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The effect of multistability in the mixtures of smectic-C∗ materials with compensated twisting power, i.e.,
the existence of a large number of almost equiprobable states in the same mixture under the same conditions, is
analyzed in the framework of elastic continuum theory. A simple molecular model is also considered. It is shown
that multistability can follow from the bulk properties of the smectic-C∗ materials with compensated twisting
power, but with high spontaneous polarization. Multistability leads to the formation of ferroelectric domains, in
which the director oscillates in space. The length and amplitude of this oscillation is tunable smoothly by an
electric field. Theoretical results for the domain length agree completely with the experimental data. A suggestion
is made as to why each domain structure is remembered without the energy consumption, when the electric field
is abruptly switched off. The structural dependence on material parameters, such as the spontaneous polarization,
the elastic constant, and the equilibrium wave number, is predicted.
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I. INTRODUCTION

The development of electronics capable of memorizing
continuous gray-scale images is one of the main focuses in the
science and technology of display devices [1–5]. For the past
decade, there has been a high demand for the development of
simple rewritable devices (such as electronic papers, banners,
labels, etc.). There has been significant progress in these
technological developments, particularly in understanding
memory effects based on smectic-C∗ [6–12], nematic [13–23],
and cholesteric [24] materials. The fundamental problem to
which the present paper is devoted is the description of the
mechanisms responsible for the realization of multiple memory
states in the bulk tunable by the electric field.

Memorization of multiple states switchable by the electric
field was realized in ferroelectric smectic materials [25], which
were obtained in [26,27] by mixing smectic-C∗ compounds
with opposite-handed helices, but with the same sign of
spontaneous polarization. Later [5], a display prototype mem-
orizing gray-scale images for an infinite time without energy
consumption was created using these materials. However, the
origin of memorization and of the multistability phenomenon
has not been clearly understood to date.

In the present paper, we will consider a theoretical model
describing the origin and basic properties of multistability in
mixtures of smectic-C∗ materials with compensated twisting
power. This model, however, is only one possibility for the
explanation of the experiments, and further experimentation
can help to test our theory.

The paper is organized as follows. In Sec. II, the experiment
revealing the multistability in smectic materials will be
presented. In Sec. III, the molecular model will be considered.
In Sec. IV, the elastic free energy will be generalized for the
case of a mixture of smectic-C∗ materials with compensated
twisting power, and the structures of the multistable smectic
materials will be found. In Sec. V, the results will be discussed
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and compared with the experimental data. Finally, conclusions
will be made in Sec. VI.

II. EXPERIMENT

In [25], the two ferroelectric smectic-C∗ materials, FLC-
346 and FLC-497, developed in the Lebedev Physical Institute
of RAS, were investigated. In both materials, the smectic-
C∗ compounds with opposite-handed helices, but with the
same sign of spontaneous polarization, were mixed in some
proportion, below and above which the conventional helical
pitch diverges, while at this particular proportion (and some
range of proportion around it) some ferroelectric domains
(different from the helical pitches) tunable by the electric field
arise. The existence of these domains in the absence of an
electric field was reported earlier in [28]. Memorization of
multiple states corresponding to various domain structures
obtained in the electric field was reported in [25]. The
alignment material was a photosensitive azodye SD-1. Using
this dye, one can easily control the alignment layer thickness
from 2 to 20 nm [1,2,4]. A photoalignment layer formed from
SD-1 of about 10 nm thickness has been spin-coated onto
ITO substrates and irradiated by linearly polarized uv light, as
described in [1].

The textures of the ferroelectric domains arising in the
6-μm-thick cell of FLC-346 material placed between crossed
polarizers are presented in Fig. 1 before application of an
electric field (a) and after the application and removal of the
field (b). The material possesses the spontaneous polarization
Ps = 1.05 × 10−3 C/m2 at T = 23 ◦C. The image area in
both Figs. 1(a) and 1(b) is 45 × 45 μm2. The micrograph
presented in Fig. 1(b) was obtained 10 min after switching
off the voltage across the cell. After the electric-field removal,
the domain structure is remembered. The applied voltage was
250-μs alternating sign driving pulses with duty cycle 20%
and amplitude ±15 V.

The textures of the ferroelectric domains arising in the
4.85-μm-thick cell of FLC-497 material after the application
and removal of the electric field are presented in Fig. 2.
The material possesses the spontaneous polarization
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FIG. 1. Photograph of the planar cell with multistable smectic
material FLC-346 placed between crossed polarizers: (a) before
application of an electric field; (b) after the application and removal
of the field. The image area in the photographs is 45 × 45 μm2.
Reproduced with permission from Ref. [25]. Copyright Pleiades
Publishing, Inc., 2006.

Ps = 0.95 × 10−3 C/m2 at T = 23 ◦C. The image area is
350 × 400 μm2. The applied voltage was 250-μs alternating
sign driving pulses with duty cycle 20% and amplitude ±3.3
V (a), ±4.7 V (b), ±6.5 V (c), and ±15 V (d).

The structures of the stripe domains in both Figs. 1 and 2
do not have a uniform director orientation. Each stripe has a
gradient between bright and dark. The bright areas correspond
to the maximum birefringence (when the local tilt plane
is parallel to the glass substrate), while the dark regions
correspond to the deviation of the local tilt plane from the
orientation mentioned above. The amplitude of variation of
the local tilt plane in space from the orientation parallel to the
glass substrate, however, depends on the value of the electric
field. The larger the value of the electric field, the smaller is
the amplitude of variation. At the same time, each structure
does not transform when the electric field is removed. It can
only be changed by the new electric-field pulses of different
voltage.

FIG. 2. Textures of multistable smectic material FLC-497 placed
between crossed polarizers after application and switching off of the
driving pulses with amplitudes (a) ±3.3 V, (b) ±4.7 V, (c) ±6.5 V,
and (d) ±15 V. The image area in the photographs is 350 × 400 μm2.
Reproduced with permission from Ref. [25]. Copyright Pleiades
Publishing, Inc., 2006.

III. MOLECULAR MODEL

In the present section, we will consider a simple molecular
model showing how the compounds of the mixture used in
the multistable smectic-C∗ material can have opposite-handed
helices but the same sign of spontaneous polarization. This
model, however, could be only one of many possible models.
The spontaneous polarization in each smectic layer i is known
to consist of piezoelectric and flexoelectric contributions (see,
for example, [29,30]):

Pi = χ̂{cp(ni · k)[ni × k] + cf [ni × (�ni±1 × ni)]}, (1)

represented by the first and second terms in Eq. (1), respec-
tively, where χ̂ is the residual dielectric susceptibility of each
smectic layer (taking into account dielectric effects from the
same and neighboring layers), k is the smectic layer normal, ni

is the nematic director in layer i, �ni±1 ≡ ni+1 − ni−1 is the
difference between director orientations in the neighboring
layers, cp is the piezoelectric constant, whose sign depends
on the handedness of the chiral molecules, and finally cf is
the flexoelectric constant. The flexoelectric effect generally
follows from the electrostatic interaction between molecules
located in neighboring smectic layers, and in [29,30] it was
shown that the lowest multipolar interaction contributing to
the flexoelectric effect is the dipole-quadrupole interaction. In
Fig. 3 it is schematically shown how the sign inversion of the
molecular quadrupole can lead to the helix inversion in the
sample.

Flexoelectric polarization in Sm-C∗ arises due to the bend
deformation, and it is always perpendicular to the tilt plane in
each smectic layer. The handedness of the helical rotation is
opposite in Figs. 3(a) and 3(b), so that the bend deformation
is also in the opposite directions. However, since the charge
distribution in Fig. 3(b) is inverse to that in Fig. 3(a), the
flexoelectric polarization arises in the same direction in both
Figs. 3(a) and 3(b). One notes that the inversion of charges
presented in Figs. 3(a) and 3(b) does not reflect the principal
handedness of the chiral molecules, which can be the same

Pf Pf 

(a) (b)

FIG. 3. Flexoelectric polarization causes opposite-handedness of
the helical rotation in (a) and (b) because of the opposite signs of
flexoelectric constants. Molecules are supposed to be chiral (not
shown); their handedness can be the same in (a) and (b).
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in both Figs. 3(a) and 3(b). Thus, both piezoelectric and
flexoelectric polarizations can have the same signs in both
Figs. 3(a) and 3(b), while the helical rotation should have
opposite handedness.

It was shown in [31,32] and later in [29,30] that the
contribution to the helical twisting power related to polar-
ization originates only from the coupling of flexoelectric and
piezoelectric polarizations (proportional to the multiple cf cp).
Thus, it is enough to change the sign of the flexoelectric
constant to obtain the opposite handedness of the helical
rotation, which can be done without a change of the molecule’s
handedness, as demonstrated above. Here it is also important
to mention that there is a contribution to the helical twisting
power that does not originate from polarization effects, and
which has the same origin as in chiral nematics [33,34].

IV. FREE ENERGY OF THE MULTISTABLE
SMECTIC MATERIAL

Mixing the Sm-C∗ compounds with opposite signs of
flexoelectric constants, but the same sign of piezoelectric
constants, as discussed in the preceding section, one should
obviously observe the helical pitch divergence at a particular
proportion, since the helix handedness is opposite in pure
compounds. At this proportion, the spontaneous polarization,
however, should not disappear, because it has the same sign in
pure compounds. The mixture in [25] consisted of more than
two compounds, and there existed (perhaps due to the surface)
some range of proportion, within which the conventional
helical pitch was suppressed completely, and the domains
presented in Figs. 1 and 2 were observed instead. To investigate
these domains, we should generalize the elastic continuum free
energy for the higher gradient terms. In the general case, the
elastic continuum free energy can be written in the form of
expansion in Taylor series with respect to the small derivative
ϕz ≡ ∂ϕ/∂z, where ϕ is the azimuthal orientation of the tilt
plane normal with respect to the electric-field direction E at
point z along the smectic layer normal:

F =
∞∑

k=0

akϕ
k
z − PsE cos ϕ, (2)

where ak ≡ (k!)−1∂kF/∂ϕk
z at ϕz = 0, and Ps is the absolute

value of spontaneous polarization. In the case of cholesteric
[36] or helical smectic [37–41] phases, the expansion in Eq. (2)
is usually done up to the second term. Indeed, substituting
a2 = K̃/2, a1 = −K̃q̃0, completing the square, neglecting
the constant remaining after the square is completed, and
all the terms with k > 2, one obtains K̃(ϕz − q̃0)2/2 instead
of the sum in Eq. (2). Here we use the tilde sign over the
elastic constant K̃ and over the helical wave number q̃0 to
distinguish them from their analogs introduced for the mixtures
of smectic-C∗ materials with compensated twisting power
below. The higher terms in expansion (2) only modulate the
helix slightly.

However, because of the mixing of materials with opposite-
handed helices, q̃0 becomes equal to zero at a particular
proportion, and, on the same grounds, all the coefficients ak

in expansion (2) with odd indices k become equal to zero.
We also expect that the other remaining coefficients (with the

even indices k) can vary strongly upon mixing. In the case of
a mixture of smectic-C∗ materials with compensated twisting
power, what is modulated by the higher terms in expansion
(2) is the uniform structure. The modulated uniform structure
(in other words, the domain structure) should be observed in
this case. Substituting a4 = K/2, a2 = −Kq2

0 , completing the
square, neglecting the constant remaining after the square is
completed, and all the terms with k > 4, one obtains instead
of Eq. (2):

F ≈ 1
2K

(
ϕ2

z − q2
0

)2 − PsE cos ϕ, (3)

where we assumed that one of the coefficients, say a2, became
negative at this proportion between the components, while
the next coefficient, a4, remained positive. Indeed, if all the
coefficients with even k were positive, ϕz = 0 would minimize
the free energy at E = 0, and there would be no variation of
the synclinic structure in the bulk (there would be no domains).
On the contrary, if all the coefficients were negative, the
corresponding smectic phase would be antiferroelectric (also
without domains). At the same time, at a2 < 0 and a4 > 0,
the new phase should arise where the optimal helical rotation
angle �ϕ per smectic layer should be different from both zero
and π , but the sign of this rotation should be undetermined.
In particular, the optimal |�ϕ| value can be very small, and in
this case the coefficient K in Eq. (3) should play the role of an
elastic constant, while either +q0 or −q0 (without preference)
should play the role of an equilibrium wave number (different
from that in a conventional helical smectic) in the absence of
an electric field.

What can be the origin of the director rotation without the
sign preference? One notes that the coupling of spontaneous
polarizations in the neighboring smectic layers is not optimal
in the synclinic phase, and it is optimal in the anticlinic phase.
However, at large positive coefficient a4 (due to some other
reasons, particularly dispersion interaction), the anticlinic
phase cannot be realized in many materials, but the molecular
transverse dipoles μef contributing to the spontaneous polar-
ization Ps can still be very large. In particular, in [30,35] it was
shown that the largest electrostatic contribution μ4

ef cos �ϕ to
the free energy follows from the second virial expansion of
the dipole-dipole interaction, while expansion of cos �ϕ in
Taylor series contributes mostly to the second power of ϕz

(with a negative sign, as it is required for the coefficient a2

to be negative). In this case, a4 = K/2 should depend weakly
on μef (and thus on Ps), and therefore from a2 = −Kq2

0 it
follows that q0 should be proportional to μ2

ef (and thus to P 2
s ),

which is in complete agreement with experimental data [28]
for the wave number of the domain structure in the absence
of an electric field. Thus, the uniform rotation of the director
in an arbitrary direction matches the experimental observation
at E = 0.

If generally the two equiprobable rotation directions exist
in each smectic layer, then in total there should be 2N almost
equiprobable states in the whole sample, where N is the total
number of smectic layers. However, the reversals (the smectic
layers where +�ϕ changes to −�ϕ or vice versa) should
not be favorable, because the reversal in layer i means the
absence of rotation between layers i − 1 and i + 1, while the
interaction between transverse dipoles in layers i − 1 and i + 1
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FIG. 4. Azimuthal orientation of the tilt plane normal with respect
to the electric-field direction as a function of coordinate z along the
smectic layer normal in the oscillating regime.

favors the director rotation between these layers in the same
way as between neighboring layers. The interaction between
layers i − 1 and i + 1 is obviously much smaller than that
between the neighboring layers, but in the absence of an
electric field it appears to be the only factor determining the
presence or absence of reversals (except thermal fluctuations,
which are also small), and therefore the rotation of the director
indeed should be mostly uniform (almost without reversals) in
the absence of an electric field.

After application of an electric field [compare Figs. 1(a) and
1(b)], the shape of the domains changes, and the domain length
starts decreasing with increasing electric field (see Fig. 2),
which is more specific to the oscillation of the tilt plane
direction along the smectic layer normal than to the helical
rotation. In this case, the angle between the tilt plane normal
and the electric field direction varies along the smectic layer
normal, as shown in Fig. 4, and one should consider a sequence
of conjugated helical fragments of length � = p/2 (where p

is the period of the structure) with opposite handedness (see
the distribution of azimuthal angle ϕ along coordinate z in
Fig. 4). When we define the small energy cost γ � Kq3

0 of
each reversal, then the free energy per each fragment can be
written in the following form:

F ≡ γ +
∫ �/2

−�/2
F (ϕ,ϕ2

z )dz, (4)

where ϕz ≡ ∂ϕ/∂z, and the functional F (ϕ,ϕ2
z ) is determined

by Eq. (3).

V. RESULTS AND DISCUSSION

A. Equation of state

The state realized in the electric field is not uniform, as was
mentioned above. The amplitude of variation of the orientation
of the local tilt plane in space from parallel to the glass
substrate, however, depends on the value of the electric field.
Variation of functional (4), which can be done in a similar
manner to, for example, that shown in Appendix A of [42],
yields the following equation of state:

d

dz

{
2 ϕ2

z

∂F

∂
(
ϕ2

z

) − F

}
= 0. (5)

Applying constraint (5) to the particular functional (3), one
obtains

ϕz = ± 1√
3
q0

[
1 + τ

k

√
1 + 4 k2 sin2(ϕ/2)

] 1
2

, (6)

where τ ≡
√

3PsE/(Kq4
0 ), and the parameter k must be

obtained by minimization of the reduced free energy f ≡ F/�.
Substituting the solution (6) back into the expression (3) for the
local free energy and integrating the latter within one regular
fragment of length �, one obtains

f = 2Kq4
0

{
G3/2 − G1/2 + γ ∗

G−1/2
− 1

12

τ 2

k2

}
, (7)

where γ ∗ ≡ γ /(2Kq3
0 ) is the effective energy cost of the

reversal, and the integrals Gi (i = −1/2, 1/2, or 3/2) are
defined as follows:

Gi ≡ 3−i

∫ ϕm

−ϕm

{
1 + τ

k

√
1 + 4 k2 sin2(ϕ/2)

}i

dϕ, (8)

where ϕm is the maximal deviation of the tilt plane orientation
from the direction perpendicular to electric field. Here we
assume that the structure is symmetrical with respect to this
direction. In Eq. (7) we have also taken into account that the
regular fragment length can be written as follows:

� = q−1
0 G−1/2. (9)

Minimizing the free energy f of one regular fragment [see
Eq. (7)] with respect to parameters k and ϕm, one obtains the
following set of equations:

G3/2 − G1/2 + γ ∗ = 0, (10)

2 = τ

k

√
1 + 4 k2 sin2

ϕm

2
, (11)

determining the equilibrium equation of state. The set of
Eqs. (10) and (11) can be solved numerically for k(τ ) and
ϕm(τ ). Consequently, the regular fragment length �(τ ) can be
calculated using Eq. (9).

B. Transition from monotonous rotation to oscillation in space

Substituting the ratio τ/k from Eq. (11) into Eq. (10) and
expanding Eq. (10) in Taylor series with respect to k up to
the square term, one obtains the following simple equation
approximately determining ϕm(τ ) at a small electric field:

3 γ ∗

sin ϕm − ϕm cos ϕm

≈ τ 2. (12)

Equation (12) [and also the exact set of Eqs. (10) and (11)]
has an infinite number of solutions ϕm(τ ), and there exists
some critical value τc = √

3 γ ∗ at which all these solutions,
ϕm(τc) = π/2 + 2πn, where n is an integer number from 1 to
infinity, are separated from each other by 2π . From Eqs. (7),
(10), and (11) it follows that the free energies of all solutions
coincide at τc. One can check (see Fig. 5) that τc is a single
point of intersection of f (τ ) for all solutions. Above τc, the
solution with the lowest free energy corresponds to n = 1,
while below τc the free energies of solutions decrease with
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FIG. 5. Local minima free energies as functions of parameter
τ 2 = 3 PsE/(Kq4

0 ), in correspondence with Eq. (12). Here γ ∗ =
0.01. For each minimum n, the amplitude of oscillation ϕm belongs
to the interval from 2π (n − 1) to 2πn.

n tending to infinity, which, in fact, means that ϕm tending
to infinity satisfies the global free-energy minimum. Thus,
below τc the monotonous rotation in an arbitrary direction
corresponds to the absolute minimum free energy, while above
τc the free-energy minimum corresponds to a conjugation of
the deformed helical fragments with positive and negative
derivatives ϕz (see Fig. 4). The first-order phase transition
between these two states should happen at τc. The physics
of this transition is in the competition between the reversal
energy cost and the electric field energy. At large electric field,
all the tilt planes tend to be perpendicular to the electric-field
direction, and the number of reversals increases. On the
contrary, at a small electric field the system tends to reduce the
number of reversals. From Eq. (12) it follows that at τ > τc,
the amplitude of oscillation ϕm < π/2 decreases and tends
to zero when τ increases further. From the exact solution of
Eqs. (10) and (11) corresponding to n = 1 it follows that either
k is small (at small τ ) or ϕm is small (at large τ ), so that Eq. (12)
approximates the solution of Eqs. (10) and (11) well even at a
large electric field. In the same approximation, from Eqs. (6)
and (9) it follows that

ϕ + 1

12
(sin ϕ − ϕ cos ϕm) τ 2 ≈ ±q0 (z − zi), (13)

� ≈ 1

q0

[
2 ϕm + 1

6
(sin ϕm − ϕm cos ϕm) τ 2

]
, (14)

where the values zi correspond to the middle of each regular
fragment. Equation (13) describes the azimuthal distribution
of tilt planes along the smectic layer normal z, while Eq. (14)
determines the length of each regular fragment.

C. Multistability and memory effects

In the present subsection, it will be shown why each state
obtained in the electric field should not change when the
electric field is removed. Unlike the pitch of a conventional
helical smectic, at τ > τc the regular fragment length in a
multistable smectic material, where the director oscillates in

space, decreases with increasing electric field, because ϕm(τ )
is the decreasing function in this case [in correspondence with
Eq. (12)]. From Eqs. (12) and (14), the period of oscillation of
the director in space can be estimated as

posc = 2� ≈ (4 ϕm + γ ∗)/q0. (15)

Since the period posc is approximately proportional to the
amplitude ϕm, the variation of the tilt plane direction along
the smectic layer normal is almost linear (the director rotation
is almost uniform) within each regular fragment, as shown
in Fig. 4. If the electric field is abruptly switched off, the
reversals are not biased to some particular positions along
the z axis anymore, and, in principle, they can appear in any
smectic layer, as was discussed in Sec. IV. In the absence of
an electric field, a huge set (2N ) of structures with uniform
director rotation between each pair of neighboring reversals
correspond to the local free-energy minima, and the ones
with an equal total number of reversals have exactly the same
free energies. Since the distribution of tilt planes ϕ(z) within
each regular fragment in the presence of an electric field is
almost linear [in correspondence with Eq. (15)], it always fits
some of the 2N states corresponding to the local free-energy
minima in the absence of an electric field. At the same time,
different structures (with different numbers of reversals or
even with the same number of reversals but different positions
of the reversals) cost almost nothing in energy, but they
require passing the barriers because they require the complete
unwinding in some smectic layers and then rewinding in the
opposite direction, and the barrier energy can be estimated as
Kq4

0/2 per each rewinding, in correspondence with Eq. (3).
The spontaneous motion of the reversals along the z axis
after the electric-field removal is not favorable, because the
energy of the thermal fluctuation is obviously smaller than the
barrier Kq4

0/2. Therefore, the last structure obtained in the
electric field is remembered after the electric-field removal.
The difference between the structures obtained at different
values of the electric field is in the distance between reversals,
and thus in the amplitude of deviation of the tilt planes from
the direction perpendicular to the electric field.

At the same time, at τ < τc the regular fragment length
is formally equal to infinity, and the pitch of monotonous
rotation,

prot ≈ 2π (1 + τ 2/12)/q0, (16)

can be estimated by substituting ϕm = π into Eq. (14). This
regime, however, can only be realized by the application of
a small electric field corresponding to τ < τc, but it cannot
be realized by an abrupt removal of the electric field at
τ > τc. The dependence of dimensionless period p/p0 on
the parameter τ 2 = 3 PsE/(Kq4

0 ) in both cases (τ < τc and
τ > τc) is presented in Fig. 6, where the corresponding values
of amplitude ϕm at τ > τc are shown on the right scale. One
notices a good correlation with experimental data. In particular,
at τ > τc, the larger the value of the electric field, the smaller
is the amplitude of variation of the tilt plane along the smectic
layer normal. Each structure does not change when the electric
field is removed. However, the electric field of different voltage
can change the structure of the domains (the amplitude of
variation of the local tilt plane and the domain length), but the
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0 ). Here γ ∗ = 0.01. The right
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represents the smaller scale, at which the weakly first-order phase
transition from the uniform rotation to the oscillation in space
happens. The square bars reproduce the experimental variation of
period calculated from Fig. 2 at substitution p0 = 28.3 μm and
Kq4

0 /Ps = 17.8 V/μm.

new structure will also be remembered when the electric field
is switched off again.

VI. CONCLUSION

We developed a theoretical approach suggesting an ex-
planation for the multistability observed in the mixtures of
smectic-C∗ materials with compensated twisting power. The
elastic continuum theory was generalized for the case of a
material in which the conventional helical pitch diverges,
and domains arise that are different from the helical pitches.
In this case, we predict that the director rotation between
each neighboring smectic layer is in an arbitrary direction,
where the absolute value of the local (per one smectic layer)

rotation angle |�ϕ| is fixed in a particular material. Thus,
formally, the equilibrium wave number |q0| = |�ϕ|/�z can be
introduced. It was demonstrated that the mixtures of smectic-
C∗ materials with compensated twisting power, but with large
spontaneous polarization, can be prepared by mixing the
smectic-C∗ compounds with the opposite signs of flexoelectric
constants, but the same sign of piezoelectric constants, and
the corresponding molecular model was suggested. A single

parameter τ =
√

3 PsE/(Kq4
0 ) regulating the structure of

domains was introduced, which is a combination of electric-
field value E with three material parameters: spontaneous
polarization Ps , elastic constant K , and equilibrium helical
wave number |q0| in the absence of an electric field. We have
found the distribution of tilt planes within each ferroelectric
domain and the critical value τc, above which the ferroelectric
domain length decreases with increasing electric field, exactly
as in the experiment. Below τc, a different regime was found,
in which the tilt planes rotate mostly in one (undetermined)
direction. The existence of two different regimes also agrees
with the experiment, as well as the quadratic dependence of the
wave number on the spontaneous polarization in the absence
of an electric field.

We suggest that our theoretical approach not only describes
the origin and basic properties of multistability in the mixtures
of smectic-C∗ materials with compensated twisting power, but
it also corresponds well with the experimental observations.
In addition, it predicts how the electric-field dependence of
the structure would change with variation of the material
parameters (spontaneous polarization Ps , elastic constant K ,
and equilibrium wave number q0), which can be measured or
estimated from the molecular modeling.
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