
Year 1999 Olympiad

Level A

Problem 1. Compare the fractions x = 111110
111111 , y = 222221

222223 , and z = 333331
333334 ,

and arrange them in ascending order.

Problem 2. Show how to cut any quadrilateral into three trapezoids. (A
parallelogram is also considered a trapezoid.)

Problem 3. Find four pairwise distinct positive integers a, b, c, and d for
which the numbers a2 + 2cd + b2 and c2 + 2ab + d2 are perfect squares.

Problem 4. Annie has 500 dollars on her bank account. The bank allows
only two kinds of operations: withdrawing $300 or adding $198. What is
the largest sum that Annie can take from her account if she has no other
money?

Problem 5. In a right triangle ABC, the midpoint of the hypotenuse AC
is labeled O. Points M and N are chosen on the legs AB and BC so that
\MON = 90◦. Prove that AM2 + CN2 = MN2.

Problem 6. Each participant in a chess tournament played each other
twice: once as white and once as black. The final scores of all the play-
ers were the same. (A win is worth one point, a tie half a point, and a loss page 41

zero points.) Prove that at least two competitors won the same number of
games playing white.

Level B

Problem 1. Two numbers are written on a blackboard in a laboratory. Ev-
ery day at noon a researcher erases both numbers and writes their arithmetic
and harmonic means instead. The numbers written on the blackboard on
the morning of the first day were 1 and 2. Find the product of the numbers
written on the blackboard at the end of the 1999th day. (The arithmetic
and harmonic means of two numbers a and b are

a + b

2
and

2
1
a + 1

b

,
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respectively.)

Problem 2. Two players play the following game: the first writes one letter
A or B per turn, from left to right, starting from nothing; the second player,
after each play by the first, can either pass or interchange any two letters
already written. When both players have had 1999 turns each, the game is
over.

Can the second player ensure that the final string is a palindrome no
matter what the first player does? (A palindrome is a string that reads the
same from left to right or from right to left.)

Problem 3. The diagonals of a parallelogram ABCD meet at a point O.
The circle passing through A, O, and B is tangent to the line BC. Prove
that the circle passing through the points B, O, and C is tangent to the line
CD.

Problem 4. Find all positive integers k such that the number

1 . . . 1

k
︷ ︸︸ ︷

2 . . . 2
︸ ︷︷ ︸

2000

− 2 . . . 2
︸ ︷︷ ︸

1001

is a perfect square.

Problem 5. The incircle of a triangle ABC, for which AB > BC, touches
the sides AB and AC at P and Q, respectively. The midline parallel to AB
is labeled RS, and it intersects PQ at T . Prove that T lies on the bisector
of the angle B of the triangle.

page 42

Problem 6. A sports competition has n scored events and 2n participants. ∗
The first event eliminates the bottom half the participants, according to the ∗∗
scores obtained; the second eliminates half of the remaining ones (a quarter
of the total), and so on, until only an overall winner is left.

Suppose a ranking of expected performance is made for each event sepa-
rately, prior to the start of the competition. A contestant is called a potential ∗
winner if, for some ordering of the events and assuming the expected ranking
holds true, that contestant will win the tournament.

(a) Prove that it is possible for 2n−1 contestants to be potential winners.
(b) Prove that it is not possible for more than 2n − n contestants to be

potential winners. ∗
(c) ⋆ Prove that it is possible for exactly 2n−n contestants to be potential

winners.

Level C

Problem 1. It is known that (a + b + c)c < 0. Prove that b2 > 4ac.

Problem 2. Two circles meet at points P and Q. The third circle, centered
at P , meets the first one at points A and B, and the second one at points
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C and D (see figure). Prove that the angles AQD
and BQC are equal.

Remark. To avoid having to consider numerous cases,
at the Olympiad the problem was proposed only for
the configuration shown in the figure. Nonetheless,
the statement remains true for other cases.

A

B C

D

P

Q

Problem 3*. Find all the pairs of positive integers x, y such that x3 + y
and y3 + x are divisible by x2 + y2.

Problem 4*. A disk is divided by 2n radii into 2n congruent sectors, n of
them blue and n red. Two sectors, blue and red, are chosen at will. Starting
with the chosen blue sector, the numbers from 1 to n are written in the blue
sectors counterclockwise. Similarly, starting with the chosen red sector, the
numbers from 1 to n are written in the red sectors clockwise. Prove that page 43

that there is a half-disk that contains all the numbers from 1 to n.

Problem 5. A grasshopper jumps along the interval [0, 1]. From a point x
it can jump either to x/

√
3 or to x/

√
3 + (1 − 1/

√
3). A point a is chosen

on the interval [0, 1]. Prove that, starting from any point, the grasshopper
can, after a number of jumps, reach a point at a distance of no more than
1

100 from a.

Problem 6*. The numbers 1, . . . , 1999 are written around a circle in some
order; then the sum of the products of all sets of 10 consecutive numbers is
computed. Find the arrangement for which this sum is the greatest.

Level D

Remark. At the Olympiad, problems 5–7 were scored and the best two numbers ∗
were added to the scores of problems 1–4.

Problem 1. Let a, b, c be the sides of a triangle. Prove the inequality

a2 + 2bc

b2 + c2
+

b2 + 2ac

c2 + a2
+

c2 + 2ab

a2 + b2
> 3.

Problem 2. A plane convex figure is bounded by
two line segments, AB and AC, and an arc of circle
BC (see figure).

(a) Construct a line that bisects the perimeter of the figure.
(b) Construct a line that bisects the area of the figure.

A B

C

Problem 3*. The faces of a regular octahedron are colored white or black.
Any two faces that share a common edge are of different colors. Prove that
the sum of distances from any point inside the octahedron to the planes of
the white faces is equal to the sum of its distances to the planes of the black
faces.
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Problem 4. A square meadow contains a round clearing. A grasshopper is
hopping around in the meadow. Before each jump it chooses a vertex of the
square and jumps exactly halfway toward it. Can the grasshopper always
arrange to land in the clearing after a number of jumps, no matter where it
starts?

Problem 5. A graph is a set of points, called nodes, some of which are page 44

connected by lines, called edges; each edge connects exactly two nodes. A
coloring of the nodes is said to be regular if no two nodes of the same color
are connected by an edge. A certain graph is regularly colored in k colors
and cannot be regularly colored in fewer colors. Prove that there is a path
in this graph that visits nodes of all k colors, each of them once.

Problem 6*. Solve the equation (1 + nk)l = 1 + nm in positive integers,
where l > 1.

Problem 7. Prove that the first digits of the numbers of the form 22n

form
a nonperiodic sequence.



Year 1999 Olympiad

Level A

1. x < z < y. 3. For example, a = 1, b = 6, c = 2, d = 3. 4. $498.

Level B

1. 2. 2. Yes. 4. k = 2.

Level C

3. x = 1, y = 1. 6.

1999 19971998

5

3
12

4

6

is the only solution, apart from rotations ∗
and reflections.

Level D

4. Yes, it can. 6. Unique solution: n = 2, k = 1, l = 2, m = 3. ∗



Year 1999 Olympiad

Level A

1. Consider the numbers 1 − x, 1 − y, and 1 − z.
3. If ab = cd, then a2 + 2cd + b2 and c2 + 2ab + d2 are perfect squares.
4. Both 300 and 198 are divisible by 6.
5. Consider a point symmetric to N with respect to O.
6. Otherwise there is a participant who won all the games as white and one
who won no games as white.

Level B

1. The product of the numbers on the blackboard does not change.
2. Try to arrange it so that the after 1001 moves the last three letters form ∗
a palindrome.
3. Use the theorem about the angle between a tangent and a chord.
4. A perfect square ends in an even number of zeros; the perfect square
closest to n2 is n2 − 2n + 1.
5. Prove that ST = BS.

Level C

1. If f(x) = ax2 + bx + c, then a + b + c = f(1) and c = f(0).
3. x(x2 + y2) − (x3 + y) = y(xy − 1).
4. Consider two equal numbers with the smallest distance between them.
5. Both maps defined by the grasshopper’s jump contract the interval [0, 1]
by a factor of

√
3.

Level D

1. Apply the triangle inequality.
2. Consider the midpoint of the arc BC.
3. The planes containing white faces bound a regular tetrahedron. ∗ removed rest of hint
4. Divide the square into 4n small squares and prove by induction that the
grasshopper can hit any of them. page 87
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5. If, in a regular coloring, we reassign color 1 to the nodes of color 2 not
connected with nodes of color 1, the entire coloring remains regular.
6. Use the binomial formula.
7. Consider the half-open intervals [0, lg 2), . . . , [lg 9, 0) on a circle of length 1.
The first digit of 2k is determined by the interval that contains the fractional
part of lg 2k = k · lg 2.



Year 1999 Olympiad

Level A

Problem 1. Consider the numbers

1 − x =
1

111111
, 1 − y =

2

222223
, 1 − z =

3

333334
,

and their reciprocals

1

1 − x
= 111111,

1

1 − y
= 1111111

2 ,
1

1 − z
= 1111111

3 .

Since 1/(1−x) < 1/(1−z) < 1/(1−y), and all three of these numbers are ∗
positive, we obtain 1 − x > 1 − z > 1 − y. Thus, x < z < y.

Problem 2. The solution is shown in the figures on the next page. How-
ever, to make it rigorous, we must do some work. (At the Olympiad, even
solutions without rigorous explanations were accepted by the graders.) page 233

Let ABCD be an arbitrary quadrilateral. It has two neighboring internal I don’t understand why
the original considered the

nonconvex case separately.
angles whose sum is at least 180◦, because

(\A + \B) + (\C + \D) = 360◦.

(This is true even for nonconvex quadrilaterals.) Hence one of the sums in
parentheses is at least 180◦. We may assume, by relabeling if necessary, that
\A + \B ≥ 180◦.

If this sum equals 180◦, then BC ‖ AD and ABCD is a trapezoid. Any
two cuts parallel to the bases then solve the problem. See the left diagram
in the figure.

A

B C

D A

B

C

D

M

N

L

K

ℓ

α

A

B

C

D

M

N

L

K

ℓ

α

Next, suppose \A+\B > 180◦. Consider the line ℓ passing through the
point B parallel to AD, as in the middle and right diagrams above. (The
rightmost diagram illustrates the case of a nonconvex quadrilateral.)
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Let α be the angle formed by ℓ and the side AB, and situated opposite
angle A relative to the parallel lines ℓ and AD. Then α = 180◦−\A < \B,
where the equality holds because interior opposite angles are supplementary.
Therefore, the line ℓ goes inside the quadrilateral, and so, upon going out,
it intersects the side CD at a certain point L.

Now draw a line parallel to CD and intersecting the segments AD and
BL. Suppose this line intersects the side AD at K, and the segment BL at
M . If we now draw the line through M parallel to BC until it meets the ∗

removed “this ...
done”

segment CL at a point N , we will have cut our quadrilateral into trapezoids ∗
AKMB, KDNM , and CNMB.

Problem 3. It suffices to choose the numbers so that the product of the page 234

first two is equal to that of the last two, ab = cd; indeed, in this case, we
have

a2 + 2cd + b2 = a2 + 2ab + b2 = (a + b)2,

c2 + 2ab + d2 = c2 + 2cd + d2 = (c + d)2.

Thus, we only need to find a number n that can be represented as the ∗
removed “see also
Fact 10”.

product of two different factors in two different ways: n = ab = cd. For
example, we can take the number 6 = 1 · 6 = 2 · 3.

Problem 4. Since 300 and 198 are divisible by 6, Annie can withdraw only
multiples of 6 dollars (see Fact 5). The largest multiple of 6 not exceeding
500 is 498.

Let’s see how to withdraw 498 dollars. After the following operations:
500−300 = 200, 200+198 = 398, 398−300 = 98, 98+198 = 296, 296+198 =
494, the sum on the account decreases by 6 dollars.

Having repeated this procedure 16 times, Annie will have withdrawn 96
dollars. Then she can take out 300, deposit 198, and take out 300 again to
end up with 498 dollars.

Problem 5. Denote by N ′ the point symmetric to N with respect to O. The
triangles ONC and ON ′A are congruent by the SAS property. In addition,
N ′AM is a right angle, because

\N ′AM = \N ′AO + \MAO = \ACB + \BAC = 90◦.

Then, by the Pythagorean Theorem,

AM2 + CN2 = AM2 + AN ′
2

= MN ′
2
.

Therefore, it remains to prove that MN ′ = MN . But this
equality follows from the fact that the right triangles N ′OM
and NOM are congruent by the congruence of their legs.

A

BC

O M

N

N ′

Problem 6. Suppose there were n participants in the tournament. The page 235

total number of games played was therefore n(n−1), and for each one of
them, one point was awarded in total. Thus the final scores of the players,
being all the same, must equal n − 1 points.
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Each participant played white in n−1 games, and the number of wins
for a given player among his or her games played as white must be one of the
numbers 0, . . . , n−1. Suppose that the statement of the problem is not true:
each player won a different number of games while playing white. These
different numbers then must take all the n available values 0, 1, . . . , n − 1.
Let A be the player who won n− 1 games as white, and B the one who won
no games as white.

Who won the game between them in which A played black? A scored
n−1 points playing white, and so won no games playing black. In particular,
B won when playing white against A. On the other hand, we know that B
won no games playing white, so we have a contradiction.

Level B

Problem 1. On the 1999th day the product of the numbers on the black-
board will still be the same as on the first day! This product does not change
from day to day:

a + b

2
· 2

1/a + 1/b
=

a + b

2
· 2ab

a + b
= ab.

Problem 2. Here is the strategy of the second player. This player skips
the first 1000 moves. Her k-th move after that is made so the last 2k+1
letters form a palindrome. Let’s prove by induction on k (see Fact 24) that
this is always possible.

For k = 0, this is obvious. Suppose that after 1000+(k−1) moves by ∗
the second player the last 2k−1 letters form a palindrome. If the next letter
added by the first player, which is in position 1000+k, coincides with the
one in position 1000−k, the second player has nothing to do.

If the (1000+k)-th and (1000−k)-th letters are different, one of them
also differs from the letter in the 1000th place. In this case, the second
player exchanges it with the 1000th letter. This does not destroy the ealier page 236

(2k−1)-letter palindrome, because the middle letter has no match. Now the
last 2k+1 letters form a palindrome.

After 1999 moves—that is, when k = 999 —the entire word becomes a
palindrome.

Problem 3. The angle between a tangent and a A B

CD

O

chord drawn from the point of contact equals
half the measure of the corresponding arc (see ∗ moved from below
Fact 15); hence \CBO = \BAC. At the same
time we have \BAC = \ACD, because alter- ∗ for layout
nate interior angles between two parallels are
equal. Thus \CBO = \OCD. Applying the converse of the theorem about
the angle between a tangent and a chord, we see that the line CD is tangent
to the circle passing through the points B, O, and C.
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Remark. The parallelogram considered in the problem is such that the ratio of the
lengths of the diagonal BD and the side CD is equal to

√
2. This property

can be derived from the similarity of the triangles BCD and COD. Another
consequence of this similarity is the fact that the midpoints of its sides are
vertices of a parallelogram similar to the given one.

Problem 4. Set n = 1000. Consider two cases (see Fact 11):
(a) k > n. Then

1 . . . 1

k
︷ ︸︸ ︷

2 . . . 2
︸ ︷︷ ︸

2n

− 2 . . . 2
︸ ︷︷ ︸

n+1

= 1 . . . 1
︸ ︷︷ ︸

2n−k

2 . . . 2
︸ ︷︷ ︸

k−(n+1)

0 . . . 0
︸ ︷︷ ︸

n+1

.

This number ends in n + 1 = 1001 zeros. But the number of zeros at the
end of the decimal representation of a perfect square must always be even!
Thus this number is not a perfect square.

(b) k ≤ n. Then page 237

1 . . . 1

k
︷ ︸︸ ︷

2 . . . 2
︸ ︷︷ ︸

2n

− 2 . . . 2
︸ ︷︷ ︸

n+1

= 1 . . . 1
︸ ︷︷ ︸

2n−k

0 . . . 0
︸ ︷︷ ︸

k

− 2 . . . 2
︸ ︷︷ ︸

n+1−k

0 . . . 0
︸ ︷︷ ︸

k

= 10k(1 . . . 1
︸ ︷︷ ︸

2n−k

− 2 . . . 2
︸ ︷︷ ︸

n+1−k

). (1)

This number ends in k zeros. As we explained above, this number can be a
perfect square only if k is even. Set l = k/2.

Clearly, the number in (1) is a perfect square if and only if

A = 1 . . . 1
︸ ︷︷ ︸

2n−2l

− 2 . . . 2
︸ ︷︷ ︸

n+1−2l

is a perfect square.
Notice that

A =
1
9
· 9 . . . 9
︸ ︷︷ ︸

2n−2l

−2
9
· 9 . . . 9
︸ ︷︷ ︸

n+1−2l

=
1
9

(
102n−2l − 1 − 2(10n+1−2l − 1)

)
;

see Fact 11. Let B = 9A. Then A is a perfect square if and only if B is.
Write B as

B = 102n−2l − 2 · 10n+1−2l + 1 = (10n−l)2 − 2 · 10n−l · 101−l + 1.

For l = 1, the right-hand side of this equality coincides with the square
of a difference:

B = (10n−1)2 − 2 · 10n−1 + 1 = (10n−1 − 1)2.

Now suppose that l > 1. We remark that if X = Y 2 is a perfect square
(with Y > 0), the perfect square closest to X is (Y − 1)2 = Y 2 − 2Y + 1.
That is, if a number Z satisfies

Y 2 − 2Y + 1 < Z < Y 2,
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then Z is not a perfect square. We apply this to Y = 10n−l and Z = B.
Clearly, Z < Y 2. In addition,

Z = (10n−l)2 − 2 · 10n−l · 101−l + 1 > (10n−l)2 − 2 · 10n−l + 1.

By the remark, this number cannot be a perfect square; therefore, only l = 1
satisfies our requirement, implying that k = 2.

Problem 5. Denote the lengths of the sides AB, BC, and AC
by c, a, and b, respectively. Assume for definiteness that R page 238

lies on AC and S on BC. Then (see the remark)

RQ = |RC − QC| =
∣
∣
∣
b
2
− a+b−c

2

∣
∣
∣ =

c−a
2

.

Since △TRQ is similar to the isosceles triangle
PAQ, we have RQ = RT . Therefore, B

A

CS

T
Q
R

P

ST = RS − RT = RS − RQ =
c
2
− c−a

2
=

a
2

= BS.

It follows that TSB is an isosceles triangle, and \SBT = \STB = \TBA,
which means that BT is the bisector of the angle ABC.

Remark. In any triangle, the distance from a vertex to the tangency point of the
incircle with either side incident on that vertex is equal to p− a, where p is the
semiperimeter and a is the length of the opposite side.

Proof. Let the incircle touch the sides AB, BC, and AC at C ′, A′, and B′, re-
spectively. The lengths of the two tangents to a circle drawn from the same point
are equal, so the triangle’s perimeter can be written as

2AB′ + 2BA′ + 2A′C = 2AB′ + 2BC.

Our statement follows readily. ˜

Problem 6. Each part of this problem is solved by induction (see Fact 24),
but the complexity of the reasoning increases sharply. To streamline the
exposition, we define an (k, 2n)-ranking to be a set of rankings of 2n players ∗
in k events: in other words, an array of k columns, each corresponding to ∗
one event and ranking the 2n players according to how well they’re expected
to perform in it.

The typical situation, then, is this: given an (n, 2n)-ranking and some
player, can the events be scheduled in such an order that the player wins
the competition — assuming, of course, that the (n, 2n)-ranking is accurate?

Part (a) uses induction on n. The base of induction, with n = 1, is obvious:
the winner of the single event is one-half of the two players.

Suppose we have solved the problem for an n-event competition, so we
have an (n, 2n)-ranking Cn admitting 2n−1 potential winners. After adding
a new event, we must describe an (n+1, 2n+1)-ranking Cn+1 admitting 2n

potential winners. We do this as follows.
First divide the 2n+1 players into two equal groups A and A′. The

defining conditions for Cn+1 are: page 239
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(1) In both groups, the ranking with respect to the old events is given by
the (n, 2n)-ranking Cn.

(2) Any member of A′ ranks higher in the new event than any member
of A, whereas in the old events any member of A ranks higher than
any member of A′.

(3) The ranking of members of A with respect to the new event is the same
as the ranking for some fixed old event, which we denote by α. (The ∗
ranking of members of A′ in the new event is arbitrary.)

Now, if we start the competition with the new event, only members of
A′ will remain. By the induction hypothesis, half this group are potential
winners.

If we start the competition with event α, only members of A will remain.
We claim that half of them are potential winners as well. By the induction
hypothesis, for half the members of A we can find a schedule of events ∗ multiple times
allowing them to become winners. But this includes the event α, which has
already taken place! To fix this, we replace event α in the schedule by the
new event and use the fact that the ranking within A is the same for the
new event as for α.

Thus, half of the players in A, as well as half of those in A′, are potential
winners. This completes the induction step.

(b) In this case we fix n and an (n, 2n)-ranking. To prove there are n players
who are not potential winners, we will find inductively for each event a
different player who gets beaten either before or in this event, irrespective
of the schedule of events. ∗∗

For the induction we must imagine the n events ordered in a certain way,
once and for all. We will call this their alphabetical order. This has nothing
to do with the scheduling order.

Base of the induction. For the alphabetically first event α, we ∗
simply take the player rated lowest in α. This person cannot stay past this ∗
event, regardless of when it takes place.

Induction step. Suppose that we have selected a set Ak = {a1, . . . , ak}
of players such that ai leaves after the (alphabetically) i-th event or earlier.

Of the remaining players, let ak+1 be the lowest-rated in the alphabet-
ically (k+1)-st event. We prove that ak+1 leaves right after this event or
earlier, irrespective of the schedule of events.

Suppose the alphabetically (k+1)-st event is the r-th in the schedule,
and that w players from the set Ak have left after the first r−1 events. In
the r-th event, 2n−r players must leave. Therefore, ak+1 can only go on to page 240

the next event if 2n−r ≤ k−w (since only k−w of the remaining players ∗
can be weaker than ak+1 in (k+1)-th event). But after the alphabetically
(k+1)-st event, at least k−w of the k-th alphabetically first events are still
to be held. Therefore, k−w ≤ n−r < 2n−r, where we have used that 2l > l ∗
for all l. This contradiction concludes the induction step.
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(c) To perform the induction in this case we need an auxiliary construction,
also inductive. It involves a ranking of 2n players in n+1 events, that is, a
(n+1, 2n)-ranking. We borrow the notion of alphabetical order from (b). ∗
Lemma 1. There exists an (n+1, 2n)-ranking En such that every player but
one is a potential winner in some n-event subcompetition that includes the
alphabetically last event. The exception is the player ranked lowest in this
event.

Before proving this statement, we explain how it is used to solve part (c)
of the problem. We use induction on n. The base of induction, for n = 1, is
just as in part (a).

For the induction step, suppose that we have an (n, 2n)-ranking Dn such
that 2n−n players are potential winners. We add a new (alphabetically last)
event and describe an (n+1, 2n+1)-ranking that continues the induction.

The construction is similar to the one used in item (a). We again divide
the 2n+1 players into two groups of 2n players, A and A′. The defining ∗
conditions for Dn+1 are:

(1) The members of A′ are ranked with respect to the old events as in the
(n, 2n)-ranking Dn.

(2) Any member of A′ ranks higher in the new event than any member of
A, whereas in the old events any member of A ranks higher than any
member of A′.

(3) The members of A are ranked according to En, the (n+1, 2n)-ranking
provided by the lemma.

If we start our (n+1)-athlon with the new event, only members of A′ page 241

will remain. By the induction hypothesis, 2n−n players from this group are
potential winners.

Next we show that a member of A that is potential winners in the
ranking En is also a potential winner in the ranking Dn+1. Given such a
player, Lemma 1 says that there is a schedule of n events, including the
new one, which makes this player win. Let α be the event omitted in this
schedule. If we hold α first, it eliminates members of A′, leaving those of A;
now we play out the schedule of n events that ensures the win of this player
in the ranking En.

Thus, there are 2n−n potential winners in group A′ and 2n−1 potential
winners in A. This gives 2n−n+2n−1 = 2n+1−(n+1) potential winners in
the ranking En+1, as needed.

The proof of the lemma also involves induction. In fact we need a slightly
stronger statement (the change is highlighted): ∗
Lemma 2. There exists an (n+1, 2n)-ranking En such that every player but
one is a potential winner in some n-event subcompetition that includes the
alphabetically last event. The exception is the player ranked lowest in this
event; this player, called the sure loser, nonetheless can progress ∗
to the final.
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Base of the induction. We take for E1 the (2, 2)-ranking that says
that the winner in the alphabetically first event, denoted by α, is the loser ∗
in the second. ∗

Induction step. We construct an (n+2, 2n+1)-ranking En+1, assuming
the existence of En, where we have removed the alphabetically last event. ∗
Divide the 2n+1 players into two equal groups, B and B′. The defining
conditions for En+1 are:

(1) For 2 ≤ j ≤ n+2, the members of B are ranked with respect to the ∗
alphabetically j-th event in the same order as they are with respect to ∗
the (j−1)-st event in En. The same is true for members of B′.

(2) Any member of B′ ranks higher in event α than any member of B, ∗ several times
whereas in the other events any member of B ranks higher than any
member of B′.

(3) In B, the sure loser according to En is ranked first in α.

If we start with α, we have 2n−1 potential winners from B′, and we can
organize the competition so that the sure loser from B′ reaches the final, by
the induction hypothesis. page 242

If we do not hold event α at all, then all players from B′ leave after
the first event in the schedule, and then n events are held. According to ∗
the induction hypothesis, by choosing the first event and the sequence of
subsequent events, we can guarantee that any of 2n−1 members of B wins.

We still have to explain how to arrange a win for the sure loser from B.
To this end, we start with the event that is the last in the schedule of events
that lets the sure loser reach the final. After this round only members of ∗
group B remain. Then we proceed in the sequence that leads the sure
loser to the final, and we hold event α last. The sure loser then wins the ∗
competition.

Level C

Problem 1. First solution. If a = 0, then b 6= 0 (otherwise c2 < 0). Then
b2 > 0 = 4ac and we’re done.

If a 6= 0, we consider the quadratic trinomial f(x) = ax2 + bx + c. We
have f(1) = a + b + c and f(0) = c. Hence, by assumption,

f(1)f(0) = (a + b + c)c < 0.

It follows that one of the numbers f(1) and f(0) is negative and the other
is positive. Therefore, the parabola y = f(x) intersects the x-axis, which
means that the discriminant of this quadratic polynomial is positive: b2 −
4ac > 0.

Second solution. We can avoid the consideration of two cases. Consider the
quadratic polynomial g(x) = x2 + bx + ac. It follows from the assumption
that g(c) = c2 + bc + ac = (a + b + c)c < 0. Since the branches of the ∗ removed “The... c”
parabola y = g(x) are directed upward and g(c) < 0, this parabola meets the
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x-axis at two points, i.e., it has two distinct roots. Hence the discriminant
of this quadratic polynomial is positive: b2 − 4ac > 0. ∗
Problem 2. The triangles APB and DPC are isosceles, since AP , BP ,
CP , and DP are radii of the third circle. Denote the angles at their bases
by \ABP = \BAP = α and \DCP = \CDP = β. The quadrilaterals
ABQP and DCQP are cyclic; hence the angles page 243

AQP and ABP both equal α, while \DQP and
\DCP equal β (see figure).

α ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ

A

B C

D

P

Q

We have

\AQD = \AQP + \DQP = α + β.

Further, \BQP = π − \BAP = π − α, similarly,
\CQP = π − β. Thus,

\BQC = 2π − \BQP − \CQP = α + β.

Problem 3. We first prove that x and y are coprime. Suppose otherwise;
that is, let x and y be divisible by some prime number p. Let a ≥ 1 and b ≥ 1
be the exponents of p in the prime factorizations of x and y, respectively.
Without loss of generality we can assume that a ≥ b. Then the exponent of
the highest power of p that divides x3 + y is equal to b (since x3 is divisible
by p3a and hence by pb+1, whereas y is divisible by pb and not by pb+1).
On the other hand, x2 + y2 is divisible by p2b. It follows that x3 + y is not
divisible by x2 + y2. This contradiction shows that x and y are coprime.

Further, x(x2 + y2)− (x3 + y) = y(xy − 1) must be divisible by x2 + y2.
Notice that y and x2 + y2 cannot have a common factor greater than 1
(because x and y are coprime); therefore, xy − 1 is divisible by x2 + y2 (see
Fact 9). But this is impossible whenever xy − 1 > 0, because x2 + y2 ≥ ∗
2xy > xy − 1.

Problem 4. The numbers will be called red and blue according to the colors
of sectors in which they are written. All the numbers are paired up with
their equals; we take a pair of equal numbers that are closest, meaning that
the number of sectors in the smaller arc ω lying strictly between the two
numbers is minimal. page 244

Only the cyclic order of the numbers from 1 to n matters in the problem;
a cyclic shift of the numbering through the same amount of sectors for both
red and blue numbers replaces the problem by an equivalent one. Therefore,
we can assume that the chosen pair consists of 1s.

We can also assume that the arc ω between them
runs counterclockwise from the red sector to the blue
one; see the figure. Further, all the sectors in ω, if
there are any, have the same color. Indeed, if both ∗
colors are represented, the red and the blue n sectors
are both in ω; but then this pair is closer together than
the pair of 1s, contrary to our assumption.

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n1
n

1

n−1
n1

n

ω



190 SOLUTIONS

Suppose that all the numbers on this arc (if there are any) are blue; the
case of red numbers is similar. Draw the diameter separating the blue 1
from its clockwise neighbor (this is either blue n or red 1); we will show that ∗
this is the diameter we need. Indeed, consider the half-disk containing the
blue 1. The blue numbers in this half-disk read up, counterclockwise, from
1 through some positive integer l. Now imagine reading the red numbers,
also counterclockwise. Since there are no red numbers in the arc ω, the first
number in our half-disk is n. It follows that the red numbers we read are
the numbers n, n − 1, . . . , n − m, where m is also a positive integer.

Thus, there are l blue and m+1 red numbers in this half-disk. Since all
in all there are n numbers in the half-disk, we have l + (m + 1) = n; that is,
n−m = l+1. Therefore, the numbers in the half-disk are the blue numbers
from 1 to l and the red numbers from n to l+1. Together these amount to
all the numbers from 1 to n, each taken once.

Problem 5. Let

f : [0, 1] → [0, 1], f(x) = x/
√

3 and

g : [0, 1] → [0, 1], g(x) = x/
√

3 + (1 − 1/
√

3)

be the functions describing the jumps of the grasshopper. The range of f page 245

is the interval [0, 1/
√

3], while the range of g is [1 − 1/
√

3, 1]. Each of these
intervals is of length 1/

√
3 and together they cover all of [0, 1].

Let n be a positive integer. Consider all possible compositions of func-
tions of the form

h1(h2(. . . (hn(x)) . . . )) : [0, 1] → [0, 1],

where each function hi is either f or g. It can be readily seen that the range
of any of these functions is an interval of length (1/

√
3)n. We’ll prove by

induction on n (see Fact 24) that these intervals cover all of [0, 1]. For n = 1
this statement has already been verified. Suppose that the ranges of all
possible functions h1(h2(. . . (hk−1(x)) . . . )) cover [0, 1]. But the range of a
particular h1(h2(. . . (hk−1(x)) . . . )) is covered by the ranges of the functions
h1(h2(. . . (hk−1(f(x))) . . . )) and h1(h2(. . . (hk−1(g(x))) . . . )). This proves
the statement.

Now suppose that a point a is chosen on the interval [0, 1]. Consider
the interval (a − 0, 01, a + 0, 01). We show that the grasshopper can hit

it. Choose n large enough to satisfy the inequality (1/
√

3)n < 0, 01 (for
instance, n = 10). As we have proved, it is possible to find a function
h1(h2(. . . (hn(x)) . . . )) whose range contains a. Then the entire range of this
function —an interval of length (1/

√
3)n — lies inside (a − 0, 01, a + 0, 01).

This means that starting anywhere in [0, 1] the grasshopper will hit the
interval (a − 0, 01, a + 0, 01) after making the jumps corresponding to the
functions hn, hn−1, . . . , h1.

Remarks. (a) Compare with Problems 99114 and 99117. REF 99114

REF 99117
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(b) This problem, as well as Problem 99114, are based on properties of contracting
REF 99114mappings. A differentiable mapping is said to be contracting if its derivative

has absolute value everywhere less than some fixed number δ < 1.
Let f : [0, 1] → [0, 1] and g : [0, 1] → [0, 1] be two contracting mappings, and

let x be a point on the interval [0, 1]. It is natural to ask: What can we say about
the position of this point after it undergoes a large number of the consecutive
mappings f and g? More exactly, consider an infinite sequence of mappings f
and g, and let xn be the image of x after the first n mappings. page 246

Since the mappings are contracting, limn→∞ xn does not depend on x. How-
ever, it depends on the order in which the mappings f and g are applied.

If the ranges of the mappings f and g cover the entire interval [0, 1], then xn

can approach any point in the interval [0, 1] (in fact, this is just the statement
of our problem). Otherwise, the set of possible limits is like the Cantor set. For
instance, the functions f(x) = 1

3x and g(x) = 1
3 (x + 2) generate exactly the

usual Cantor set.

Problem 6. Lemma. Suppose that 1999 distinct positive numbers a1, a2, ∗
. . . , a1999, are arranged around a circle, and that a1 > a1998. For all i =
2, 3, . . . , 999, we perform the following operation: the numbers ai and a1999−i

are swapped if ai < a1999−i, and stay in place otherwise. If at least one pair is
swapped, then the sum of all products of ten consecutive numbers increases.

Proof. Consider two groups of 10 numbers in a row, arranged symmetri-
cally: ai, . . . , ai+9 and a1999−i, . . . , a1990−i. Take the sums of the products of
the numbers in either group. We first show that this sum can never decrease.

Consider the product z of the numbers appearing in both groups. (If
there are no such numbers, we set z = 1.) Also let x and x′ be the products
of the numbers that belong only to the first or only to the second group,
respectively, and that don’t get swapped; while y and y′ are the products
of the numbers that belong only to the first or only to the second group
and do get swapped. (Again, if no numbers satisfy a specified condition, the
corresponding product is defined as 1.)

The sum of products of numbers in the two groups before the operation
is s1 = zxy + zx′y′; after the operation, it is s2 = zxy′ + zx′y. We have
s1 − s2 = z(x − x′)(y − y′). It is easily seen that x′ ≤ x and y′ ≥ y. Hence
s1 − s2 ≤ 0. page 247

Now we consider all the numbers again. We show that if some of the
numbers are swapped when the operation of the lemma is performed, the
difference s1 − s2 is strictly negative for at least one of the symmetric pairs
of groups of 10 numbers. This will imply the lemma.

Clearly, if at least one pair of numbers (in a given group) was swapped,
then y′ > y. And if at least one pair of numbers stayed in place, then x′ < x,
since all the numbers are different. So it suffices to show that we can find
two symmetric groups of ten numbers each for which at least one pair was
swapped and at least one pair was not. But this is obvious, because by
assumption some pair was swapped and the pair (a1, a1998) was not. ˜ ∗



192 SOLUTIONS

To apply the lemma to the problem, we assume that the numbers from 1
through 1999 are placed at the vertices of an 1999-gon, and that the desired
condition is satisfied: the sum of all products of numbers taken 10 in a row
is maximal.

Draw the diameter through some number k. We claim that, for all pairs
symmetric about this diameter, the smaller number lies in one semicircle
and the larger one in the other. Indeed, denote by a1, . . . , a1999 the num-
bers around the circle, starting from the greater of the neighbors of k and
ending with k. Then a1 > a1998, and we can apply the lemma: since the
arrangement is optimal, we cannot increase our sum of products by swap-
ping symmetric numbers, hence all numbers on one side of the diameter are
greater than the corresponding numbers on the other side.

Ignoring rotations and reflections, there is only one arrangement of num-
bers satisfying this property for all diameters. We show this by induction ∗
(see Fact 24). First, 2 must be next to 1; otherwise we can find a diame-
ter separating 2 from 1 and such that the two numbers are not symmetric
about this diameter. Denote by A and B the numbers symmetric to 1 and
2 about this diameter. Then A > 1 and 2 < B, contradicting the claim in ∗
the previous paragraph.

Suppose that we have proved that 1, 2, . . . , 2k, where
1 ≤ k ≤ 998, must be arranged as in the answer, that page 248

is, in the order 2k, 2k−2, . . . , 2, 1, 3, . . . , 2k−1
(say clockwise, for definiteness). Denote by A and B
the numbers following 2k counterclockwise and 2k−1
clockwise; see figure. Suppose that the number 2k+1 is
distinct from A and B. Then let C be the clockwise neighbor of 2k+1.
The number C is distinct from 1, 2, . . . , 2k. The numbers C and 2k−1, as
well as 2k+1 and B are symmetric about the diameter, but C > 2k−1 and
2k+1 < B. This is a contradiction, which means that either A = 2k+1
or B = 2k+1. But the assumption A = 2k+1 immediately leads to a
contradiction: it suffices to consider the diameter which is the symmetry
axis of the numbers 2k and 2k−1. Hence B = 2k+1.

12

2k−12k

A B

2k+1
C

In a similar way we show that A = 2k+2, completing the induction step.

Level D

Problem 1. By the triangle inequality, a > |b− c|. Squaring both sides we ∗
get a2 > (b − c)2. Hence

a2 + 2bc > b2 + c2.

The right-hand side here is positive, so we can divide both sides by it. After
the division, we see that the first term in the inequality we are proving is
greater than 1. The same is true for the other two terms. Therefore, their
sum is greater than 3.
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Problem 2. (a) It is not difficult to construct the midpoint of the broken
line BAC, that is, the point that divides the broken line into two broken
lines of equal length. Clearly, the line joining this point to the midpoint of
the arc is the desired one.

(b) Let D be the midpoint of the given arc. The
shaded caps shown in the figure are clearly congru-
ent. Therefore, it suffices to draw the line through D
bisecting the area of the quadrilateral ABDC. A

B

C

D

E
F

l

Let F be the midpoint of the diagonal BC, and let
l be the line drawn through F parallel to the diagonal AD. For definite-
ness, assume that the line l intersects the segment AC (the case in which l ∗

page 249intersects the segment AB is considered similarly). If E is the intersection ∗
point, then DE is the line to be constructed.

Indeed, the sum of the areas of triangles ABF and BDF is half the area ∗
of ABDC. But this sum is also equal to the area of quadrilateral ABDE, ∗∗
because the triangles AED and AFD have a common side AD and equal
altitudes dropped on this side, and so have equal area.

Problem 3. First solution. The planes containing four faces of the same
color bound congruent regular tetrahedra. To grasp why, imagine a cube
ABCDEFGH and the two regular tetrahedra ACFH
and BDEG. The intersection of these tetrahedra
is a regular octahedron. Indeed, the vertices of
this intersection are the centers of the cube’s faces,
and the centers of a cube’s faces are vertices of a
regular octahedron. (See the figure.)

The black faces of the given octahedron lie on
one tetrahedron, and the white faces on the other.

A

B

C

E

F G

H

DDDDDDDDDDDDDDDDDDDDD

The result in the problem follows from the fact
that the sum of distances from a point in a regular tetrahedron to its faces
is constant and equals three times the volume of the tetrahedron divided
by its face area. To prove this last statement, let A, B, C, and D be the ∗ removed “altitude”
vertices of the tetrahedron. Denote by hA, hB, hC , and hD the distances
from a point O inside the tetrahedron to the planes BCD, ACD, ABD,
and ABC, respectively, and by S the area of any face of the tetrahedron.
Then the volumes of the tetrahedra BCDO, ACDO, ABDO, and ABCO
are equal to 1

3ShA, 1
3ShB, 1

3ShC , and 1
3ShD, respectively. Therefore, the

volume of the tetrahedron ABCD is equal to

S
3

(hA + hB + hC + hD),

which is equivalent to our statement.

Second solution. (Above grade level.) Consider the directed distances from page 250

a point to the face planes. More exactly, if the point and the octahedron are
on the same side of the plane, then the distance is taken with the plus sign
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(so the directed distance for these points is just the ordinary one); otherwise,
the sign is reversed.

For brevity, the distance to the plane containing a face will be called the
distance to that face. We prove a claim stronger than that of the problem:

The sum of the directed distances from any point to the black faces is
equal to the sum of the directed distances to the white faces, even for points ∗
lying outside the octahedron.

The directed distance to a plane is a linear functional in space (see
Fact 25 on page 208). Hence the sum of distances to the faces of a certain
color is also a linear functional. Denote the sum of distances from a point
X to white faces by lw(X) and a similar sum for the black faces by lb(X).
We want to prove that lb − lw = 0. If this were not so, the set of zeros of the
linear functional lb − lw is a plane. But it is readily seen that it vanishes at
all the vertices of the octahedron. Hence lb − lw is identically zero.

Problem 4. Suppose the square has side length 1. Divide each side into 2n

equal segments and draw the lines parallel to the sides through all partition
points. They cut the square into small squares with side length 2−n. If n is
sufficiently large, then one of these small squares will be completely inside
the hole (for instance, for n such that 2−n is less than half the radius of the
hole, we can take the small square containing the center of the hole).

Therefore, it will suffice to prove that for any n the grasshopper can hit
any of the 22n small squares. page 251

We will prove this by induction (see Fact 24). For n = 0 the claim is
trivial. Let us describe the induction step from n to n + 1. Consider a
2−n−1 × 2−n−1 square Q.

A

Cut the initial square into four squares with side
length 1

2 . Without loss of generality we can assume
that Q lies in the bottom left square, whose outer cor- ∗
ner we denote by A (see figure). The dilation with
center A and ratio 2 maps the chosen small square Q
onto a square Q′ with side length 2−n. Clearly, this ∗
is one of the squares obtained by cutting the initial
square into 22n squares with side length 2−n.

By the induction hypothesis, the grasshopper can get into Q′. Now, if ∗
it jumps half the distance to the vertex A, it will hit the target square Q. ∗
Remark. Compare with Problems 99105 and 99117. REF 99105

REF 99117

Problem 5. We number the colors of the nodes from 1 to k. Then we take
the nodes of color 2 not adjacent with nodes of color 1 and reassign them
color 1. The new coloring is regular as well; therefore, it involves k colors.
This means that some of the nodes of color 2 were not recolored; hence they
are adjacent with nodes of color 1.

Next we take the nodes of color 3 not adjacent with nodes of color 2 ∗
(that were not recolored at the first step), and we reassign them color 2. We
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continue in this fashion with all the colors; at the last step we reassign color
k− 1 to certain nodes of color k.

After that, consider any node of color k. It has not been recolored;
therefore, it is adjacent with a node of color k− 1. This node has not been
recolored either: otherwise, its initial color would be k and it would be ad-
jacent to a node of the same color, which is impossible by the assumption of
regularity. Since the last node preserved its initial color after the recoloring,
it is adjacent with a node of color k − 2, and so on. This process eventually
yields a path of length k visiting the nodes of all the k colors that were not
changed.

removed “See also”

Remark. We have, in fact, proved a stronger statement: there exists a path that
visits nodes of all k colors, each color once, in a given order.

Problem 6. First solution. Let p be a prime factor of l. Since nm =
(1 + nk)l − 1, the number nm is divisible by (1 + nk)p − 1 (see Fact 8). But, page 252

by the binomial theorem (see Remark below), we have

(1 + nk)p − 1 = nk p + n2k p(p − 1)

2
+ n3k r,

where r is a nonnegative integer. Dividing both sides by nk, we see that nm

is divisible by

p + nk p(p − 1)

2
+ n2k r.

If n is divisible by p, then this expression is coprime with n, and nm cannot
be divisible by it. Hence p is a divisor of n (see Fact 9). Then ∗

1 + nk p − 1

2
+

n2k

p
r

is a positive integer greater than 1. If k > 1 or p is odd, then the second
term is divisible by n (the third term is always divisible by n); therefore,
the sum is coprime with n, and so is not a divisor of nm. This contradiction
shows that k = 1 and p = 2. Therefore, 2 is the only prime factor of the
number l and l can be written as 2s. ∗

Using the binomial theorem again, we have

nm = (1 + nk)l − 1 = (1 + n)l − 1 = ln +
l(l − 1)

2
n2 + · · · + nl.

After the first, all terms on the right-hand side are divisible by n2. Since
m > 1, it follows that l is divisible by n. Therefore, n, as well as l, is a
power of two. ∗

Since l is even, (1 + n)l − 1 is divisible by (1 + n)2 − 1 = n(n + 2). Since
nm is a power of two, the number n + 2 is also a power of two. Since n and ∗
n + 2 are powers of 2, we see that n = 2.

If l ≥ 4, then (1 + n)l − 1 is divisible by (1 + n)4 − 1 = 80, and cannot
be a power of two. Therefore, l = 2, whence m = 3.
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Outline of second solution. Since 1+nm is divisible by 1+nk, m is divisible
by k for n 6= 1 (see Fact 8). Therefore, replacing nk by n and m/k by m, ∗
we reduce the problem to the case k = 1. Suppose that n is divisible by pt,
but not by pt+1, where p is a prime number (t > 0). Let ps be the greatest
power of p that divides l.

Now use the binomial theorem (see Remark below) to write page 253

ln + C2
l n2 + · · · + nl = nm.

Assume that p 6= 2 or t > 1. One can show that the right-hand side and ∗ and removed earlier
paragraph

all summands except the first are divisible by pt+s+1. The contradiction
obtained shows that n = 2.

Remark. The formulas for (a + b)2 and (a + b)3 are well known. A similar formula
for (a + b)n, for any n, is the subject of the binomial theorem. To write this
formula, we’ll need the notion of combinations. The number of combinations
of n elements taken k at a time is the number of ways of picking k things out
of a set of n different things, without regard to order. This number is denoted
by nCk or

(
n
k

)
, and is sometimes read “n choose k”. We stress that the order

in which the k elements are picked does not matter; in other words, nCk is the
number of k-element subsets in an n-element set.

This number is given by

nCk =
n!

k!(n − k)!
=

n(n − 1)(n − 2) . . . (n − k + 1)

k(k − 1) · · · 2 · 1 .

The binomial theorem (or binomial formula) now says that

(a + b)n =

n∑

k=0

nCkakbn−k

= an + nC1a
n−1b + nC2a

n−2b2 + · · · + nCn−2a
2bn−2 + nCn−1abn−1 + bn.

For this reason the nCk are also called binomial coefficients.

Problem 7. If we think of a circle of length 1 as the interval [0, 1] with
endpoints identified (compare solution to Problem 56.10.4), then the frac- REF 56.10.4

tional part fm of the number log10(2
m) = m log10 2 can be viewed as a point

on this circle. Consider the points

0, log10 2, . . . , log10 9

on the circle and the nine half-open intervals into which they divide the
circle. Denote these intervals by I1 = [0, log10 2), . . . , I9 = [log10 9, 0).

The first digit of the number 2m is equal to s if and only if fm belongs
to the interval Is. For instance, if 2m begins with 7, then

7 · 10l ≤ 2m < 8 · 10l

for a certain positive integer l. The fractional part of m log10 2 is equal to page 254

m log10 2 − l and lies between log10 7 and log10 8.
Suppose that the first digits of 22n

repeat with period k, after some
preperiod of length n0. Then the fractional parts of 2n log10 2 and 2n+k log10 2
hit the same interval Is for any n > n0.
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It can be readily seen that the longest of the intervals is the first one,
and its length is log10 2 < 1

3 .

Step 1. Mark the fractional parts of two positive numbers A and B on the
circle. Suppose these fractional parts are distinct and are not antipodal
points of the circle. Let x be the shorter of the two arcs into which these
points divide the circle. Then the length of one of the arcs joining the
fractional parts of the numbers 2A and 2B is equal to 2x. (Explain why.)

Step 2. Now suppose that the fractional parts of the numbers A and B lie
in the same interval Is, and consider the pairs 2A and 2B, 4A and 4B, ∗
etc. It follows from Step 1 that the length of the shorter arc joining the
fractional parts of a pair is doubled until it becomes greater than or equal
to 1

2 . Therefore, at a certain step, one of the arcs joining the fractional parts

of a pair will become greater than 1
3 , but less than 2

3 . Then these fractional
parts belong to different interval on the circle.

Step 3. Consider the numbers A = 2n0 log10 2 and B = 2n0+k log10 2. These
numbers considered as points on the circle are different and are not antipo-
dal, since log10 2 is irrational (see below). Therefore, we can apply Step 1 to
these numbers, which yields a contradiction with the periodicity assumption.

It remains to prove that log10 2 is an irrational number. If log10 2 = p/q,
then 2p = 10q; this is obviously impossible, by prime factorization.

Remarks. (a) We have in fact proved that if α is not a rational power of ten, the
sequence of the first digits of α2n

is nonperiodic.
On the other hand, if we look instead at the sequence α10n

, it is possible page 255

to find α that is not a rational power of ten and the sequence of first digits is
periodic. For instance, let

log10 α = 0.101001000100001 . . .

(the number of zeros between consecutive ones increases). This decimal is not
periodic; hence α is not a rational power of ten (see Fact 13). But for any n we ∗
have {10n log10 α} < 0.11 < log10 2. Therefore, for all n, the first digit of the
number α10n

is 1! ∗
(b) Problems 99105 and 99114 are about contracting mappings of an interval into REF 99105

REF 99114itself (see the remarks to those probelms). The problem we have just considered
is a problem about expanding mappings.


