Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved.

SIT02-P03

Room:Poster

Time:April 29 18:15-19:30

Solution mechanism of water in depolymerized silicate melts

CHERTKOVA, Nadezda^{1*}; YAMASHITA, Shigeru¹

¹Okayama University, ISEI

It is known that the effect of dissolved water on the viscosity of silicate melts is larger for polymerized melts than for depolymerized melts [*e.g.*, 1, 2]. Direct spectroscopic measurements of melt structure and water speciation at high temperature provide information about the mechanism of water dissolution and its influence on the physical properties of the melts. While *in situ* measurements of water speciation were widely conducted for rhyolitic melts and their analogues [*e.g.*, 3, 4, 5], only limited data are available for depolymerized silicate melts.

We performed high-temperature near-infrared and Raman spectroscopic measurements of hydrous Na₂Si₂O₅ melts (2.3-8.1wt% H₂O) using externally heated diamond anvil cell (HDAC). Na₂Si₂O₅ composition was chosen as a structural analogue of basaltic melt (anhydrous NBO/T = 1). Experimental pressure was monitored with the pressure- and temperature-dependent Raman shift of ¹³C diamond [6]. Near-infrared spectra of the homogeneous liquid phase, observed above 820 degree C, 1.7GPa in the Na₂Si₂O₅+2.3wt%H₂O system and above 700 degree C, 1.6GPa in the Na₂Si₂O₅+8.1wt%H₂O system, contain absorption peaks corresponding to molecular H₂O (at $^{5}200 \text{ cm}^{-1}$) and structurally bound OH groups (at $^{4}4500 \text{ cm}^{-1}$). At 900 degree C and 1.6-1.9GPa the ratio of these peaks height remains approximately constant (2.6-2.2), implying a constant (structurally bound OH)/(molecular H₂O) ratio for this range of water contents. This observation differs from the regularities reported for more polymerized melts (rapid decrease of OH/H₂O with total water content) [*e.g.*, 4, 7]. At the same time no pressure effect on the ratio of 4500 cm⁻¹ peak height to 5200 cm⁻¹ peak was observed below 2.4 GPa.

References

- [1] Whittington A., Richet P., Holtz F. (2000) Geochim Cosmochim Acta 64, 3725-3736.
- [2] Giordano D., Russell J.K., Dingwell D.B. (2008) Earth. Planet. Sci. Lett. 271, 123-134.
- [3] Sowerby J.R., Keppler H. (1999) Am. Mineral. 84, 1843-1849.
- [4] Nowak M., Behrens H. (2001) Earth. Planet. Sci. Lett. 184, 515-522.
- [5] Shen A.H., Keppler H. (1995) Am. Mineral. 80, 1335-1338.
- [6] Mysen B.O., Yamashita S. (2010) Geochim. Cosmochim. Acta 74, 4577-4588.
- [6] Mysen B.O. (2010) Geochim. Cosmochim. Acta 74, 4123-4139.
- [7] Botcharnikov R.E., Behrens H., Holtz F. (2006) Chem. Geol. 229, 125-143.

Keywords: water speciation, hydrothermal diamond anvil cell, near-infrared spectroscopy, Raman spectroscopy