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Single crystals of Rb2CaCu6(PO4)4O2 were synthesized by a hydrothermal

method in the multicomponent system CuCl2–Ca(OH)2–RbCl–B2O3–Rb3PO4.

The synthesis was carried out in the temperature range from 690 to 700 K and at

the general pressure of 480–500 atm [1 atm = 101.325 kPa] from the mixture in

the molar ratio 2CuO:CaO:Rb2O:B2O3:P2O5. The crystals studied by single-

crystal X-ray analysis were found to be monoclinic, space group C2, a =

16.8913 (4), b = 5.6406 (1), c = 8.3591 (3) Å, � = 93.919 (3)�, V = 794.57 (4) Å3.

The crystal structure of Rb2CaCu6(PO4)4O2 is similar to that of shchurovskyite

and dmisokolovite and is based upon a heteropolyhedral open framework

formed by polar layers of copper polyhedra linked via isolated PO4 tetrahedra.

The presence of well-isolated 2D heteropolyhedral layers in the title compound

suggests low-dimensional magnetic behavior which is masked however by the

fierce competition between multiple ferromagnetic and antiferromagnetic

exchange interactions. At TC = 25 K, Rb2CaCu6(PO4)4O2 reaches a magnetically

ordered state with large residual magnetization.

1. Introduction

Alkaline phosphates with transition metals attract interest

because of their broad technological applications as battery

materials, sorbents, catalysts, ion-exchangers etc. (Cheetham et

al., 1999; Maspoch et al., 2007; Williams et al., 2013; Whit-

tingham, 2014; Yakubovich et al., 2016). Among these, copper

pyrophosphates are of interest because of their magnetic

structures of different dimensionalities (Shvanskaya et al.,

2013; Mannasova et al., 2016).

Typically, the coordination environment of the Cu2+ cation

in oxygen compounds is a distorted octahedron (due to the

Jahn–Teller effect) (Burns & Hawthorne, 1995a,b; Krivo-

vichev, Filatov & Vergasova, 2013). However, the coordination

number may be reduced to five or four, due to some local

crystal-chemical requirements. For instance, the recently

described crystal structure of (Rb,K)2Cu3(P2O7)2 is char-

acterized by the simultaneous presence of CuO6 octahedra
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and CuO5 pyramids (Krivovichev & Chernyat’eva, 2016).

Among minerals, natural copper arsenates shchurovskyite,

K2CaCu6(AsO4)O2, and dmisokolovite, K3Cu5Al(AsO4)O2,

found in sublimates of the Arsenatnaya fumarole (Tolbachik

volcano, Kamchatka, Russia), have three types of Cu2+ coor-

dination environments: CuO6 octahedra, CuO5 pyramids and

CuO4 squares (Pekov et al., 2015, 2018). In the structures of

copper oxysalts CuOn polyhedra can build cationic motifs of

different dimensionalities (from isolated polyhedra to

heteropolyhedral frameworks). A classification of minerals

and inorganic compounds has been proposed based on the

polymerization of CuO4 squares (Leonyuk et al., 1998, 2001).

Oxysalts with mineral-like structures containing ‘additional’

oxygen atoms and OH groups that can be described in terms

of anion-centered tetrahedra (Krivovichev & Filatov, 2001;

Krivovichev, Mentré et al., 2013) as having anion-centered

[(OH)Me3] triangles and [OMe4] tetrahedra (Me = Cu, Ni, Fe,

Zn etc.) attract interest due to their magnetic properties

controlled by the local structure of the oxygen-based copper

polycations (Aksenov et al., 2017; Yamnova et al., 2017;

Volkova & Marinin, 2017, 2018a,b).

In this paper we report on the hydrothermal synthesis,

single-crystal X-ray structure analysis and IR spectra of a

novel oxy [or oxo?]phosphate Rb2CaCu6(PO4)4O2; we eval-

uate the magnitude and sign-of-spin coupling between

magnetic Cu2+ ions and discuss the possible manifestation of

low-dimensional magnetic behavior of this compound. The

crystal-chemical features and structural complexity of rubi-

dium copper phosphates and related oxysalts are also

discussed.

2. Experimental

2.1. Synthesis and sample characterization

Single crystals of Rb2CaCu6(PO4)4O2 were synthesized by a

hydrothermal method in the multicomponent system CuCl2–

Ca(OH)2–RbCl–B2O3–Rb3PO4. The synthesis was carried out

in the temperature range from 690 to 700 K and at the general

pressure of 480–500 atm [1 atm = 101.325 kPa] from the oxide

mixture in the molar ratio 2CuO:CaO:Rb2O:B2O3:P2O5. A

standard Cu-lined stainless steel autoclave of 16 ml capacity

was used. The coefficient of the autoclave filling was selected

so that the pressure was constant. The heating time was

20 days and corresponds to the full completion of the chemical

reaction. The product was then cooled to room temperature

over 24 h. The precipitate was separated by filtration, washed

several times with hot distilled water and finally dried at room

temperature for 12 h. The reaction products were small green

crystals of the new phase Rb2CaCu6(PO4)4O2 (Fig. 1) in 15%

yield, light blue crystals of CaCu2(PO4)2 and deep blue crystals

of CuB2O4. The crystals of Rb2CaCu6(PO4)4O2 were selected

manually for further studies.

The elemental contents (Fig. S1, Table S1, in the supporting

information) of the selected crystals were determined by a

Jeol JSM6480LV scanning electron microscope equipped with

an INCA Wave 500 wavelength spectrometer. The conditions

of analysis were: accelerating voltage 20 kV, current 20 nA,

beam diameter 3 mm.

2.2. Vibrational spectroscopy

The IR spectrum of Rb2CaCu6(PO4)4O2 was obtained using

an FSM 12011 FTIR spectrometer using the KBr disc tech-

nique in the wavenumber region from 4000 to 400 cm�1. The

spectral resolution was about 2 cm�1.

The IR absorption spectrum is shown in Fig. 2. The bands in

the region 1100–400 cm�1 are due to phosphate units. Theo-

retical group analysis for the tetrahedral phosphate ion PO4
3�

in a local position with C1 symmetry and C2 factor group leads

to the following allowed IR vibrations: �3 � 3A + 3B, �1 � A +

B, �4 � 3A + 3B and �2 � 2A + 2B for each of the two

independent phosphorus sites. IR bands observed at 1109,

1060, 1036, 1015, 1002, 963 cm�1 are assigned to the anti-

symmetric stretching �3 modes of PO4
3� units. The IR bands at

950 and 925 cm�1 are attributed to the phosphate ions �1

symmetric stretching modes. The IR bands in the region 640–

470 cm�1 are due to antisymmetric bending �4 vibrations. The

bands at 452 and 418 cm�1 are assigned to �2 symmetric

bending vibrations. Because of the proximity and partial

overlapping of many vibrations, the observed number of
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Figure 2
IR spectrum of Rb2CaCu6(PO4)4O2 at room temperature.

Figure 1
A photograph of crystals of the Rb2CaCu6(PO4)4O2 compound (a) and a
scanning electron microscopy image showing the crystal morphology (b).
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signals in all regions of the IR spectrum is lower than is

allowed by the selection rules.

2.3. X-ray powder diffraction and single-crystal analysis

Powder X-ray diffraction data of Rb2CaCu6(PO4)4O2

(Fig. S2) were collected with a Stoe-Stadi MP (Stoe & Cie

Gmbh, Darmstadt, Germany) powder diffractometer

equipped with a curved Ge(111) monochromator to provide

strictly monochromatic Co K�1 radiation, 40 kV, 35 mA. The

data were acquired by successively covering the scanning

region using a position-sensitive linear detector with 2� or

D(2h) = 5� and a channel width of 0.02�.

A green unshaped grain of Rb2CaCu6(PO4)4O2 (0.13 � 0.15

� 0.18 mm) was selected carefully under a polarizing micro-

scope and used for single-crystal X-ray data collection. The

single-crystal X-ray data were collected at room temperature

on an Oxford Diffraction Xcalibur S diffractometer with

graphite monochromated Mo K� radiation (� = 0.71073 Å)

and a CCD detector using the ! scanning mode. Raw data

were integrated and then scaled, merged and corrected for

Lorentz–polarization effects using the CrysAlis package

(Oxford Diffraction, 2009). The following unit-cell parameters

have been obtained by the least-squares refinement: a =

16.8913 (4), b = 5.6406 (1), c = 8.3591 (3) Å, � = 93.919 (3)�, V

= 794.57 (4) Å3. Space group C2 (No. 5) was chosen based on

the reflection statistics and was confirmed by the successful

refinement of the structure. The experimental details of the

data collection and refinement results are listed in Table 1.

A structure model was produced by the ‘charge flipping’

method using the SUPERFLIP computer program (Palatinus

& Chapuis, 2007). The structure determinations and refine-

ments were carried out using the Jana2006 program package

(Petřiček et al., 2006). Atomic scattering factors for neutral

atoms together with anomalous dispersion corrections were

taken from International Tables for Crystallography (Prince,

2006). Illustrations were produced with the Jana2006 program

package in combination with the program DIAMOND

(Brandenburg & Putz, 2005). Table S2 lists the fractional

atomic coordinates, occupancy, site symmetries and equivalent

atomic displacement parameters (Ueq). Anisotropic atomic

displacement parameters (Uij) are presented in Table S3.

Selected interatomic distances are given in Table 2.

Bond-valence sums (BVS, Table 3) were calculated using

the bond-valence parameters for Cu2+—O bonds (Krivo-
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Table 1
Experimental details Generated from cif.

Crystal data
Chemical formula CaCu6O18P4Rb2

Mr 1004.2
Crystal system, space group Monoclinic, C2
Temperature (K) 293
a, b, c (Å) 16.8913 (4), 5.6406 (1), 8.3591 (3)
� (�) 93.919 (3)
V (Å3) 794.57 (4)
Z 2
Radiation type Mo K�
Wavelength (Å) 0.71069
� (mm�1) 14.80
Crystal size (mm) 0.24 � 0.22 � 0.15

Data collection
Diffractometer Xcalibur, Sapphire3 with high

theta cut-off
Absorption correction Multi-scan
Tmin, Tmax 0.488, 1.000
No. of measured, independent and

observed [I > 2�(I)] reflections
21970, 5108, 3914

Rint 0.064
(sin �/�)max (Å�1) 1.168

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.050, 0.050, 0.97
No. of reflections 5108
No. of parameters 153
�	max, �	min (e Å�3) 1.21, �1.26
Absolute structure 0 of Friedel pairs used in the

refinement [Section editor
comment: No absolute structure
parameter??

Table 2
Selected interatomic distances (Å) for Rb2Ca{Cu6O2(PO4)4} Should
symmetry operations be given?.

Bond Distance Bond Distance

Rb—O9 2.814 (3) Ca—O6 2.312 (3) �2
Rb—O1 2.876 (3) Ca—O5 2.423 (3) �2
Rb—O6 2.940 (3) Ca—O3 2.575 (3) �2
Rb—O7 3.074 (3) Ca—O7 2.970 (4) �2
Rb—O1 3.133 (3) Mean 2.570 (X)
Rb—O7 3.278 (4) Cu4—O7 1.899 (4)
Rb—O8 3.424 (3) Cu4—O4 1.907 (3)
Mean 3.077 (X) Cu4—O3 2.104 (3)
Cu1—O4 1.902 (2) Cu4—O5 2.146 (3)
Cu1—O1 1.937 (3) Cu4—O9 2.253 (2)
Cu1—O8 1.959 (3) Mean 2.062 (X)
Cu1—O9 2.075 (3) Cu—O6† 2.729 (3)
Cu1—O8 2.407 (3) P1—O9 1.536 (2)
Mean 2.056 (X) P1—O3 1.540 (3)
Cu2—O4 1.913 (2) �2 P1—O8 1.544 (3)
Cu2—O2 1.922 (3) �2 P1—O2 1.568 (3)
Mean 1.918 (X) Mean 1.548 (X)
Cu2—O6† 2.968 (3) �2 P2—O6 1.517 (3)
Cu3—O4 1.925 (2) �2 P2—O2 1.536 (3)
Cu3—O2 1.993 (3) �2 P2—O7 1.553 (3)
Cu3—O5 2.473 (3) �2 P2—O5 1.557 (3)
Mean 2.131 (X) Mean 1.541

† Not considered in the calculation of the average bond length, but has been included in
the calculation of the bond-valence sums.

Table 3
Bond-valence calculation for Rb2Ca{Cu6O2(PO4)4}.
P

va and
P

vc are the bond-valence sums for anions and cations, respectively.
The �2# sign indicates the doubling of the corresponding valence
contributions in columns due to symmetry.

Site Rb Cu1 Cu2 Cu3 Cu4 Ca P1 P2
P

va

O1 0.19+0.10 0.49 1.24 2.02
O2 0.51�2# 0.42�2# 1.14 2.07
O3 0.31 0.19�2# 1.23 1.73
O4 0.54 0.52�2# 0.50�2# 0.53 2.09
O5 0.11�2# 0.27 0.29�2# 1.18 1.85
O6 0.16 0.03�2# 0.05 0.39�2# 1.31 1.94
O7 0.11+0.06 0.54 0.07�2# 1.19 1.97
O8 0.04 0.46+0.13 1.21 1.84
O9 0.23 0.33 0.20 1.24 2.00P

vc 0.89 1.95 2.12 2.06 1.90 1.88 4.82 4.92
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vichev, 2012a) and for other bonds (Rb+—O, Ca2+—O and

P5+—O) (Brown & Altermatt, 1985).

2.4. Theoretical study of magnetic properties

To examine the low-dimensional properties of Rb2Ca-

Cu6(PO4)4O2, we evaluated the magnitude and sign-of-spin

coupling JSiSj between Cu2+ ions within the 2D networks and

between them (Fig. 3). For each Cu� � �Cu exchange-coupled

pair, the exchange parameters J were obtained from numerical

calculations in terms of a microscopic many-electron super-

exchange model using a computational scheme (Mironov et al.,

2003; Nikiforova et al., 2011; Zorina et al., 2013). In these

calculations, the electronic structure and magnetic character-

istics of the individual Cu2+ ions located in the different

copper sites are treated in terms of ligand-field (LF) calcula-

tions combined with the angular-overlap model (AOM)

(Schaffer, 1968); the latter provides more consistent infor-

mation on the orbital composition of the ground-state wave-

functions of Cu2+ ions in the low-symmetry coordination

polyhedra CuOn [Fig. 4(a)]. The AOM parameters used for

Cu2+ ions are e� = 4000 and e
 = 1000 cm�1 (at the reference

metal–ligand distance R0 = 2.15 Å); the radial dependence of

these parameters is approximated by e�,
(R) = e�,
(R0) (R0/R)n

with n = 4. Furthermore, we used B = 900 and C = 4000 cm�1

Racah parameters (for the 3d9 charge-transfer state of copper

ions) and � = 650 cm–1 spin–orbit coupling constant. Exchange

parameters J were calculated for all actual Cu–Cu exchange-

coupled pairs in the crystal structure of Rb2CaCu6(PO4)4O2, in

which adjacent Cu2+(1–4) ions are bridged by oxygen atoms

and/or tetrahedral PO4 phosphate groups [Figs. 4(b) and 4(c)].

It is noteworthy that the key elements of the superexchange

theory are electron transfer parameters tij, which are one-

electron matrix elements connecting magnetic 3d orbitals on

two exchange-coupled transition-metal centers A and B, tij =

h3di(A)|h|3dj(B)i; in fact, exchange parameters J are very

sensitive to the set of electron transfer parameters tij. In our

calculations, these matrix elements are obtained from mole-

cular orbital (MO) calculations in terms of the extended

Hückel theory (EHT) using atomic EHT parameterization

available from http://www.op.titech.ac.jp/lab/mori/EHTB/

EHTB.htm [URL not found, please check]. More specifically,

the EHT calculations were performed for clusters involving

two adjacent copper atoms and their extended atomic

surroundings involving bridging and terminal oxygen atoms

and tetrahedral PO4 groups; examples are shown in Fig. 3. The

local structure of these clusters corresponds to the actual

crystal structure of Rb2CaCu6(PO4)4O2. The electron transfer

parameters tij are derived by projection of the ten most 3d-rich

molecular orbitals of the Cu(A)� � �Cu(B) pair onto purely

atomic 3d orbitals of two copper atoms A and B (Lee, 1989;

Nikiforova et al., 2011; Zorina et al., 2013). The

Cu(A)$Cu(B) charge-transfer energy is set to 65000 cm�1

(8 eV); this approach has been previously applied to analyze

the spin-coupling mechanism in 3d-based molecular magnets

(Nikiforova et al., 2011).

2.5. Structural complexity calculation

The structural complexity of the crystal structures was

measured using Shannon information per atom (IG) and per

reduced unit cell (IG,total):

IG ¼ �Pk

i¼1

pi log2 pi ðbits per atomÞ ð1Þ

IG;total ¼ �vIG ¼ �v
Pk

i¼1

pi log2 pi ðbits per unit cellÞ ð2Þ
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Figure 3
Examples of the local structure of exchange-coupled pairs Cu–Cu in
Rb2CaCu6(PO4)4O2 employed for microscopic superexchange calcula-
tions. The basic CuO4 squares of copper sites are marked[shaded] in
pink[lilac/light purple?]. Distances are given in ÅAre these coordination
polyhedra? Why are s.u.’s missing on distances? These numbers are too
small and should be given in caption.
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where k is the number of different crystallographic orbits and

pi is the random-choice probability for an atom from the ith

crystallographic orbit, that is

pi ¼ mi=v ð3Þ
where mi is the multiplicity of a crystallographic orbit relative

to the reduced unit cell, and v is the number of atoms in the

reduced unit cell (= number of vertices in the quotient graph)

(Krivovichev, 2012b, 2013a). This approach was successfully

used to characterize the complexity of minerals, zeolites and

different types of inorganic compounds (Krivovichev, 2013b;

Siidra et al., 2014; Grew et al., 2016; Hazen et al., 2017).

Complexity parameters for the whole structure have been

calculated using the software TOPOS (Blatov et al., 2014).

3. Results

3.1. Crystal structure

The crystal structure of Rb2CaCu6(PO4)4O2 is similar to

those of shchurovskyite, K2CaCu6(AsO4)4O2, and dmisoko-

lovite, K3Cu5(AsO4)4O2 (Table 4), and is based upon a

heteropolyhedral open framework formed by polar Cu-based

oxo layers linked via isolated PO4 tetrahedra (Fig. 5).

The layer is formed by CuOn polyhedra of three types:

square (n = 4), square-pyramid (n = 5) and octahedron (n = 6).

It is based upon rods of edge-sharing Cu2O4 squares and

Cu3O6 octahedra [the Cu2� � �Cu3 distance is 2.775 (1) Å]

extending along [010]. The Cu2O4 square has two long

(2.968 Å) distances to the O6 atoms [comparable with that

observed in the structure of shchurovskyite (Pekov et al.,

2015)], so the coordination environment of the Cu2 site can be

considered as a Jahn–Teller-distorted (4+2)-tetragonal bipyr-

amid [which is common for inorganic oxysalts (Burns &

Hawthorne, 1995a,b; Krivovichev et al., 2013 [two Krivovichev

et al. 2013 references, please indicate which])]. However, the

bond-valence contribution of this bond is low [0.03 valence

units (v.u.); Table 3], which allows us to treat the Cu2On
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Figure 4
General view of the crystal structure of Rb2CaCu6(PO4)4O2 (distances in Å) (a), heteropolyhedral layer (b) and coordination environment of copper
polyhedra (c). Why are s.u.’s missing on distances? These numbers are too small and should be given in caption. [or refer to Table 2 if appropriate

Table 4
Calculated anisotropic g-tensor of copper sites [Fig. 2(b)].

g-tensor components

Copper site g1 g2 g3

Cu1 2.025 2.127 2.363
Cu2 2.058 2.058 2.317
Cu3 2.064 2.067 2.348
Cu4 1.997 2.219 2.331

Figure 5
Copper net in the crystal structures of Rb2CaCu6(PO4)4O2 and
shchurovskyite (a) and dmisokolovite (b). Distances in Å. Why are
s.u.’s missing on distances? These numbers are too small and should be
given in caption.
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polyhedron as a planar square. Each rod is decorated by

‘additional’ Cu1O5 and Cu4O5 distorted square-pyramids

[Fig. 5(a)]. Apical vertices of these pyramids are parallel to

each other and elongated along [010], resulting in the non-

centrosymmetric (polar) character of the layers. Adjacent rods

are linked by sharing common vertices of the Cu1O5 poly-

hedra.

In the crystal structures of Rb2CaCu6(PO4)4O2 and

shchurovskyite, Cu atoms form rather complex cationic 2D

arrays (Pekov et al., 2015). Replacement of one Cu atom by Al

in the crystal structure of dmisokolovite (Pekov et al., 2015)

leads to another type of low-dimensional topology of Cu

atoms [Fig. 5(b)].

Heteropolyhedral Cu-based layers are linked via isolated

PO4 tetrahedra forming a 3D framework with the composition

{Cu6O2(PO4)4}3�, containing wide channels occupied by both

alkaline (Rb+) and alkaline-earth (Ca2+) cations. The density

of the framework (FD) is 25.17 Cu+P atoms per 1 nm3.

Despite the fact that the ionic radius of rubidium (rRbVII =

1.56 Å) is considerably larger than that of potassium (rKVII =

1.46 Å), the unit-cell volume of shchurovskyite-type

compounds predominantly depends on the ionic radii of the

tetrahedrally coordinated cations. Therefore, the unit-cell

volume of Rb2CaCu6(PO4)4O2 (V = 794.57 Å3) is smaller than

that of shchurovskyite K2CaCu6(AsO4)4O2 (V = 839.24 Å3).

The crystal structure of Rb2CaCu6(PO4)4O2 contains two

types of parallel channels extending along [010]. Channel I is

delimited by four CuOn polyhedra and four PO4 tetrahedra

and has a distorted hexagonal cross section. The effective

width (e.c.w.) of channel I, calculated (McCusker et al., 2003)

by subtracting the ionic diameter of O2� (2.7 Å) from the

shortest and longest O� � �O distances across the channel, is 2.6

� 5.7 Å (the O7–O7 and O8–O8 distances, respectively).

Channel I is filled by Rb atoms (Fig. S3a). Channel II is

delimited by two CuOn polyhedra and two PO4 tetrahedra and

has a tetragonal cross section (e.c.w. = 0.9 � 1.3 Å, measured

using the O5� � �O5 and O7� � �O7 distances). This channel is

filled by Ca2+ cations (Fig. S3b).

The crystal structures of Rb2CaCu6(PO4)4O2, shchur-

ovskyite, K2CaCu6(AsO4)4O2, and dmisokolovite,

K3Cu5Al(AsO4)O2, are characterized by the presence of

‘additional’ oxygen atoms and thus may be described in terms

of anion-centered tetrahedra (Krivovichev & Filatov, 2001;

Krivovichev et al., 2013 [two Krivovichev et al. 2013 refer-

ences, please indicate which]). Within this approach, the

crystal-chemical formula of the title compound can be written

as (for Z = 2) Rb2Ca[OIV
2Cu6](PO4)4, where square brackets

denote a structural unit formed by anion-centered tetrahedra

(Roman numerals indicate the coordination number of the

‘additional’ oxygen atoms). The O4 atom is tetrahedrally

coordinated by four Cu2+ cations with the average hO4–Cui
distance of 1.912 (X) Å. The (OCu4) tetrahedra are linked via

common Cu2� � �Cu3 edges forming a [O2Cu6]8+ dimer

[Fig. 6(a)]. The arrangement of isolated anion-centered dimers
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Figure 6
Anion-centered [O2Cu6] dimer Distances in Å. Why are s.u.’s missing on
distances? These numbers are too small and should be given in caption.
(a) and general view of the crystal structure of Rb2CaCu6(PO4)4O2

projected on (010) (b) and (001) (c).

Figure 7
Temperature dependence of d.c. magnetic susceptibility � = M/B M/H? in
Rb2CaCu6(PO4)4O2 taken at H = 80 kA m�1 (1000 Oe) in the field-
cooled mode. The inset represents the hysteresis loop taken at T = 2 K.
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and PO4 tetrahedra as well as Rb+ and Ca2+ cations is shown in

Figs. 6(b) and 6(c).

3.2. Magnetic properties of Rb2CaCu6(PO4)4O2: experiment

Magnetic properties of the collection of non-oriented tiny

single crystals of Rb2CaCu6(PO4)4O2 of total mass 3.73 mg

were measured using the VSM option of the Physical Prop-

erties Measurements System PPMS (Quantum Design) 9 T.

The temperature dependence of d.c. magnetic susceptibility

� = M/H taken in the field-cooled regime at H = 80 kA m�1

(1000 Oe) in the range 2–300 K is shown in Fig. 7. A sharp

upturn in magnetization at TC = 25 K signals transition into a

long-range-ordered state with spontaneous magnetic moment.

This is confirmed by the sharp hysteresis loop taken at T = 2 K,

as shown in the inset to Fig. 7. The residual magnetization

equals MR = 1.1 mB per formula unit and the coercive force is

22.4 kA m�1, which places Rb2CaCu6(PO4)4O2 beyond the

range of magnetically soft materials.

At elevated temperatures, the �(T) curve in Rb2Ca-

Cu6(PO4)4O2 follows the Curie–Weiss law with inclusion of

the temperature-independent term

� ¼ �0 þ
C

T � �
: ð4Þ

The fitting curve is shown by the dash in the main panel of

Fig. 1 [Fig. 7?]. The parameters of the fitting in the range 120–

300 K are �0 = �3.2 � 10�4 emu mol�1 [emu = electro-

magnetic unit?], Curie constant C = 1.74 emuK mol�1 and

Weiss temperature � = �7.2 K [delete minus sign?]. The

value of the temperature-independent term is somewhat less

than the summation of individual diamagnetic Pascal’s

constants of constituent ions, equal to �3.8 � 10�4 emu mol�1

(Bain & Berry, 2008), which can be attributed to a para-

magnetic van Vleck contribution of Cu2+ ions (Banks et al.,

2009). The value of the effective magnetic moment

�eff ¼ ð8CÞ1=2�B ð5Þ
is equal to 3.73 mB which is to be compared with summation of

the spin-only magnetic moments of six Cu2+ ions equal to

4.24 mB. The 10–20% reduction of the effective magnetic

moment is a standard feature of copper-based low-dimen-

sional magnetic systems (Vasiliev et al., 2018). The low abso-

lute value of the Weiss temperature, � = �7.2 K, as compared

with the magnetic ordering temperature, TC = 25 K, signifies

fierce competition between ferromagnetic and anti-

ferromagnetic exchange interactions in the title compound.

3.3. Electron spin resonance: experiment

An electron spin resonance (ESR) study of a powder

sample of Rb2CaCu6(PO4)4O2 was performed using an

X-band ESR spectrometer CMS 8400 (ADANI) (f’ 9.4 GHz,

B� 0.7 T) equipped with a low-temperature mount, operating

in the range T = 6–300 K. The effective g-factors have been

calculated with respect to a BDPA (a,g-bisdiphenyline-b-

phenylallyl) reference sample with get = 2.00359. The main

results are represented in Fig. 8. Typical ESR powder patterns

of Rb2CaCu6(PO4)4O2 in the paramagnetic phase are typical

for Cu2+ ions with an anisotropic g-tensor. The amplitude of

the signal increases monotonously upon cooling to 30 K, then
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Figure 8
(Upper panel) Representative ESR spectrum of Rb2CaCu6(PO4)4O2 with
the fitting curves as described in the text. The dashed lines show the
individual Lorentzian fit components and the solid line is the sum of all
three. (Lower panel) The temperature evolution of ESR spectra of
Rb2CaCu6(PO4)4O2. Inset: the temperature dependence of principal
values of the g-tensor.

Table 5
Calculated spin-independent (A) and spin-dependent (J) exchange
parameters of the spin Hamiltonian A � JSASB for Cu2+(A)� � �Cu2+(B)
exchange-coupled pairs in Rb2Ca{Cu6O2(PO4)4} (see Fig. 2 and Fig. 3).

Exchange parameters (cm�1)

Cu� � �Cu pair A J J/A

Cu1� � �Cu10 �1.23 +0.28 �0.23
Cu1� � �Cu2 �15.6 �3.9 0.25
Cu1� � �Cu3 �13.9 �21.8 1.57
Cu1� � �Cu4 �11.4 �6.0 0.53
Cu2� � �Cu3 �9.5 �36.0 3.79
Cu2� � �Cu4 �10.8 �19.1 1.77
Cu3� � �Cu4 �8.7 �12.7 1.46
Cu4� � �Cu40 (interlayer) �0.235 �0.055 0.23
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the signal degrades due to the onset of long-range magnetic

order at TC = 25 K.

In order to evaluate the main ESR parameters the experi-

mental spectra were fitted by the sum of three components

corresponding to the principal values of the g-tensor using

three Lorentzian profiles. A representative example of the

line-shape analysis is given in the upper panel of Fig. 8 with the

resolved resonance modes denoted by dashed lines and their

sum shown by the solid line. The presence of three different

components obviously indicates the reduced symmetry of the

crystal environment as compared with cubic symmetry and is

typical for Cu2+ either in trigonally distorted octahedral,

square-planar or square-pyramidal coordination (Krishna &

Gupta, 1994). The principal g-values of the aniso-

tropic g-tensor remain almost temperature indepen-

dent over the whole temperature range investigated,

with values g1 = 2.07�0.01, g2 = 2.20�0.01 and g3 =

2.31�0.01 resulting in averaged gav = 2.20�0.02,

which is consistent with typical values for Cu2+ ions in

other copper oxides (Zakharov et al., 2014; Danilo-

vich et al., 2019). Remarkably, the obtained experi-

mental g-values agree quite well with the

theoretically calculated ones listed in Table 4. Note, it

is impossible to resolve the signals from different Cu

sites since the experimental absorption line is rela-

tively broad and overlapping in nature. The slight

deviation of the g-factors from their high-tempera-

ture values is indicative of the development of

internal fields upon approach to the long-range-ordered

phase.

3.4. Magnetic properties of Rb2CaCu6(PO4)4O2: estimates of
Cu–Cu exchange parameters

The presence of the 2D heteropolyhedral Cu-based layers

in the crystal structure of Rb2CaCu6(PO4)4O2 suggests low-

dimensional magnetic properties of this compound (Taka-

hashi, 1986). LF/AOM calculations indicate that Cu2+ ions in

the copper sites Cu(1–4) have one unpaired electron occu-

pying a magnetic 3d orbital of the x2–y2 type; the calculated

components of the anisotropic g-tensor of the copper sites

Cu(1–4) are listed in Table 5. These g-values are typical of

Jahn–Teller Cu2+ ions with the basic square-planar CuO4

coordination in the equatorial plane (with four short Cu—O

bonds) and more distant apical oxygen atoms.

Spin coupling between two unpaired electrons on x2–y2

magnetic orbitals centered on two Cu2+ ions depends strongly

on the character of the bridging groups and mutual spatial

orientation of the two x2–y2 magnetic orbitals on the Cu2+(A)

and Cu2+(B) ions (which is specified by orientation of the two

CuO4 square units). Coplanar orientation of neighboring

CuO4 squares favors dominant antiferromagnetic (AF) spin

coupling, while non-coplanar orientation results in some

ferromagnetic (F) superexchange pathways between half-
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Table 6
Mineral and inorganic compounds with the shchurovskyite-type structure.

FD – framework density, number of framework cations per 1000 Å3.

Unit-cell parameters

Mineral/compound
Space
group Z

a
(Å)

b
(Å)

c
(Å) � (�)

V
(Å3) FD

Shchurovskyite†
K2Ca{Cu6O2(AsO4)4}

C2 2 17.2856 5.6705 8.5734 92.953 839.24 23.8

Dmisokolovite†
K3{Cu5AlO2(AsO4)4}

C2/c 4 17.0848 5.7188 16.5332 91.716 1617.7 24.7

Rb2Ca{Cu6O2(PO4)4} C2 2 16.8913 5.6406 8.3591 93.919 794.57 25.17

† Pekov et al. (2015).

Figure 9
General view of the crystal structure of RbCu3(PO2F2)(PO3F)2F2

projected on (001) (a) and the heteropolyhedral copper phosphate layer
(b).

Figure 10
Crystal structures of a family of microporous copper diphosphates with
general formula A9Cu6(P2O7)4Cl3�(TX4).
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filled x2–y2 orbitals and other doubly occupied d orbitals.

Given that in most of the Cu� � �Cu pairs in the crystal structure

of Rb2CaCu6(PO4)4O2 the CuO4 units are non-coplanar, some

competition between F and AF contributions might be

expected, which would tend to reduce the overall magnitude

of the exchange parameter J. More quantitatively, the AF

versus F competition is measured by the ratio between the

spin-independent (A) and spin-dependent (J) exchange

parameters in the full spin Hamiltonian H = A � JSASB

resulting from the superexchange mechanism.

For the spin S = 1/2 of Cu2+ ions, the AF contributions are

described by the J(1/4 � SASB) spin Hamiltonian with the J/

A = 4 ratio; for the F contribution this ratio is negative. Thus,

generally we have J/A < 4. Therefore, the J/A ratio reflects the

degree of the AF/F competition in the Cu� � �Cu pairs: the

smaller the J/A, the stronger the F contributions, which

dominate at J/A < 0. With this in mind, we calculated the A

and J exchange parameters for all actual exchange-coupled

pairs Cu� � �Cu in Rb2CaCu6(PO4)4O2 (Table 6).

These data show that, except for the Cu2–Cu3 pairs (J/A =

3.76), the ratio J/A is considerably less than 4, thereby indi-

cating strong F/AF competition in the exchange-coupled pairs.

This is consistent with the non-coplanar orientation of the

CuO4 square units with short Cu—O bonds in most of the

Cu� � �Cu pairs. It is also noteworthy that the small value of the

spin-independent exchange parameter A necessarily implies a

small spin-dependent (conventional) exchange parameter J

owing to the relation J/A � 4; in other words, a small A value

indicates poor efficiency of the bridging groups as mediators

of the spin coupling between two magnetic centers Cu2+(A)

and Cu2+(B) (which manifests in small electron transfer

parameters tij). This situation occurs for the Cu1� � �Cu10 pairs

within the copper layer and for the Cu4� � �Cu40 pairs

connecting two neighboring copper layers, in which a small

parameter A combines with a low J/A ratio, ultimately

resulting in very weak spin coupling (J = +0.28 and J =

�0.05 cm–1, respectively, Table 6). It is important to note that

these pairs play a key role in the overall magnetic behavior of

Rb2CaCu6(PO4)4O2 as they determine magnetic connectivity

within the copper layers (the Cu1� � �Cu10 pair, weakly ferro-

magnetic spin coupling with J = +0.28 cm�1) and magnetic

coupling between the copper layers (the Cu4� � �Cu40 pair,

weak AF spin coupling, J = �0.05 cm�1). By contrast, the

Cu2� � �Cu3 pairs in the rods composed of edge-sharing CuO4

squares exhibit a moderately strong AF spin coupling (J =

�36.0 cm�1) with a large J/A = 3.79 ratio (which is close to the

limiting value of 4), indicating dominant AF contributions.

This fact is consistent with the coplanar orientation of edge-

sharing CuO4 squares and with the presence of two bridging O

atoms with short Cu—O bonds, which are good mediators of

spin coupling between Cu2+ ions in the Cu2 and Cu3 sites.

Exchange interactions between these copper sites and

‘decorating’ Cu1 and Cu4 sites are all antiferromagnetic with a

rather low J/A ratio (< 2); again, this indicates a pronounced

competition between AF and F superexchange pathways in

the pairs caused by the non-coplanar orientation of the CuO4

squares.

4. Discussion

Rb2CaCu6(PO4)4O2 belongs to the group of rubidium copper

phosphates (Table 6) and is related to fluorophosphates
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Table 7
Crystallographic data and complexity parameters for rubidium copper phosphates.

Unit-cell parameters

Compound
Space
group Z a (Å), � (�) b (Å), � (�) c (Å), 
 (�) V (Å3) FD

v
(atoms)

IG

(bits per
atoms)

IG,total

(bits per
unit cell)

Orthophosphates
�-RbCu(PO4)a Pc21n 4 8.526 5.356 8.906 406.73 19.67 28 2.807 78.606
�-RbCu(PO4)b P21 4 8.603 9.659, 91.422 5.054 419.84 19.05 28 3.807 106.606
Rb2Cu(H2PO4)4

c P1 1 6.970, 83.60 7.488, 71.78 7.923, 85.39 389.88 31 3.986 123.580
Rb2Cu(VO2)2(PO4)2

d P21/c 2 4.929 11.471, 93.535 9.481 535.06 18.69 38 3.301 125.421
Rb2CaCu6(PO4)4O2 C2 2 16.8913 5.6406, 93.919 8.3591 794.57 25.17 31 4.051 125.580
RbCu3(PO2F2)(PO3F)2F2

e,f C2/c 4 19.090 7.572, 103.683 7.819 1098.19 21.85 42 3.535 148.477
Rb2Cu3(PO3F)4

e, f P21/c 2 7.749 9.434, 95.186 9.219 671.2 50 3.684 184.193
RbCuFe(PO4)2

g P21/n 4 8.054 9.906, 115.47 9.140 658.34 24.30 52 3.700 192.423
RbCuAl(PO4)2

h P21/c 4 5.072 14.070, 100.41 9.352 656.44 24.37 52 3.700 192.423

-RbCu(PO4)b Pnma 12 8.932 16.118 8.567 1233.27 19.46 84 3.630 304.955
Rb2Cu3(PO2F2)2(PO3F) (sic)e† P21/n n.d. 5.383 14.191, 91.83 15.888 1213.13
Diphosphates
�-Rb2Cu(P2O7)i Cc 4 7.002 12.751, 110.93 9.773 815.0 14.72 24 3.585 86.039
Rb1.5(NH4)0.5Cu(P2O7)j Pmcn 2 5.183 10.096 15.146 792.58 48 3.252 156.078
Rb2Cu3(P2O7)2

k P21/c 2 7.712 10.525, 103.862 7.803 614.91 16.26 46 3.567 164.084
Rb9Cu6(P2O7)4Cl3�(CuCl4)l I4/mcm 4 17.843 17.843 13.493 4295.96 13.04 118 3.510 414.152
Rb9Cu6(P2O7)4Cl3�(Au1.54Cl5.12)l I4/mcm 4 17.874 17.874 13.480 4306.65 13.00 124 3.664 454.320
Rb9Cu6(P2O7)4Cl3�(Au0.535Cl3.27)l I4/mcm 4 17.770 17.770 13.455 4248.7 13.18 128 3.656 480.000
(Rb,K)2Cu3(P2O7)2

m P212121 8 9.941 13.475 18.635 2496.4 22.43 184 5.524 1016.335

a Henry et al. (2000); b Henry et al. (2010); c Chaouche et al. (2010); d Yakubovich et al. (2008); e Armstrong et al. (2011); f Williams et al. (2012); g Badri et al. (2013); h Yakubovich et al.
(2016); i Shvanskaya et al. (2012); j Chernyatieva et al. (2019); k Shvanskaya et al. (2013); l Williams et al. (2013); m Krivovichev & Chernyat’eva (2016). † Because of the absence of
crystal structure data, we are not able to calculate FD value and complexity parameters. Moreover, the reported chemical formula is not charge balanced.
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RbCu3(PO2F2)(PO3F)2F2 and Rb2Cu3(PO2F2)2(PO3F) (sic)

(Armstrong et al., 2011), which both possess structures based

upon heteropolyhedral frameworks. The first compound

consists of heteropolyhedral mixed copper phosphate layers

linked via isolated PØ4 tetrahedra (Ø = O, F) [Fig. 9(a)].

Layers are formed by [Cu3O8F4] trimers of face-sharing CuØ6

octahedra and PØ4 tetrahedra [Fig. 9(b)]. Armstrong et al.

(2011) reported that the crystal structure of Rb2Cu3-

(PO2F2)2(PO3F) is based upon infinite chains of CuO4F

square-based pyramids and CuO5F octahedra, which are

linked by PO3F tetrahedra. Unfortunately, there is no further

information concerning the crystal structure of this compound.

The chemical formula Rb2Cu3(PO2F2)2(PO3F) is notably non-

electroneutral, assuming a divalent state of Cu.

Except for Rb2Cu(H2PO4) (Chaouche et al., 2010) and

Rb2Cu3(PO3F)4 (Armstrong et al., 2011), all rubidium copper

phosphates have microporous structures with low framework

densities from 13.00 to 25.17 Cu+M [Me = metal?]+P atoms

per 1 nm3 (Table 6). Among these, the family of diphosphates

with the general formula A9Cu6(P2O7)4Cl3�(TX4) (where A =

K+, Rb+, Cs+; T = P5+, Cu2+, Pt2+, Pd2+, Au3+; X = O2�, OH�,

Cl�, Br�) (Williams et al., 2013) (Fig. 10) is characterized by

very low framework densities of 	13.1 (1). Their

{Cu6(P2O7)4Cl3}7� open frameworks contain large channels

filled by alkaline earth? cations and tetrahedral or planar

(TX4) anions. [Table 7 not yet cited, please include a citation]

5. Conclusion

Single crystals of Rb2CaCu6(PO4)4O2 were synthesized by a

hydrothermal method. The crystal structure of Rb2Ca-

Cu6(PO4)4O2 is similar to those of shchurovskyite and

dmisokolovite and is based on a heteropolyhedral open

framework formed by polar copper layers linked via isolated

PO4 tetrahedra. The results of our microscopic calculations in

terms of a many-electron superexchange model are indicative

of possible low-dimensional magnetic behavior of the title

material, since they confirm weak magnetic coupling between

the Cu-based layers mediated by the Cu4� � �Cu40 pairs (J =

�0.05 cm�1). However, the actual character of the low-

dimensional magnetism (1D or 2D) is rather uncertain, owing

to the presence of weak exchange interactions within the

layers (i.e. weakly ferromagnetic Cu1� � �Cu1000 pairs, J =

+0.28 cm�1), which may destroy magnetic connectivity within

the copper 2D network and thus tends to further reduce the

efficient dimensionality of the magnetic system. The calcu-

lated values of the principal components of the g-tensor nicely

correspond to averaged values of g-factors defined experi-

mentally. The low-dimensional magnetic behavior of the title

compound is masked by the fierce competition between

multiple ferromagnetic and antiferromagnetic exchange

interactions. At TC = 25 K, Rb2CaCu6(PO4)4O2 reaches a

magnetically ordered state with large residual magnetization

MR. Taking into account the even number of magnetic ions per

formula unit one may presume the non-collinear magnetic

structure exists at T < TC, which is to be verified in neutron

scattering measurements.
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Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. 111,

3466–3492.
Chernyatieva, A. P., Aksenov, S. M., Krivovichev, S. V., Yamnova,

N. A. & Burns, P. C. (2019). Crystallogr. Rep. 64, 239–246.
Danilovich, I. L., Merkulova, A. V., Morozov, I. V., Ovchenkov, E. A.,

Spiridonov, F. M., Zvereva, E. A., Volkova, O. S., Mazurenko, V. V.,
Pchelkina, Z. V., Tsirlin, A. A., Balz, C., Holenstein, S., Luetkens,
H., Shakin, A. A. & Vasiliev, A. N. (2019). J. Alloys Compd. 776,
16–21.

Grew, E. S., Krivovichev, S. V., Hazen, R. M. & Hystad, G. (2016).
Can. Mineral. 54, 125–143.

Hazen, R. M., Grew, E. S., Origlieri, M. J. & Downs, R. T. (2017). Am.
Mineral. 102, 595–611.

Henry, P. F., Hughes, R. W., Ward, S. C. & Weller, M. T. (2000). Chem.
Commun. pp. 1959–1960.

Henry, P. F., Kimber, S. A. J. & Argyriou, D. N. (2010). Acta Cryst.
B66, 412–421.

Prince, E. (2006). Editor. International Tables for Crystallography,
Vol. C, Mathematical, Physical and Chemical Tables. International
Union of Crystallography.

research papers

10 of 11 Sergey M. Aksenov et al. � Rb2CaCu6(PO4)4O2 Acta Cryst. (2019). B75

Files: b/ra5054/ra5054.3d b/ra5054/ra5054.sgml RA5054 FA IU-1916/12(16)7 1916/11(16)7 () RA5054 PROOFS B:FA:2019:75:4:0:0–0

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140



Krishna, R. M. & Gupta, S. K. (1994). Bull. Magn. Reson. 16, 239–291.
Krivovichev, S. V. (2012a). Z. Kristallogr. 227, 575–579.
Krivovichev, S. (2012b). Acta Cryst. A68, 393–398.
Krivovichev, S. V. (2013a). Mineral. Mag. 77, 275–326.
Krivovichev, S. V. (2013b). Microporous Mesoporous Mater. 171, 223–

229.
Krivovichev, S. V. & Chernyat’eva, A. P. (2016). Glass Phys. Chem. 42,

327–336.
Krivovichev, S. V. & Filatov, S. K. (2001). Crystal Chemistry of
Minerals and Inorganic Compounds with Complexes of Anion-
Centered Tetrahedra. St Petersburg: St Petersburg University Press.

Krivovichev, S. V., Filatov, S. K. & Vergasova, L. P. (2013). Mineral.
Petrol. 107, 235–242.
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