Оглавление

Введение		2			
1	Отк	хрытые квантовые системы	3		
2	2 Примененение методов машинного обучения для восстановления динами-				
	ки (эткрытых квантовых систем на примере модели столкновений	7		
	2.1	Обзор метода	8		
	2.2	Моделирование динамики и получение данных	10		
	2.3	Восстановление динамики	12		
3	При	Примененение методов машинного обучения для исследования каналов с			
	памятью		17		
	3.1	Обзор метода	18		
	3.2	Моделирование динамики и получение данных	18		
	3.3	Восстановление динамики	20		
4	Зак	лючение	24		
Литература			25		

Введение

До недавнего времени квантовая информатика, квантовые алгоритмы и другие прикладные дисциплины работали с математическими инструментами, которые опирались на тот факт, что исследуемая квантовая система является изолированной. На данный момент с развитием квантовых технологий стало очевидно, что необходимо рассматривать динамику системы с помощью теории открытых квантовых систем, т.к. взаимодействие рассматриваемой системы с окружением приводит к ряду интересных эффектов, одним из которых является эффект квантовой памяти. Данный феномен можно наблюдать при распространении фотонов через волновод, память в данном случае проявляет себя в виде коррелированного шума [1], другой пример проявления квантовой памяти можно увидеть на примере последовательности гейтов в IBM Q4 [2].

Проблемой изучения подобных эффектов является оценка размерности окружения, а так же динамика системы и окружения в целом. Аналитическое решение задачи является невозможным, даже с различными приближениями (баня осцилляторов) приходится прибегать к численным методам, что в свою очередь так же не дает точного результата. Возможным выходом для решения данной проблемы могут быть методы машинного обучения, в некоторых моделях они уже показали свою эффективность [3, 17].

Первой целью исследования является моделирование взаимодействия системы произвольной размерности и окружения произвольной размерности (вплоть до бесконечного количества степеней свободы) посредством измерений, производимых над системой. Измерения в квантовой механике носят случайный характер, поэтому для достижения поставленной цели были развиты и применены методы машинного обучения.

Второй целью работы является восстановление динамики исследуемой квантовой системы и окружения, используя данные, полученные при выполнении первой части работы.

Глава 1

Открытые квантовые системы

В отличие от случая замкнутой системы, динамика открытой квантовой системы не может быть представлена в терминах унитарной эволюции [4]. В общих терминах рассматриваются две квантовые системы А и В, которые взаимодействуют между друг с другом, составная же система является замкнутой и подчиняется гамильтоновой динамике. Однако состояние наблюдаемой системы А будет изменяться из-за внутренней динамики и взаимодействия с окружением (В). Взаимодействие между подсистемами приводит к запутанному состоянию и в результате динамика состояния А больше не может описываться в терминах унитарной, гамильтоновой динамики.

Обозначим \mathcal{H}_A . гильбертово пространство системы, а через \mathcal{H}_B - окружения. Гильбертово пространство всей системы A + B дается тензорным произведением $\mathcal{H}_{A+B} = \mathcal{H}_A \otimes \mathcal{H}_B$. Полный гамильтониан системы выглядит следующим образом:

$$H(t) = H_A \otimes I_B + I_A \otimes H_B + H_I(t), \tag{1.1}$$

где H_A является гамильтонианом открытой системы, H_B гамильтониан окружения и $H_I(t)$ - гамильтониан взаимодействия системы с окружением.

В основном изучение квантовых систем осложняется тем, что полная математическая модель составной системы является слишком сложной. Часто встречаются случаи, когда моды среды неизвестны точно, либо неуправляемы.

Рассмотрим открытую подсистему *A*, она хороша тем, что мы знаем ее размерность и все измерения которые проводятся над системой относятся именно к ней. Все наблюдаемые

относящиеся к A имеют следующий вид: $M \otimes I_B$, где M оператор действующий в пространстве \mathcal{H}_A , а I_B тождественный оператор в пространстве \mathcal{H}_B . Если состояние полной системы описывается некоторой матрицей плотности ϱ , тогда средние значения наблюдаемых для подсистемы определяется следующим образом:

$$\left\langle A\right\rangle = Tr_A \left\{ M\varrho_A \right\},\tag{1.2}$$

где $\varrho_A = Tr_A \{ \varrho \}$ - является приведенной матрицей плотности открытой квантовой системы.

Матрица плотности подсистемы Aв момент времен
иtполучается из матрицы плотности общей системы

$$\varrho_A = Tr_B \left\{ U(t, t_0) \varrho(t_0) U^+(t, t_0) \right\}, \qquad (1.3)$$

в данном выражени
и $U(t,t_0)$ - оператор эволюции всей системы.

В качестве примера открытой квантовой системы рассмотрим фотон ,проходящий через среду, в которой показатель преломления зависит от его поляризации [5]. В данном случае роль рассматриваемой системы играют поляризационные степени свободы одиночного фотона, матрица плотности такого состояния выглядит следующим образом:

$$arrho = \left(egin{arrhy}{cc} arrho_{HH} & arrho_{HV} \ arrho_{VH} & arrho_{VV} \end{array}
ight).$$

Рис. 1.1. Поляризация фотона.

В роли окружения выступают моды электромагнитного поля с частотами ν . Общее состояние системы может быть записано в виде $\rho \otimes |\xi\rangle \langle \xi|$, где $|\xi\rangle = \int d\nu f(\nu)|\nu\rangle$. Модуль вероятности функции $f(\nu)$ представляет собой вероятность обнаружить фотон в моде с частотой ν , $\int |f(\nu)|^2 d\nu = 1$.

Рис. 1.2. Модуль функции распределения моды электрического поля.

При прохождении определенного расстояния фотона через среду в направлении z возникает набег фаз $\omega(n_H - n_V)z/c$, где n_H и n_V показатели преломления для волн с горизонтальной и вертикальной поляризацией. Изменение квантового состояния при распространении фотона соответствует эволюции во времени t = z/c с эффективным гамильтонианом

$$H = \int d\nu h\nu (n_H | H \rangle \langle H | + n_V | V \rangle \langle V |) \otimes | \nu \rangle \langle \nu |, \qquad (1.4)$$

запишем оператор эволюции

$$U = \int d\nu (exp(-in_H\nu t)|H\rangle \langle H| + exp(-in_V\nu t)|V\rangle \langle V|) \otimes |\nu\rangle \langle \nu|.$$
(1.5)

Допустим, нам нужно узнать состояние фотона после выхода из среды, тогда нам нужно проделать следующее преобразование над системой:

$$\Phi[\varrho_{S+E}] = [U(H)\,\varrho_S \otimes \varrho_{env}\,U^+(H)],\tag{1.6}$$

где Ф – линейное вполне положительное отображение, сохраняющее след, называемое квантовым каналом. Глава 2

Примененение методов машинного обучения для восстановления динамики открытых квантовых систем на примере модели столкновений

Модель столкновения является хорошим инструментом для описания динамики открытых квантовых систем [7]. Многие процессы, связанные с открытой динамикой могут быть описаны данной моделью, например: системы с ядерным магнитным резонансом [8], эксперименты с искусственно созданным окружением в фотонных системах системы [9], частицы в полуклассическом спиновом газе [10] и т.д. Стандартная модель столкновений (без памяти) представляет собой резервуар, состоящий из одинаковых невзаимодействующих между собой частиц.

Рис. 2.1. Квантовая модель столкновений с коррелированными окружением [15].

Динамика системы образуется в результате ее последовательных столкновений с частицами резервуара. При рассмотрении в непрерывном пределе, стремлении к нулю времени столкновений, такая динамика описывается уравнением Горини-Коссаковского-Сударшана-Линдблада [11]. Немарковская динамика открытой квантовой системы может наблюдаться в таких случаях, как присутствие взаимодействия внутри резервуара [12], случай коррелированного окружения, а также в моделях, где допускаются повторные столкновение системы с частицами окружения. Даже если резервуар изначально находился в сепарабельном состоянии, то, в результате столкновений с первой системой, он становится частично перепутанным, что влечет за собой немарковскую динамику систем.

Вообще, описание и понимание коррелированных квантовых систем является одной из наиболее сложных и интересных проблем в современной многочастичной физике. Из-за экспоненциально возрастающей с увеличением количества частиц размерности, описать такие системы, за исключением частных случаев, представляется непосильной задачей не только аналитически, но и численно. В данном случае, для решения описания динамики квантовой системы, удобно пользоваться методами машинного обучения, некоторые из них будут описаны далее.

2.1 Обзор метода

Восстановление динамики подразумевает под собой поиск эффективного гамильтониана, который воспроизводит динамику всей системы. Для построения алгоритма, восстанавливающего динамику системы, были использованы алгоритм ADAM и обучения с учителем.

Обучение с учителем

Метод обучения с учителем подразумевает, что алгоритм обучаются на некоторой выборке данных. После обучения алгоритм строит модель, которая может предсказывать результат при обработке новых данных, основываясь на прошлых примерах.

Supervised Learning

Рис. 2.1.1. Блок-схема машинного обучения с учителем [13].

ADAM оптимизатор

ADAM оптимизатор — это метод градиентного спуска основанный на адаптивном обновлении моментов более низкого порядка. Одной из отличительных черт алгоритма ADAM является то, что в качестве параметра обновления используется градиент целевой функции.

Градиентный спуск же, в свою очередь, является методом нахождения экстремума с помощью движения вдоль градиента.

Рис. 2.1.2. Градиентный спуск.

2.2 Моделирование динамики и получение данных

Для эффективной работы машинного обучения необходимо использовать данные, на которых будет обучаться тот или иной алгоритм. Для нашего метода была смоделирована динамика открытой системы в терминах модели столкновений, с помощью которой были собраны все необходимые данные для обучения алгоритма по восстановлению динамики.

Рассмотрим двумерную систему ρ_S и окружение ξ конечной размерности. В реальной ситуации размерность окружения может быть найдена в данной работе [18], и так же может быть оценена с помощью ансамбля методов [19].

Рис. 2.2.1 Взаимодействие системы с окружением.

Данные, которые используются для обучения алгоритма, являются единичными проективными измерениями, произведенными над системой в различные моменты времени $t_1 < t_2 < ... < t_n$.

В предположении, что постановка эксперимента позволяет осуществление измерения в моменты времени $t_i = i, i = 1, ..., n$ с измерительным базисом $\{|\varphi_{k_i}^{(i)}\rangle\}_{k=1}$ в случайно выбранным в момент t_i . k_i измерение переводит нашу систему в состояние $|\varphi_{k_i}^{(i)}\rangle\langle\varphi_{k_i}^{(i)}|$. Обозначим $E_i = |\varphi_{k_i}^{(i)}\rangle\langle\varphi_{k_i}^{(i)}| \otimes I$ как проектор действующий на систему и резервуар.

Между измерениями система эволюционирует следующим образом:

$$\varrho_{S+E}(t_{i+1}) = \Phi\left[\varrho_{S+E}(t_i)\right],\tag{2.1}$$

где сам канал имеет вид:

$$\Phi[\varrho] = U(H) \, \varrho \, U^+(H). \tag{2.2}$$

Описанный выше процесс может быть представлен в виде следующей схемы.

Рис. 2.2.2. Динамика открытой квантовой системы с одиночными проективными измерениями во времена $t_i = i, i = 1, ..., n$ [17].

Для получения выборки данных был проведен численный эксперимент схемы Рис.2.2 с начальными условиями $\rho_{S+E} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, время взаимодействия между системой и окружением t = 1.

2.3 Восстановление динамики

Для восстановления динамики системы нам необходимо построить метод, который способен находить такие гамильтонианы *H*, которые в точности восстанавливали бы динамику системы. Так как в методе присутствует оптимизационный алгоритм ADAM, необходимо определить целевую функцию, объект, с помощью которого будет происходить обучение.

В качестве целевой функции оптимизации была выбрана условная вероятность $p\left(\left\{E_i\right\}_{i=1}^n | H\right)$ получения последовательности таких операторов $\left\{E_i\right\}_{i=1}^n$ при установленном гамильтониане H. Данная вероятность выражается следующим образом из определенной нами модели столкновений

$$p(\{E_i\}_{i=1}^n | H) = Tr\{E_n...\Phi[E_2\Phi[E_1\Phi[\varrho_{S+E}(0)]E_1]E_2]...E_n\}.$$
(2.3)

Для нахождения градиента по параметру оптимизации(по гамильтониану) необходимо параметризовать систему следующим образом:

$$\tilde{\varrho}_{S+E}(t_{m+1}) = [E_m U(H) \, \varrho_{S+E}(t_m) \, U^+(H) \, E_m], \qquad (2.4)$$

$$\xi(t_m) = [U^+(H) E_{m+1} \xi_{S+E}(t_{m+1}) E_{m+1} U(H)].$$
(2.5)

Очевидно, что

$$p\left(\left\{E_{i}\right\}_{i=1}^{n}|H\right) = Tr\left\{\varrho_{S+E}(t_{m})\xi(t_{m})\right\}$$
(2.6)

$$p\left(\left\{E_{i}\right\}_{i=1}^{n}|H\right) = Tr\left\{U(H)\varrho_{S+E}(t_{m-1})U^{+}(H)E_{m}\xi(t_{m})E_{m}\right\}.$$
(2.7)

С помощью данного представления легко получить градиент

$$\frac{\partial p(\lbrace E_i \rbrace_{i=1}^n | H)}{\partial H} = \sum_{m=1}^n Tr \lbrace E_m \,\xi(t_m) \, E_m \, \frac{\partial U(H)}{\partial H} \, \varrho_{E+S} \, (t_{m-1}) \, U^+(H) + \\ + \, E_m \,\xi(t_m) \, E_m \, U(H) \, \varrho_{E+S}(t_{m-1}) \, \frac{\partial U^+(H)}{\partial H} \rbrace, \quad (2.8)$$

где след берется по степеням свободы системы и окружения.

Далее определим следующее выражение:

$$\frac{\partial U(H)}{\partial H} = \frac{\partial U(H+V)}{\partial V} \bigg|_{V=0}.$$
(2.9)

Для этого рассмотрим U(H+V), где V представляет собой малое возмущение

$$U(H+V) = exp[i(H+V)\tau] = exp(-iH\tau) - exp(iH\tau) T_{\leftarrow} \int_0^\tau exp(iHt) Vexp(iHt) dt + o(V). \quad (2.10)$$

Для нахождения явного выражения $\frac{\partial U(H)}{\partial H}$ необходимо, найти спектральное разложение гамильтониана

$$H = \sum_{l} \lambda_{l} |\psi_{l}\rangle \langle \psi_{l}|, \qquad (2.11)$$

и оператора эволюции

$$U(H) = \sum_{l} exp(-i\lambda_{l}t) |\psi_{l}\rangle \langle \psi_{l}|, \qquad (2.12)$$

где $|\psi_l\rangle$ собственные вектора *H*. С помощью спектрального разложения, перепишем формулу (2.10) в виде

$$U(H+V) = exp(-i(H+V)\tau) = exp(-iH\tau) - \sum_{j} exp(-i\lambda_{j}t|\psi_{j}\rangle\langle \psi_{j}|T_{\leftarrow}\int_{0}^{\tau} exp(i\lambda_{l}t)\sum_{l}|\psi_{l}\rangle\langle \psi_{l}|Vexp(-i\lambda_{k}t)\sum_{k}|\psi_{k}\rangle\langle \psi_{k}|dt + o(V).$$

$$(2.13)$$

Для удобства введем обозначение:

$$P_{kk'} = |k\rangle \langle k'|, |k\rangle = |\psi_k\rangle, \ k = 1, ..., n,$$

$$(2.14)$$

$$f_{kl} = iexp(-i\lambda l\tau) \int_0^\tau exp(i\lambda_l\tau)exp(-i\lambda_k\tau) = \frac{e^{-i\lambda_k t} - e^{-i\lambda_k t}}{k-l},$$
(2.15)

$$\frac{\partial V}{\partial V_{ab}} = \frac{\partial V_{kl}}{\partial V_{ab}} = \delta_{ak} \,\delta_{bl}.$$
(2.16)

Таким образом, с учетом всех преобразований градиент U(H) по H, выглядит следующим образом:

$$\frac{\partial (U(H))_{kl}}{\partial H_{ab}} = \sum_{k,l} f_{kl} (P_{kk})_{ck} \,\delta_{ak} \,\delta_{bl} (P_{ll})_{ly} = \sum_{k,l} f_{kl} (P_{kk})_{ca} (P_{ll})_{by}.$$
(2.17)

Представим алгоритм по восстановлению динамики в виде схемы,

Рис. 2.3.1 Алгоритм предсказания динамики.

где h параметр, который определяется с помощью ADAM оптимизатора.

Работа описанноого выше алгоритма была продемонстрирована в статье [17].

Рис. 2.3.2. Наблюдаемая $\langle \sigma_x(t) \rangle$. Синяя линия - моделируемая динамика, красная - установленная [17].

Рис. 2.3.3. Наблюдаемая $\langle \sigma_y(t) \rangle$. Синяя линия - моделируемая динамика, красная - установленная [17].

Рис. 2.3.4. Наблюдаемая
 $\left<\sigma_z(t)\right>$. Синяя линия - моделируемая динамика, красная - установленная [17].

Глава З

Примененение методов машинного обучения для исследования каналов с памятью

Любой физический процесс может быть представлен с помощью квантового канала. С помощью каналов квантовая информатика обеспечивает нас необходимым инструментом, позволяющим описывать передачу информации. В данном контексте возможность кодировки и расшифровки сообщений были обобщены из классической теории Шеннона о передачи информации и коррекции ошибок. На данный момент большинство работ были сосредоточены на каналах, которые действуют на различные части последовательности состояний одинаково и независимо (каналы без памяти). Наиболее точное описание дают каналы с памятью, с помощью них могут быть представлены коррелированные шумы и поведение открытых квантовых систем с учетом немарковских процессов.

Наглядное представление квантовых каналов с памятью можно представить следующим образом:

Рис. 3.1. Канал с памятью, смешивание цветов, после измерения состояния системы ϱ_i , иллюстрирует эффект памяти.

Каждое состояние оставляет свой след в канале и на каждое следующее состояние на входе канал уже будет действовать иначе.

3.1 Обзор метода

Как и в случае с моделью столкновений был разработан метод восстановления динамики системы для каналов с памятью. Основными составляющими метода являются так же ADAM оптимизатор и метод обучения с учителем.

Суть алгоритма состоит в нахождении минимума целевой функции с помощью градиентного спуска, где приращение по параметру оптимизации происходит через обучение алгоритма на выборке данных. Данные могут быть получены как экспериментальным путем так и в результате численного моделирования.

3.2 Моделирование динамики и получение данных

Для моделирования каналов с памятью была предложена следующая схема.

Рис.3.2.1. Квантовый канал в представлении тензорных сетей [16].

На данной схеме ϱ_i , i = 0, ..., n описывает начальное состояния частиц проходящих через канал, а состояние окружение описывается через матрицу плотности ξ . Взаимодействие с каналом описывается с помощью оператора эволюции $U(H) = exp(-iH_I t)$, в данной модели оператор взаимодействия U для всех систем одинаков.

Выборка данных, которая используются для обучения алгоритма, является набором следующих операторов $E_i = |q_{k_i}^{(i)}\rangle \langle \varphi_{k_i}^{(i)}| \otimes I$, где $|q_{k_i}^{(i)}\rangle$ состояние системы до взаимодействия с окружением, $|\varphi_{k_i}^{(i)}\rangle$ результат измерения в случайном базисе, после взаимодействия с окружением. Измерения происходят над системами в моменты времени $t_1 < t_2 < ... < t_n$,

В предположении, что постановка эксперимента позволяет осуществление измерения в моменты времени $t_i = i, i = 1, ..., n$ с измерительным базисом $\{|\varphi_{k_i}^{(i)}\rangle\}_{k=1}$ в случайно выбранным в момент t_i . k_i измерение переводит нашу систему в состояние $|\varphi_{k_i}^{(i)}\rangle\langle\varphi_{k_i}^{(i)}|$.

Между измерениями система эволюционирует следующим образом:

$$\varrho_{S+E}(t_{i+1}) = \Phi\left[\varrho_{S+E}(t_i)\right],\tag{3.1}$$

где сам канал имеет вид:

$$\Phi[\varrho] = U(H) \, \varrho \, U^+(H). \tag{3.2}$$

Описанный выше процесс может быть представлен в виде следующей схемы:

Рис. 3.2.2. Открытая квантовая динамика системы с одиночными проективными измерениями во времена $t_i = i, i = 1, ..., n$ [17].

3.3 Восстановление динамики

Для модели представленной выше в качестве целевой функции была выбрана условная вероятность $p\left(\left\{E_i\right\}_{i=1}^n | H\right)$ получения последовательности таких операторов $\left\{E_i\right\}_{i=1}^n$ при установленном гамильтониане H. Данная вероятность выражается следующим образом:

$$p(\{E_i\}_{i=1}^n \mid H) = Tr\{E_n...\Phi[E_2\Phi[E_1\Phi[\varrho_{S+E}(0)]E_1^+]E_2^+]...E_n^+\}.$$
(3.3)

Для нахождения градиента по параметру оптимизации (гамильтониан), необходимо параметризовать систему следующим образом:

$$\tilde{\varrho}_{S+E}(t_{m+1}) = [E_m U(H) \, \varrho_{S+E}(t_m) \, U^+(H) \, E_m^+], \qquad (3.4)$$

$$\xi(t_m) = [U^+(H) E^+_{m+1} \xi_{S+E}(t_{m+1}) E_{m+1} U(H)], \qquad (3.5)$$

$$\xi(t_n) = I. \tag{3.6}$$

Рис. 3.3.1: Параметризация тензорной сети.

Очевидно, что

$$p\left(\left\{E_{i}\right\}_{i=1}^{n}|H\right) = Tr\left\{\varrho_{S+E}(t_{m})\xi(t_{m})\right\},$$
(3.7)

$$p\left(\left\{E_{i}\right\}_{i=1}^{n}|H\right) = Tr\left\{U(H)\varrho_{S+E}(t_{m-1})U^{+}(H)E_{m}^{+}\xi(t_{m})E_{m}\right\}.$$
(3.8)

С помощью данного представления легко получить градиент

$$\frac{\partial p(\left\{E_{i}\right\}_{i=1}^{n}|H)}{\partial H} = \sum_{m=1}^{n} Tr\left\{E_{m}^{+}\xi(t_{m})E_{m}\frac{\partial U(H)}{\partial H}\varrho_{E+S}(t_{m-1})U^{+}(H) + E_{m}^{+}\xi(t_{m})E_{m}U(H)\varrho_{E+S}(t_{m-1})\frac{\partial U^{+}(H)}{\partial H}\right\}.$$
 (3.9)

След берется по степеням свободы системы и окружения, где градиен
т $U({\cal H})$ по ${\cal H},$ был найден в предыдущей главе:

$$\frac{\partial (U(H))_{kl}}{\partial H_{ab}} = \sum_{k,l} f_{kl} (P_{kk})_{ck} \,\delta_{ak} \,\delta_{bl} (P_{ll})_{ly} = \sum_{k,l} f_{kl} (P_{kk})_{ca} (P_{ll})_{by}. \tag{3.10}$$

Алгоритм по предсказанию динамики можно представить в виде следующей болк-схемы,

Рис. 3.3.2 Алгоритм предсказания динамики.

где h параметр, который определяется с помощью ADAM оптимизатора.

Для проверки работы метода был проведен численный эксперимент, описанный в главе 3.2. В качестве пармаметров системы были взяты следующие данные:

$$\begin{split} \varrho_{S+E}(0) &= |+\rangle \langle + |\otimes|0\rangle \langle 0|, \\ H &= \sigma_z \otimes \sigma_z, \\ t &= 1. \end{split}$$

Где $\rho_{S+E}(0)$ - начальное состояние системы и окружения, H -гамильтониан системы и окружения, t - время взаимодействия системы и окружения

Для предсказания динамики была использована выборка данных в виде набора операторов $\{E_i\}_{i=1}^{10^5}$. Для сравнения динамики системы смоделированной с гамильтонианом указанным выше и динамики с восстановленным гамильтонианом были построены средние значения следующих операторов от времени: $\langle \sigma_x(t) \rangle$, $\langle \sigma_y(t) \rangle$, $\langle \sigma_z(t) \rangle$.

Рис. 3.3.3. Наблюдаемая $\langle \sigma_x(t) \rangle$. Синяя линия - моделируемая динамика, красная - установленная.

Рис. 3.3.4. Наблюдаемая
 $\left<\sigma_y(t)\right>$. Синяя линия - моделируемая динамика, красная - установленная.

Рис. 3.3.5. Наблюдаемая
 $\left<\sigma_z(t)\right>$. Синяя линия - моделируемая динамика, красная - установленная.

Глава 4

Заключение

В результате исследования была изучена и смоделирована динамика открытых квантовых систем и каналов с памятью. Так же был разработан метод предсказания динамики квантовых системы с окружением произвольной размерности на основе единичных проективных измерений. Был продемонстрирован численный эксперимент по восстановлению динамики открытых квантовых систем и каналов с памятью, в котором алгоритм с высокой точностью восстановил динамику системы. Метод позволяет найти эффективный гамильтониан, который точно описывает динамику системы.

Данный результат можно использовать в экспериментах, связанных с передачей квантовых состояний, изучении эффектов квантовой памяти в квантовых компьютерах и исследовании коррелированных шумов.

Литература

- Dennis Kretschmann, Reinhard F. Werner, Quantum Channels with Memory // Dennis Kretschmann - Phys. Rev. A 72, 062323
- Joshua Morris, Felix A. Pollock, Kavan Modi, Non-Markovian memory in IBMQX4 // Phys. Rev. A 93, 032135 (2016)
- [3] Michael J. Hartmann, Giuseppe Carleo, Neural-Network Approach to Dissipative Quantum Many-Body Dynamics // arXiv:1902.05131v2 [quant-ph]
- [4] Breuer H. P., Petruccione F. The theory of open quantum systems. Oxford University Press on Demand, 2002.
- [5] Zhao-Di Liu, Henri Lyyra, Yong-Nan Sun, Bi-Heng Liu, Chuan-Feng Li, Guang-Can Guo, Sabrina Maniscalco Jyrki Piilo, Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities.// Nature Communications volume 9, Article number: 3453 (2018)
- [6] Ziman M., Buzek V. Open system dynamics of simple collision models //Quantum Dynamics And Information. – 2011. – C. 199-227.
- [7] Rybar T. et al. Simulation of indivisible qubit channels in collision models //Journal of Physics B: Atomic, Molecular and Optical Physics. – 2012. – Vol. 45. – No. 15. – P. 154006.
- [8] Bernardes N. K. et al. High Resolution non-Markovianity in NMR //Scientific Reports. –
 2016. Vol. 6. P. 33945.
- Bernardes N. K. et al. Experimental observation of weak non- Markovianity //Scientific reports. - 2015. - Vol. 5. - P. 17520.

- [10] Hartmann L. et al. Spin gases as microscopic models for non-Markovian decoherence //Physical Review A. – 2005. – Vol. 72. – No. 5. – P. 052107.
- [11] Gorini V., Kossakowski A., Sudarshan E. C. G. Completely positive dynamical semigroups of N?level systems //Journal of Mathematical Physics. – 1976. – Vol. 17. – No. 5. – P. 821-825.
- [12] Ciccarello F., Palma G. M., Giovannetti V. Collision-model-based approach to non-Markovian quantum dynamics //Physical Review A. – 2013. – Vol. 87. – No. 4. – P. 040103.
- [13] Discovering the Children of AI: Machine Learning Deep Learning/ May 15, 2018 - Paul C, https://www.functionize.com/blog/discovering-the-children-of-ai-machinelearning-deep-learning/
- [14] Cerigo D., On Why Gradient Descent is Even Needed // Daniel Burkhardt Cerigo -Oct 29, 2018, https://medium.com/@DBCerigo/on-why-gradient-descent-is-even-needed-25160197a635
- [15] Фризен В.В., Филиппов С.Н., ВКР Динамика коррелированных кубитных систем в марковских и немарковских квантовых процессах// ЭБС МФТИ - 2018
- [16] Tomas Rybar, Mario Ziman, Process estimation in presence of time-invariant memory effects // Phys. Rev. A92, 04235(2015)
- [17] A. Luchnikov, S. V. Vintskevich, D. A. Grigoriev, and S. N. Filippov, Machine learning non-Markovian quantum dynamics// arXiv:1902.07019 [quant-ph]
- [18] I. A. Luchnikov, S. V. Vintskevich, H. Ouerdane, and S. N. Filippov, Simulation complexity of open quantum dynamics: Connection with tensor networks.// arXiv:1812.00043v2 (2019).
- [19] S. Shrapnel, F. Costa, and G. Milburn, Quantum Markovianity as a supervised learning task.// Int. J. Quantum Inf. 16, 1840010 (2018).