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Abstract In this paper a new technique for recalculating geographic coordinates
of a triaxial ellipsoid to elliptical and then to rectangular coordinates of the Jacobi
conformal projection is considered. Coordinate lines of the elliptical system and
the cartographical grid with the parallels passing through the circular points on the
Jacobi projection are shown. This new technique allows us to achieve the con-
formal mapping of small celestial bodies. A map of asteroid 25143 Itokawa in the
Jacobi conformal projection, the first ever published, and a map of asteroid 433
Eros created by the authors in the transverse conformal cylindrical projection of a
triaxial ellipsoid are presented for comparison. Asteroids 25143 Itokawa and 433
Eros are near-Earth objects.
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1 Introduction

Carl Jacobi in his lectures (1842–1843) at the University of Königsberg proposed
the conformal projection of the triaxial ellipsoid to the plane. The lectures were
written down by C.W. Borchardt and published by A. Clebsch in 1866 (Jacobi
1866). They also were translated into many languages particularly in English
(Jacobi’s lectures 2009). We used a Russian translation made by O.A. Polosukhina
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in 1936 and edited by N.S. Koshlyakov, a specialist in the field of partial differ-
ential equations (Jakobi 1936). The interpreters tried to translate the text not only
as accurately as possible, but also to keep as much as possible the original features
of the language and the character of the descriptions.

This is important because Jacobi’s lectures are interesting not only for their
results, but also for their depiction of the author’s thoughts. For example, we are
interested in a map projection obtained as a result of applying the elliptic coor-
dinates to the derivation of the shortest line equation on the triaxial ellipsoid. Many
of the materials presented in the lectures were used by mathematicians in devel-
opment of the theory of surfaces. In the 1970s and 1980s interest in map pro-
jections for triaxial ellipsoids began to grow among cartographers in connection
with the problem of mapping of small celestial bodies.

The Jacobi conformal projection is considered in Bugaevskiy (1999), but its
formulae were found to be inconvenient for practical use because of difficulties in
calculating of the integrals. In this paper we consider the technique of recalculating
geographic coordinates of a triaxial ellipsoid to elliptical and then to rectangular
coordinates of the Jacobi projection and mapping in this projection.

2 Derivation of Jacobi Projection

In his 26th lecture Jacobi introduced the elliptic coordinates k1; k2; k3; . . .kn for
the multidimensional case using the equation

x2
1

a1 þ k
þ x2

2

a2 þ k
þ � � � þ x2

n

an þ k
¼ 1: ð1Þ

Later they became known as Lamé coordinates. He examines them analytically.
For our purpose the important point of this lecture is the relationship between
x and y values and the relationship between the squares of their differentials. In the
27th lecture the geometric interpretation of the results of the previous lecture,
applied to the plane and three-dimensional space is given. For the three-dimen-
sional case different ranges of k changes correspond to three systems of confocal
quadric surfaces (hyperboloid of one sheet, hyperboloid of two sheets, triaxial
ellipsoid). In the three-dimensional space one hyperboloid of one sheet, one
hyperboloid of two sheets and one triaxial ellipsoid are going through each point.
These surfaces intersect each other at a right angle. According to this, the square of
the element of arc of arbitrary curve, expressed in terms of the differentials of
elliptic coordinates, doesn’t contain the multiplication of differentials of two dif-
ferent values. Geometric interpretation of elliptic coordinates is considered in
more detail in Kagan (1947).

The 28th lecture considers an orthogonal system of elliptic coordinates on the
surface of the triaxial ellipsoid. Equation
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x2
1

a1 þ k
þ x2

2

a2 þ k
þ x2

3

a3 þ k
¼ 1; ð2Þ

where a1\a2\a3 for given values of rectangular coordinates has three real roots:
k1 [ k2 [ k3. Root k1 corresponds to the ellipsoid, root k2 corresponds to a
hyperboloid of one sheet, root k3 corresponds to a hyperboloid of two sheets.

For the surface of a given ellipsoid the value of k1 is constant. After obtaining
the formula for the square of the element of arc of an arbitrary curve on the
ellipsoid

ds2 ¼ 1
4

k2 � k1ð Þ k2 � k3ð Þ
a1 þ k2ð Þ a2 þ k2ð Þ a3 þ k2ð Þ dk2

2 þ
1
4

k3 � k1ð Þ k3 � k2ð Þ
a1 þ k3ð Þ a2 þ k3ð Þ a3 þ k3ð Þ dk2

3:

Jacobi determines the ratio between the element of arc on the plane (in pro-
jection) dr and on the ellipsoid dr ¼ 2

ffiffiffiffiffiffiffiffi

k2�k
p

3
ds. Also Jacobi determines formulae

of the conformal projection

u ¼
Z

dk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k1

a1 þ k2ð Þ a2 þ k2ð Þ a3 þ k2ð Þ

s

v ¼
Z

dk3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 � k3

a1 þ k3ð Þ a2 þ k3ð Þ a3 þ k3ð Þ :
s

ð3Þ

Here u and v are rectangular coordinates on the plane.
Note. Values k1; k2; k3; . . .kn are measured in units of x2, value ds is measured

in units of x (units of the triaxial ellipsoid axes), 2
ffiffiffiffiffiffiffiffi

k2�k
p

3
is measured in units of 1

x,

values dr; u; v are dimensionless.

3 Coordinate Systems and Coordinate Lines

Later rectangular coordinates on the plane of projection we will sign as xproj and
yproj. We have also changed the signing of elliptic coordinates, because the value k
is usually used for longitude. Because a traditionally cartographic grid is used for
mapping, we take angular planetocentric coordinates (/—latitude, k—longitude)
as the initial (see Fig. 1).

In a new (more usual) values Eq. (2) becomes

x2

a2 � u
þ y2

b2 � u
þ z2

c2 � u
¼ 1; ð4Þ

where
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c2 ¼ a1 þ k1; b2 ¼ a2 þ k1; a2 ¼ a3 þ k1—squares of semi-axes of the
triaxial ellipsoid, x ¼ x3; y ¼ x2; z ¼ x1—three-dimensional rectangular
coordinates, u ¼ k1 � k.

For given three-dimensional rectangular coordinates elliptic coordinates are
getting from Eq. (4) relatively to u

x2 b2 � u
� �

c2 � u
� �

þ y2 a2 � u
� �

c2 � u
� �

þ z2 a2 � u
� �

b2 � u
� �

¼ a2 � u
� �

b2 � u
� �

c2 � u
� �

u3 þ u2 x2 þ y2 þ z2 � a2 � b2 � c2
� �

þ u �x2b2 � x2c2 � y2a2 � y2c2 � z2a2 � z2b2 þ a2b2 þ b2c2 þ a2c2
� �

þ x2b2c2 þ y2a2c2 þ z2a2b2 � a2b2c2 ¼ 0:

On the surface of the triaxial ellipsoid
x2b2c2 þ y2a2c2 þ z2a2b2 � a2b2c2 ¼ 0, that is one of the roots u3 ¼ 0.
Solve a quadratic equation with non-zero u

u2 þ u x2 þ y2 þ z2 � a2 � b2 � c2
� �

� x2b2 � x2c2 � y2a2 � y2c2 � z2a2 � z2b2 þ a2b2 þ b2c2 þ a2c2 ¼ 0

and get two roots

u1 ¼ �pþ
ffiffiffiffiffiffiffiffiffiffi

p2�4q
p

2 and u2 ¼ �p�
ffiffiffiffiffiffiffiffiffiffi

p2�4q
p

2 ; where

A

z

Y

X

c

a

bO

P

P1

Fig. 1 Traditional
coordinate systems of the
triaxial ellipsoid
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p ¼ x2 þ y2 þ z2 � a2 � b2 � c2

q ¼ �x2b2 � x2c2 � y2a2 � y2c2 � z2a2 � z2b2 þ a2b2 þ b2c2 þ a2c2:

Sign u1 ¼ u; u2 ¼ v: Integrals (3) become

xproj ¼
Z

ui

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u

c2 � uð Þ b2 � uð Þ a2 � uð Þ

r

du

yproj ¼
Z

vi

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�v

c2 � vð Þ b2 � vð Þ a2 � vð Þ

r

dv:

ð5Þ

The Integral to calculate the horizontal and vertical coordinates in the Jacobi
projection is chosen by the fact that the projection axis Xproj is directed horizon-
tally to the right, and the Yproj axis vertically upwards.

Intersections of the ellipsoid surface with hyperboloids of one sheet establish on
the ellipsoid a system of curves and for each curve a value of u is constant, but v
varies from c2 to b2. Intersection of the ellipsoid surface with hyperboloids of two
sheets derives a system of curves for which v is a constant value, but u varies from
b2 to a2. Together, these systems define coordinate lines that are orthogonal to
each other, i.e., an orthogonal system of curvilinear coordinates. Figure 2 shows
the projection (geometric) of the coordinate lines of the elliptic systems to the
plane XZ.

Figure 3 shows these coordinate lines on a Jacobi projection to the plane
XprojYproj with a background of a cartographical grid. The spacing of the elliptical
coordinate grid is constant on u and v, but the distances between the lines in the
projections are not identical. We see this type of grid because of xproj depends of u
only and yproj depends of v only but the relation is not linear.

Fig. 2 The projection of the
coordinate lines of the elliptic
systems to the plane XZ
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Because the squares of three-dimensional rectangular coordinate values are
used in the derivation of the formulae we obtain the values of the elliptic coor-
dinates and rectangular coordinates in Jacobi projection respectively for one-
eighth of the ellipsoid surface. For the other parts of the surface we flip coordinates
in accordance with the sign of the latitude and longitude range.

4 Calculation of the Upper Limits of Integration

The upper limits of integration ui; vi in (5), we get for each point with the given
latitude and longitude step by step.

1. Calculate three-dimensional rectangular coordinates as the function of latitude
and longitude (geographical coordinates) See Fig. 1.

x ¼ r cos / cos k; y ¼ r cos / sin k; z ¼ r sin /: ð6Þ

Here:

r ¼ a
ffiffi

t
p ; t ¼ cos2 / cos2 kþ cos2 / sin2 k

1�e2
1
þ sin2 /

1�e2 ; e1—equatorial ellipse eccentricity,

e—eccentricity of prime meridian ellipse.
2. Calculate elliptic coordinates as the function of three-dimensional rectangular

coordinates, solving the Eq. (4).
3. Integrating (5), we obtain the rectangular coordinates in the projection.

For the integration we perform a calculation based on Gaussian quadrature rule
(GIS Research Centre Site 2012). This quadrature rule is a special case of the
integral of the Lagrange interpolation polynomial with a special selection of
nodes and weights. Direct calculation of integrals (5) is possible, but does not
provide the required accuracy, therefore we express these integrals in terms of

u=b2; v=b2

u=b2; v=c2 u=a2; v=c2

u=a2; v=b2
 Φ=10.2438°; λ=0

 Φ=0; λ=0  Φ=0; λ=90°

Φ=90°; λ=90°

Fig. 3 Coordinate lines of elliptical system on Jacobi projection
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elliptic integrals of the first and third kind, as it is done in (Prudnikov et al.
1986) Sect.1.2.35—formula 8 and Sect.1.2.36—formula 8.

xproj ¼
Z

ui

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u

c2 � uð Þ b2 � uð Þ a2 � uð Þ

r

du ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � c2ð Þb2
p ðb2 � c2ÞI3 ui; k2; k1ð Þ þ c2I1ðui; k1Þ

� �

ð7Þ

yproj ¼
Z

vi

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�v

c2 � vð Þ b2 � vð Þ a2 � vð Þ

r

dv ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � c2ð Þb2
p b2 � a2

� �

I3
p
2
; k2; k1

� �

þ a2I1
p
2
; k1

� �h i

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � c2ð Þb2
p b2 � a2

� �

I3 ui; k2; k1ð Þ þ a2I1ðui; kÞ
� �

:

ð8Þ

The calculation of the vertical coordinate (formula (8) of our paper) as the
difference of the integrals due to the fact that in the formula 8 of Sect. 1.2.36
(Prudnikov et al. 1986) upper limit of integration is equal to the maximum value,
and the lower one is the current value of the elliptic coordinate.

3.1. Express the integrals (5) to the elliptic integrals of the first and the third
kind. Here u is the variable of integration and k1; k2 are constant
parameters for the calculation of integrals. ui is the upper limit of inte-
gration for elliptic integrals.

In integration of (7) ui ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2�c2ð Þ u�b2ð Þ
a2�b2ð Þ u�c2ð Þ

q

; k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2�b2ð Þc2

a2�c2ð Þb2

q

; k2 ¼
a2�b2

a2�c2 ; and in integration of (8) ui ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2�c2ð Þ b2�vð Þ
b2�c2ð Þ a2�vð Þ

q

; k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2�c2ð Þa2

a2�c2ð Þb2

q

; k2 ¼ b2�c2

a2�c2 :

Elliptic integral of the fist kind:

I1 ui; k1ð Þ ¼
Z

ui

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
1 sin2 u

q : ð9Þ

Elliptic integral of the third kind:

I3 ui; k2; k1ð Þ ¼
Z

ui

0

du

1� k2 sin2 u
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
1 sin2 u

q : ð10Þ
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3.2. After substituting (9) and (10) to (7) and (8) we integrate given expres-
sions and get coordinates of the Jacobi conformal projection in a range of
latitudes from the equator to the North Pole and longitude from the prime
meridian to the 90� meridian.

3.3. Flip coordinates in accordance with the actual position of point on the
triaxial ellipsoid.

3.4. Multiply coordinates by the size of the major semi-axis in units of the map.
In that case, when, u ¼ b2 and v ¼ b2 we get the so-called circular points
(Kagan 1947, p. 117) of the triaxial ellipsoid. Taking into account that
longitude is equal to zero, we obtain

t ¼ cos2 /þ sin2 /
1� e2

¼ cos2 /� e2 cos2 /þ sin2 /
1� e2

¼ 1� e2 cos2 /
1� e2

;

x2 ¼ r2 cos2 / ¼ a2 cos2 / 1� e2ð Þ
1� e2 cos2 /

; i:e:
a2 cos2 / 1� e2ð Þ

1� e2 cos2 /
¼ a2 a2 � b2ð Þ

a2 � c2

cos2 / ð1� e2Þ
1� e2 cos2 /

¼ e2
1

e2

e2 cos2 / 1� e2
� �

¼ e2
1 � e2e2

1 cos2 /

cos2 / ¼ e2
1

e2 1� e2 þ e2
1

� � :

5 Mapping

The projection exists at all points of the ellipsoid. Coordinate values of the pro-
jection are nowhere equal to infinity. However, conformality doesn’t exist in
circular points, and a gap in the projection is required for the prime meridian and
its opposite or between the equator and the circular point, or between the circular
point and a pole. Figure 4 shows the cartographical grid of a conformal Jacobi
projection for a triaxial ellipsoid with the parameters a ¼ 267:5 m, b ¼ 147 m,
c ¼ 104:5 m, for the asteroid 25143 Itokawa, and parallels passing through the
circular points. Latitude in degrees of the circular points at such parameters is
±10.2438�. A gap occurs on prime meridian (and 180� meridian) in the northern
hemisphere from the equator to the circle point +10.2438� and in the southern
hemisphere from the circle point -10.2438� to the equator.

Figure 5 shows a map of Itokawa asteroid in Jacobi conformal projection
created by transformation of a photomosaic of the asteroid surface in the azimuthal
equidistant projection of a sphere originally created by Philip Stooke. The local-
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affine transformation was used in GeoGraph GIS 2.0 software. The control points
for transformation were obtained by the tool for the calculation of the Jacobi
projection (GIS Research Centre Site 2012). Unfortunately, due to an incorrect
transformation in the neighborhood of circular points the map excluded areas
located closer than 20� to the prime meridian and the meridian opposite it. A linear
cartographic grid layer and a point craters layer with coordinates taken from
(Gazetteer of Planetary Nomenclature—USGS 2012) were imposed on the
resulting photomosaic.

Taking into account that the Jacobi projection is based on the relationship
between semi-axes sizes a [ b [ c, in the special case when the polar flattening is
equal to equatorial flattening, it is possible to use the cylindrical projection with
right angle between meridian and parallel in the transverse orientation. The pro-
jection is also present in GIS Research Centre Site (2012). Figure 6 shows a map
of asteroid 433 Eros in this projection. The new pole of the triaxial ellipsoid is the
point of intersection of the equator and the prime meridian, and the major axis

180°0°

180°0°

270°

0° 0°

0° 0°

90°

180°360°

270° 180°360°
0° 0°

Circle parallel

Fig. 4 Cartographic grid in Jacobi conformal projection
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becomes polar. In the case when the minor axis of the initial ellipsoid is equal to its
polar axis, the resulting projection is conformal, as in fact it is a projection of the
ellipsoid of revolution. A map was also created in GeoGraph GIS 2.0 software by
transforming a base global photomosaic of the surface of an asteroid from the

Fig. 5 Map of asteroid 25143 Itokawa in Jacobi conformal projection
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equidistant azimuthal projection of a sphere to transverse cylindrical projection of
the triaxial ellipsoid. The transformation was made by special plug-into the
module of calculating the projections on the local workplace. Therefore only a
small neighborhood of points going to infinity was excluded from a map.

6 Conclusion

Cartographic grids in the transverse conformal cylindrical projection of the triaxial
ellipsoid and in the Jacobi conformal projection have some similarities in the area
of the pole and the neighborhood of central meridian. As a result, the technology
for mapping in these projections also has similar particularities. We use a two step

Fig. 6 Map of asteroid 433 Eros in the transverse conformal cylindrical projection of the triaxial
ellipsoid
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process for transformation of photomosaics: from a simple cylindrical projection
into azimuthal projection first and the transformation of obtained photomosaics to
conformal projection of the triaxial ellipsoid after. There is also an important
feature in common between the transverse conformal cylindrical projection of the
triaxial ellipsoid and the Jacobi projection derivation. In both cases, we first go
from the latitude/longitude coordinate system to the orthogonal curvilinear coor-
dinates on the surface of the triaxial ellipsoid, and then to the mapping on the
projection plane. Only for cylindrical projection the orthogonal coordinates are
latitude and longitude referred to the poles and the equator of transverse system,
and for the Jacobi projection those are elliptic coordinates.
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