increased for
all values of µv from 0.7 to 1; (2) the profiles become
broader when µv is increased (due to the increase in
the size of the star and, accordingly, the increase in
the velocity dispersion at the stellar surface); (3) the
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intensity of the emission component is higher when
the star does not fully fill its Roche lobe. This last ef-
fect is due to the relative increase of the fraction of the
stellar surface that is heated by the incident X-rays
when kx is constant and µv decreases; therefore, the
contribution of the heated part of the star to the total
radiation increases.

Thus, our modeling of the theoretical CaI λ6439 Å
line profiles for various parameters of an X-ray binary
system leads to the following main conclusions.

(1) X-ray heating of an optical star with temper-
ature T = 5000 K gives rise to an emission com-
ponent in the CaI λ6439 Å absorption profile. The
line profile varies with orbital phase. The intensity of
the emission component is higher and its variability
with orbital phase more pronounced in the presence
of more powerful X-ray heating.

(2) We obtain the following dependence on q. The
value of kx being the same, the emission component
is stronger when q is low if the X-ray heating is weak

or moderate. In the case of very strong X-ray heat-
ing, the differences between the profiles for different q
values are small.

(3) We obtain the following dependence on i. The
intensity of the emission component becomes higher
and its variability with orbital phase more pronounced
when the orbital inclination i is increased. The emis-
sion component is clearly visible even for small incli-
nations, i ∼ 30◦.

(4) We obtain the following dependence on the
Roche-lobe filling coefficient µv. The value of kx being
the same, a star that does not fully fill its Roche lobe
has a stronger emission component than a star that
fills its Roche lobe.

Note that the theoretical CaI λ6439 Å line profiles
were not corrected for the instrumental profile of the
detector. The detection of differences between profiles
in real spectrograms requires a dispersion of ∼0.1 Å
per pixel; i.e., a resolution of R ∼ 50 000. Spectra with
such resolution for 20m stars (typical for an X-ray
nova in quiescence) can be obtained only using the
largest (8–10 m diameter) telescopes. However, the
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line equivalent widths do not depend on the instru-
mental profile (only the problem of line blending re-
mains), so the analysis of equivalent widths is possi-
ble using lower resolutions of at least R ∼ 10 000.

Figure 6 shows the variations of the equivalent
width of the CaI λ6439 Å line with orbital phase for
various parameters of the X-ray system. The equiv-
alent widths were computed for the entire theoret-
ical profile, including the emission component. The
variations of the equivalent widths with the power
of the X-ray source (kx = 0−50) are plotted for the
two component-mass ratios q = 10 (Fig. 6a) and q =
1 (Fig. 6b). As we already noted above, when q is
low, the variability of the line with orbital phase is
stronger in the case of weak heating (kx = 1). As kx

is increased, this effect becomes less pronounced, and
the orbital variability of the profile is virtually identical
for low and high q when the heating is very strong
(kx = 50).

The variations of the equivalent widths with the
component-mass ratio (for q = 1−20) are shown for
weak (kx = 1) and strong (kx = 10) X-ray heating in
Figs. 6c and 6d, respectively. The orbital variability
substantially increases in the case of strong heating,
and is also higher for lower q.

The differences between the line equivalent widths
for different Roche-lobe filling factors µv are shown
in Fig. 6e for kx = 1 and Fig. 6f for kx = 10. The
equivalent widths are larger for smaller µv, but the
µv dependence of the amplitude of their variability
relative to the values at phase 0 is weaker.

The dependences of the variability of the line
equivalent widths on the orbital inclination (i =
30◦−90◦) are shown in Fig. 6g (kx = 1) and Fig. 6h
(kx = 10). Variability is present for i = 30◦, and
becomes substantially stronger with increasing i.

The radial-velocity curves as functions of the
X-ray heating power kx are shown in Fig. 7a (for
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q = 1 in the upper panel and q = 10 in the lower
panel). The curves were computed for the CaI
λ6439.075 Å line. Figure 7b shows the corresponding
variations of the line equivalent widths with orbital
phase. The radial velocities were derived as is de-
scribed in [4] (using three levels: one-third, one-half,
and two-thirds of the depth at the line center). The
amplitude of the radial velocity grows with kx, with
this effect being more pronounced for q = 1 than for
q = 10.

The growth of the radial-velocity amplitude with
kx is related to the formation of the emission com-
ponent in the profile. Emission arises in surface el-
ements on the heated side of the star; i.e., in the
region with lower radial velocities. Effectively, the
absorption profile narrows and the apparent radial
velocity increases. The effect is more pronounced for
low q (lower masses of the relativistic companion),
since the distance between the relativistic object and
the surface of the optical star is then lower, so that

a relatively larger fraction of the emitted X-ray flux
irradiates the surface of the optical star.

Figure 8 shows a three-dimensional plot of the
wavelength and orbital-phase dependence of the in-
tensity in the line profile for kx = 10 and q = 10.
Half of the orbital period is shown. A comparison of
this theoretical dependence with the corresponding
observed three-dimensional dependence can be used
to determine the most important parameters of a close
binary: the component masses and orbital inclination.

5. CONCLUSION

Our method for computing absorption-line profiles
for X-ray systems, taking into account heating of
the stellar atmosphere by external radiation, can be
applied to detailed analyses of high-resolution spec-
tra of X-ray binaries. This provides additional op-
portunities for the reliable estimation of the physical
parameters of X-ray binaries, first and foremost, the
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masses of neutron stars and black holes in such bi-
naries. The realization of these possibilities requires
high-resolution (R ≈ 50 000) optical spectra of X-ray
binaries using modern, large, new-generation tele-
scopes. We hope that applying our method to the
interpretation of such spectra will make it possible to
obtain more precise estimates of the masses of rela-
tivistic objects and reduce the errors in these masses.
This is important for verifying the existence of a bi-
modal distribution for the masses of neutron stars
and black holes [31], which is important both for our
understanding of the late stages of the evolution of
massive stars and the physics of the core collapse in
such stars and for testing modern theories of gravita-
tion [32].
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