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This paper presents an analytical investigation for the velocity relaxation of a test particle coupled to a heat
bath by two different mechanisms: the Brownian dynamics(BD) and the collisional dynamics (CD). Relation
between the parameters of the methods is established. The velocity relaxation spectrum induced by the
coupling in the CD method is shown to be different from the one in the BD method. The difference between
the spectra disappears in the limit y —» O, where y is a mass ratio of the bath atoms and the test particle.
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1 INTRODUCTION

Molecular dynamics (M D) simulations are considered today as an important source of
information on processes in liquids, molecular solutions, and macromolecules. When
simulating a system of particles, for a variety of reasons, some degrees of freedom are
treated explicitly, whereas others are represented only by their stochastic influence on
the former ones (i.e. by a heat bath). Various methods have been proposed for the stochas-
tic coupling of a system under simulation to an external heat bath. They are: Brownian
dynamics (BD) [1,2], Andersen’s method [3], collisional dynamics (CD) [4, 5], and
generalized Langevin dynamics [6, 7]. We have restricted our consideration to the first
three methods, which are relatively simple in implementation. These methods belong to
canonical ensemble MD methods. That is, the average of any property over the trajec-
tory is an approximation to the ensemble average of the property for the canonical
ensemble. But from the dynamical point of view the methods differ from one another as
the fluctuations of a dynamical variable about its average value are simulated differently.
When we are interested in the dynamical property of the simulated system, it is impor-
tant to know which method is preferable for a given problem. Any information concerning
relations between various methods may be useful. Our article presents the simplest case
of one test particle, which allows full analytical comparison of the dynamics simulated
by two methods: the BD and the CD methods. (In this case the Andersen’s method coin-
cides with a particular case of the CD). The dynamics of the test particle is discussed in
terms of time evolution of the velocity distribution function. A comparison is based on
the relations between the parameters of both methods. These relations are found using
an assumption that average force exerted on the particle by the bath in the CD method
coincides with that in the BD method.
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2 DYNAMICS OF TEST PARTICLE COUPLED TO A BATH
BY CD AND BD METHODS

For simplicity, let us consider one test particle constrained to move in one dimension
and coupled to an external bath by means of two different stochastic mechanisms which
are the base of the Brownian dynamics method and collisional dynamics. While not
being coupled to a bath, the particle moves with constant velocity v. A stochastic
coupling turns the velocity v in the stochastic process. The dynamics of the equilibrium
fluctuations of v is intimately related with the evolution of the velocity probability
distribution function(p.d.f) P(v, t) to its equilibrium one P, (v). Further we will describe
the dynamics of the particle in terms of time evolution of the p.d.f. P(v,t).

Collisional Dynamics Coupling

While coupling to a bath according to the CD, the particle with mass m suffers
impulsive collisions with a bath atom, which has the velocity v, chosen at random from
a Maxwellian distribution
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Here m,, is the mass of the bath atom, while T, is the bath temperature. The collisions
occur in accordance with a Poisson process specified by the only parameter 4,— the
mean number of collisions which the particle suffers per unit time (collision frequency).
The probability for precisely n collisions to occur during the time interval [0, ] is

1
g"(t)zm(iot)"exp(—,lot). (1

Between the stochastic collisions the velocity of the particle is constant. The velocity
u after a collision is expressed via the velocity v before the collision by the following
formula

u=(1 —ojv+av,,

(2)

o =2my/(m + myg).

The velocity of the particle is a Markov stochastic process. A kinetic or
master equation for the time evolution of the p.d.f. P(v, t) has the following form [8,9]

A
o

= P(v,t)= J . [(W(z,v)P(z,t)— W(v,2) P(v,t) ] dz
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Here W (v, u) is the transition probability (per unit time) for a v — u transition. W(o, u)
can be found using (2) provided that the velocity of the bath particle is taken from
a Maxwellian distribution. It has the following form

A m 1/2 m
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The equilibrium solution of the Equation (3) is a Maxwellian distribution. Any initial
distribution P,(v) approaches this unique equilibrium distribution P_ (v) as t — oo.
A solution of the Equation (3) is found in the form

2
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where x = v(my/2kzT,)"* is a reduced variable, and y =m,/m is the mass ratio.
A substitution of this function in (3) yields

(1 =w)y(x)=A[Y(x)].

Here the operator A is defined as follows

AlY(x)] = \/—j exp(— (x> +y?) —ply —x) ) (y)dy,

p=(1—7y2)/(4y?.

The values of v under which the solution of (3) exists in the form (4) are connected with

theeigenvalues p of the operator 4 through v = 1 — 1. In order to find the eigenvalue i,
it must be noted that

) x? 1y .2 " ,
Al x"exp —2—}' = 2—,0 exp(—(0.5+ p)x )axn(exp((apx)*)).

This formula can also be expressed as

Y2 k . XZ
A[x exp<—2—?>}=(u1)"|ix"+ Y C:’nx""z"‘}exp<—2—y>, (5)

where i, = a?p = (1 — y)/(1 + y), while k = int(n/2) is an integer part of n/2. Under any
n the coeflicients C) could be obtained at once by the differentiation in the left side of
the Equation (5). Further it is supposed that all C}, are known.
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Let us define the function y,(x) as follows

_ n u Bn n—2m x2 k_ t n 6
Y(x) = x +m§1 "X exp ~2) =int{3 ). (6)

The constants B} can be chosen in such a way that the function ¥,(x) will be an
eigenfunction of the operator 4 corresponding to the eigenvalue y,. That is

1— n
A[lpn]z.unwn’ :un=<r*_—$)’ n=0’1""’w' (7)

Indeed, substituting (6) in (7) and using (5), the following recurrent relations are
obtained, from which the coefficients B}, can be calculated by means of C¥

(1) —(p)" 2 BY =(py)"CY}

m-—1
()" = (u)"*™ By = (' Co + Y, (uy)" " #Cr ¥ B,
i=1
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This system of equations has a unique solution for each 0 <y < 1. Finally, any solution
of the kinetic Equation (3) can be represented in the form

P(v,t)= P (v) + i D,®, (v)exp(— v,t). (8)

Here the eigenvalues v, and the eigenfunctions @, are given by the following relations

)
14y
m 1/2 va m 1/2
P (v)= — 0
a(?) <2nkBTO> ex"( 2kBT0>p"((2kBTO> ”)’ ®)

k
p.(x)=x"+ > Bix"7?", k=int<g>.
m=1

The constants D, are determined by the initial conditions.
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Brownian Dynamics Coupling

In the Brownian dynamics a force, which affects the particle from the bath, consists of
two parts — a systematic friction F, = — mnv with damping constant 5, and a stochas-
tic noise Fg. The random force F¢(t) 1s a Gaussian process with the following properties

(Fs(t)) =0, (Fs(t)Fs(t+ 1)) =2k Tomno(r).

In this case the particle velocity v(t) is a Markov diffusional process. Evolution of the
velocity p.d.f. P(v,t) is governed by the Fokker-Plank equation

0 _ 0 kpT, 0*
atP(v,t)—n{%(vP)+ - a—va(v,t)} (10)

The solution of (10) with an initial condition Py(v) can be represented in the form of
Equation (8) with the following eigenvalues v? and eigenfunctions ®? [10]

B
v, =nn, n=1,...,00,

2 1/2
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Here H (x) are the Hermite polynomial of the order of n.

(11)

3 RELATIONS BETWEEN PARAMETERS

To compare collisional dynamics and Brownian dynamics a connection between the
parameters of these methods should be established. These parameters in the CD
method are m, T,, m,, 4, and in the BD method m, T, n. Therefore an expression for
damping coefficient 5 in terms of 4, and m, is the only needed one. There are several
ways to find this expression. Here we present two ways with the same result, but each of
them is worth by itself.

1. There is an asymptotical relation: the Brownian dynamics approximates the
collisional dynamics in the limit « = 0. This diffusional approximation of the
collisional dynamics can be obtained with the Van Kampen’s method [9] from an
expansion of the master Equation (3) in powers of small parameter «. The first
order approximation yields the second order differential equation for the p.d.f.
P(v,t) instead of the integral one. This equation coincides with the Fokker-Plank
Equation (10) if we set [4]

n=Aiyo. (12)

If the damping constant 5 is fixed, according to (12), the collisional frequency £,
must approach an infinite limit (4, —» o0) as « = 0. This is in agreement with the
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well known condition of physical correspondence for the Brownian dynamics to
frequent collisions with light particles.

2. Now, let us suppose that in the CD simulation the velocity of the particle at an
initial time is given as v'°. Using the Equation(2), one can find that after
k collisions the velocity of the particle becomes equal to

k
v =(1—a) @ +0a > (1 —a) .
i=1

Here index i specifies the collisions, while v} is the velocity of the virtual bath
atom at a collision number i. v} are the uncorrelated Gaussian random variables
with properties

. L kT, ...
<vg)> =0, <vg) U(OJ)> =_B"05sij
my

Here 6" stands for Kronecker’s delta. Now we can express random value of the
particle velocity at any time ¢ in the following form using Equation (1).

ac

v(t)= ) v(k)g,(®)

k=0
(13)

© 4 % k,,(0) - k—i (i) (Aot)¥
=<0+ > | (1 —a)f +a.Z(1—a) fold < exp(— Aot).

k= =

By averaging Equation (13), one can find the mean value of the particle velocity at any
time ¢ in the CD simulations with the initial velocity v‘?

() = v!%exp(— Ayat). (14)

The mean force acting on the particle can be defined via the velocity acceleration
obtained from (13) by differentiation. It yields

F()=m <£17:(t—t)> = —miyav'®exp(— Ayat)

= —migadv(t)). (15)

Thus, at any time ¢t the mean force acting on the particle in the collisional dynamics is
proportional to the mean velocity of the particle. Actually, it is a frictional force with
damping coefficient equal to 4,a. The requirement that this damping coefficient should
coincide with the one in the Brownian dynamics leads to the relation (12). Let us note,
that under condition (12) the mean particle velocity in the BD simulation at any time is
also given by the expression (14).
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4 COMPARISON BETWEEN COLLISIONAL DYNAMICS
AND BROWNIAN DYNAMICS

Now we can compare the CD and the BD methods in two aspects assuming that the
relation (12) is valid.

Energy Exchange Between Particle And Bath

Coupling to an external heat bath by means of the collisional dynamics provides
a global exchange of energy between the particle and the bath according to the
following mean rate [5]

dE 1

4= Uk To = B0, (16
_(+y)?

Tp= Py (17)

Here E,(t) is the current kinetic energy of the particle. If coupling to the bath is
accomplished by the BD method, the Equation (16) is also valid. In this case, coupling
time constant in the Equation (16) is found to be tf = 1/25. Thus, the global energy
exchange between the particle and the bath in the CD simulation has greater relaxation
time then it does in the BD simulation: 7 /15 =1+ 7.

Velocity Relaxation Spectrum

Now we compare the considered methods in the aspect of the coupling induced velocity
relaxation of the particle. The velocity relaxation is discussed in terms of the eigenvalue
spectrum associated with the kinetic equation that describes the -evolution of p.d.f.
P(v,t). In the case of the collisional dynamics the eigenvalues v, are given by the
Equation (9). When 0 <y < 1, the relaxation spectrum {v,} is discrete and consists of
the infinite number of points confined in the finite interval [4,a, 4,). In particular, when
y =1 (the case of the Andersen’s method) the spectrum consists of only one point
v, = 4o When the particle is coupled to a bath by the BD method, the relaxation
spectrum is given by Equation (11). This spectrum {v2} is not bounded by any finite
interval as it is in the case of the CD method, but is disposed in the infinite interval
[, ). Note that both sets of the eigenvalues {v,} and {vB} are ordered according to
their increasing values. Taking into account the relation (12) we see that the minimum
eigenvalue for any 0 <y <1 in the CD spectrum is the same as in the BD one:
v, =vP = ],a, whereas other corresponding eigenvalues differ from one another:
v, # v2 for n > 1. Comparison of the spectra {v,} and {v2} in the long time behavior
domain gives some idea about the quality of the diffusional approximation of the
collisional dynamics by the Brownian dynamics. In Figure 1 the ratio v,/v? is depicted.
Note that v, — vZ for n > 1 in the limit « — 0, and 1, — co with the proviso that A,a =75
is constant.
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Figure 1 Comparison of the velocity relaxation spectra {v,} (Eq. 9) and {v?} (Eq. 11) using relation (12).
The ratios v,/v8forn = 1,2,3,4(lines 1,2, 3,4 accordingly) are shown as a functlon of the massratio y = my/m.

5 CONCLUDING REMARKS

The problem of how the influence of solvent particles upon the solute can be
approximated in MD calculations is of fundamental importance, because very often the
needed computer resources for explicit simulation of all particles constituting a system
are very expensive. In particular, this problem arises in the studies of dilute polymer
solutions. For example, if a single chain molecule consisting of only a 100 monomer
units is simulated, the required number of solvent molecules is of order of 10°.
Otherwise, the polymer molecule in an extended state will interact with its own images
in the neighboring boxes.

Brownian dynamics equations correctly govern the long-time behavior of a macro-
scopical heavy particle immersed in a low-weight molecular solvent. The BD simula-
tions can hardly be considered reliable in advance in the case of a molecule, which has
the same size as solvent molecules, so special investigations are required to analyze it.
In this type of investigations the solute properties obtained from the direct MD
simulations of the whole system can be used as a model for comparison with those
obtained by the BD ones. Such a comparison was made for some special cases
[2,11,12]. For a pure liquid krypton it was demonstrated that though the solute
structure is reasonably reproduced, marked discrepancies are observed in the dynami-
cal evolution [11,12].

Collisional dynamics offers valid description of strong interactions occurring during
collision of the particles, however ignores a great number of weak interactions with
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solvent molecules, which are not in the immediate vicinity of the solute. Nevertheless,
Ref. [13] shows that the CD simulations reasonably reproduce the dynamical behav-
iour obtained by the direct MD simulations for the case of sulfur-iron cluster, which
immersed in protein molecule.

In the present paper a comparison of the dynamics simulated by the BD and the CD
methods is performed in the simplest case of one test particle constraint to one
dimension. (Restriction to one dimension is not essential, and the main results are valid
for the case of three dimensions). It was demonstrated that though both methods
generate states in the same canonical ensemble, the relaxation spectra are different.
Particularly, if a particle is placed in the solvent constituting of the same particles, the
relaxation time for the global energy exchange between the particle and its environ-
ment in the CD method is twice as great as in the BD one, provided that average
particle velocity at any time is the same in both methods.

In the present work it is shown that the dynamical behavior in the CD simulations
does differ noticeably from that in the BD simulations. To find out which method
reproduces the dynamics of a real system most adequately, further investigations are
required.
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