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REMOTE SENSING
OF NATURAL MEDIA

Features of the Phase Fluctuation Structure of a Laser Beam
in a Turbulent Medium
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Abstract—A method for reconstruction of the laser beam phase from shearing interferograms using
separation of the amplitude and phase parts of the spatial spectrum is proposed and tested both numerically
and experimentally with a laboratory model of the turbulent atmosphere, which allows purposefully varying
the state of turbulence and controlling its parameters. Amplitude-phase correlation in the fluctuation
structure of the laser beam that passed through turbulent medium is investigated. The recorded correlation
coefficient typical of weak fluctuations varies in the range of 0.2 to 0.3.
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1. INTRODUCTION

Formation of a fluctuation structure of laser beams
was theoretically and experimentally investigated in a
number of works [1, 2]. However, investigations of the
phase fluctuation structure are much fewer in number
than investigations of intensity fluctuations, largely
due to an appreciably more complicated procedure for
detection of variations in the light oscillation phase
and necessity to have instruments specially adapted
to this kind of measurement [3]. Nevertheless, it
is impossible to comprehend the radiation properties
without the information on the phase because it is
the variation in the spatial phase distribution that
dictates the dynamics of the variation in the beam
intensity profile in the turbulent medium. Among
the phase detection methods in use, shearing inter-
ferometry is worth noting, which allows phase and
intensity fluctuations to be detected in parallel. The
main advantages of this method are technical sim-
plicity and availability of optical elements. However,
its practical use requires optimization of the shearing
interferometer parameters, suppression of the noise in
the radiation, and development of the techniques of
interference pattern processing.

Approaches to the processing of shearing interfer-
ograms and relevant algorithms are considered in [4],
but in practice these algorithms do not always ensure
the necessary phase detection accuracy in both static
and dynamic regimes. In this work, we consider
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possibilities of improving the procedure for detection
of phase variations in the laser beam cross section
by constructing new algorithms based on separation
of the intensity and phase data using spectral spatial
filters and subsequent reconstruction of the desired
distributions using the deconvolution method.

2. EXPERIMENTAL SETUP
AND MEASUREMENT PROCEDURE

The amplitude-phase fluctuations of the radiation
were investigated using a setup described in detail in
[5]. Its operation was based on multiple passage of
the laser beam at the wavelength λ = 532 nm with the
Gaussian intensity distribution through a special cell
with a turbulent medium produced by mixing cold and
hot air flows. The intensity of the turbulent processes
could vary with the rate and temperature of the flows.

The phase fluctuation distribution data for the
laser beams that passed through the turbulent medium
were obtained using a shearing interferometer, which
was a glass plate with the surfaces inclined at small
angles. The light beams reflected from the front and
rear surfaces of the plate turned out to be transversely
shifted with respect to each other. As a result of their
relative inclination, a lateral shear interference pattern
was formed, which was recorded by a high-speed
(400 FPS) camera. The video images were transmit-
ted to the computer for processing. An example of a
lateral shear interferogram obtained in the experiment
is shown in Fig. 1(a).

Note that the plane-parallel plate should have a
wedge angle such as to maximize the number of
fringes distinguishable on the CCD matrix. Maxi-
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Fig. 1. Shearing interferogram obtained in the experiment (a) and its spatial spectrum (b); A, B+, and B− are the components
of the spatial spectrum; positions of spectral filters are shown by dashed circles; X and Y are the spatial coordinates.

mization of the number of fringes entails the largest
spatial separation of the spectral components and
rules out their overlapping. If the scale of the intensity
inhomogeneities is close to the period of the interfer-
ence fringes, the interferogram processing will yield
only qualitative results.

3. DESCRIPTION OF THE ALGORITHM
FOR RECONSTRUCTION

OF WAVE INTENSITY AND PHASE

The interferogram processing is based on that the
intensity and phase information in the spatial spectra
is separated in the case of weak turbulence, when
the fringes are continuous and the wave front has no
topological distortions. Thus, if the amplitude-phase
profile of the beam is not heavily distorted, it becomes
possible to separate the information on the phase and
intensity using spectral spatial low-pass and band-
pass filters (LPFs and BPFs) and considerably sim-
plify the phase reconstruction problem, which in the
general case is classified as an ill-posed problem [4].

The processing of the shearing interferogram thus
results in obtaining the data on the phase shift of the
sheared beams and on the sum of their intensities
at particular points of the interferogram. Then the
phase distribution found from the phase shift and the
intensity distribution found from the sum of the inten-
sities can be reconstructed using the deconvolution
method.

We consider in more detail the algorithm for the
reconstruction of the light beam intensity and phase.
Let the wave reflected from two surfaces of the plate
be incident on the screen. The intensity distribution of
the shearing interferogram on the screen is described
by the formula

Iint(r) = I(r) + β2I(r−Δr)︸ ︷︷ ︸
A

+ 2
√

I(r)β2I(r−Δr) cos
[
ϕ(r) − ϕ(r−Δr) + nr

]︸ ︷︷ ︸
B (1)

with expressions A and B carrying information on the
intensity and the phase, respectively. In the above
formula, r is the radius vector of the position of the
point in the image, Iint(r) is the intensity distribu-
tion in the shearing interferogram, I(r) is the desired
intensity distribution of the beam incident on the in-
terferometer, β is the amplitude attenuation factor for
the beam reflected from the rear surface of the plane-
parallel plate, ϕ(r) is the desired phase distribution of
the beam before passing through the interferometer,
Δr is the radius vector of the relative shift of the beam
reflected from the rear surface of the plate measured
in pixels, n = (2πNx/L, 2πNy/L) is the radius vector
characterizing inclination of two reflecting surfaces of
the plate and accordingly inclination of the fringes,
where L is the maximum field size measured in pixels,
and Nx and Ny are the numbers of intersections of the
fringes with the horizontal and vertical lines.

The auxiliary parameters β2 and Δr are easily ob-
tained by passing the beam thorough a narrow round
diaphragm and estimating the intensity ratio and the
relative shift of its images.

Let us describe some auxiliary functions and
transformations needed for processing interfero-
grams. The spectral filters LPF(k) and BPF(k) are
given in the form of super-Gaussian functions with
the center in the middle of the spatial spectrum and
at the centers of the regions where the interference
fringe spectra are localized (hereinafter k is the vector
denoting spatial frequencies).
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The LPF(k) and BPF(k) filters are tuned to cover
the main part of the spectrum. The LPF passes the
spectrum of characteristic intensity inhomogeneity
scales that corresponds to expression A in (1), and the
BPF is tuned to the average frequency of the fringes
that correspond to expression B in (1). Figure 1(b)
shows the structure of the spatial spectrum of the
shearing interferogram and the arrangement of the
filters, the LPF(k) and the two-component symmet-
rical BPF(k).

In what follows we will use fast 2D Fourier
transform designated as F{ }; the region of negative
frequencies can be obtained using the range where
kx, ky >L/2 with kx = mod(kx + L/2, L) − L/2 and
ky = mod(ky + L/2, L) − L/2. We will also assume
that frequencies close to L/2 (on the order of the
Nyquist frequency) have negligibly low amplitudes.

First, we consider the intensity reconstruction
procedure. After the spectral filtration of the intensity
distribution Iint(r) using the LPF we have

LPF(k)F
{
Iint(r)

} ∼= F
{
I(r) + β2I(r−Δr)

}
. (2)

The right-hand side of (2) is a sum of the inten-
sities of the beam and its copy shifted by Δr, and we
can therefore rewrite it as a convolution

ILPF
int (r) =

∫
I(p)GI(r − p) dp, (3)

where the convolution kernel GI(r) = δ(r) + β2δ(r −
Δr) has the form of an L×L matrix with its elements
equal to unity if r = (0, 0), β2 if r = Δr, and zero in all
other cases.

If we solve the deconvolution problem in the spec-
tral representation, the spectral filtration and decon-
volution operations can be united, which allows two
(direct and inverse) intermediate Fourier transforms
to be eliminated. Then, introducing the Wiener filter
W that depends on k in the general case, we obtain

I(r) = F−1

{
LPF(k)F{Iint}F{GI}
F{GI}F{GI} + W

}
. (4)

Here F{GI} means complex conjugation.

Now we turn to the phase reconstruction proce-
dure to be performed in several steps.

Step 1. Using the symmetrical BPF, we separate
those parts of the spatial spectrum which determine
the structure of the interference fringes

BPF(k)F
{
Iint(r)

} ∼= F
{

2β
√

I(r) I(r−Δr)

× cos
[
ϕ(r) − ϕ(r−Δr) + nr

]}
. (5)

Step 2. Using the two-dimensional analogue of
the Hilbert transform [6, 7] and eliminating negative
frequencies by choosing one of the spectral compo-
nents B+ or B− (see Fig. 1(b)) we go, in view of (5),
to the expression

P (r) = 2β
√

I(r) I(r−Δr)

× exp
{

i
[
ϕ(r) − ϕ(r−Δr) + nr

]}
. (6)

The choice of positive frequencies results from
choosing the “+” sign for n. Taking the argument
from (6), we find the quantity ϕ(r)−ϕ(r−Δr)+nr
defined on the interval (−π, π).

Step 3. To obtain a continuous phase distribution,
we join phase discontinuities, first in the direction of
the fastest increase in the number of fringes, e.g., X
when Nx > Ny, and then in the perpendicular direc-
tion. Next, subtracting the linear part nr related to the
constant average inclination of the fringes, we obtain
an expression for the phase shift

f(r) = ϕ(r) − ϕ(r−Δr). (7)

Step 4. To obtain the phase distribution, we use
deconvolution

f(r) =
∫

ϕ(p)Gϕ(r − p) dp, (8)

where the convolution kernel

Gϕ(r) = δ(r) − δ(r − Δr) (9)

is an L×L matrix with the elements equal to 1 if
r = (0, 0), −1 if r = Δr, and 0 in all other cases. Now
using the convolution theorem, we can obtain the
desired phase distribution from the expression

ϕ(r) = F−1

{
LPF(k)F{f}F{Gϕ}
F{Gϕ}F{Gϕ} + W

}
. (10)

The LPF is used here for obtaining a spatial spectrum
of frequencies in the same region as for the intensity.

Note that in the phase reconstruction method de-
scribed above the phase is reconstructed accurate to
a constant value. This is however insignificant since
most often it is needed to know phase variations.
It should also be borne in mind that the shearing
interferometry results are incomplete if the shearing
direction coincides with the direction of the “folds”
of the wave front of the beam under investigation. In
the latter case, we can speak about the zero average
phase effect along the beam shearing direction.

Thus, having independent distributions of inten-
sity (4) and phase (10), we can investigate correla-
tions in the light beam intensity and phase variations.
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Fig. 2. Model and experimental intensity and phase distributions. (a) Gaussian intensity distribution (model), (b) wave front
distortions (model), (c, d) intensity and phase distributions reconstructed from the model interferogram, and (e, f) intensity and
phase distributions reconstructed from the real interferogram (see Fig. 1(a)). The X and Y coordinates are presented in relative
units.

4. TESTING RESULTS
AND EXPERIMENTAL DATA

Let us numerically test the above phase recon-
struction method. As a test light structure, we choose
a Gaussian beam with two bell-like wave front dis-
tortions π and −π/2 high. The intensity and phase of
this beam are given by the expressions

I(r) = exp
(
|r − c|2

252

)
, (11)

ϕ(r) = π exp
(
|r − c|2

82

)

− π

2
exp

(∣∣r − c −
−−−−−−→
(15,−19)

∣∣2
102

)
, (12)

where c is the radius vector of the screen center posi-
tion. The shift of the beams Δr in the interferogram
plane is determined by the radius vector (16, 1), the
numbers of the fringes in the horizontal and vertical
directions are Nx = 1 and Ny = 17, and the coefficient
β2 is 0.82 (these parameters correspond to the ex-
perimental conditions). Intensity and phase distri-
butions (11) and (12) of the tested beam are plotted

in Figs. 2(a,b). Constructing a shearing interfero-
gram that corresponds to the test beam structure and
applying to it the above-described phase and inten-
sity reconstruction procedure, we obtain distributions
presented in Figs. 2(c,d). As is evident from the
figures, the reconstructed wave front generally follows
the profile of the original one; a slight difference of the
reconstructed phase distribution from the initial one
is due to the zero average phase effect along the beam
shearing direction in the interferometer.

The above approach was also applied to the pro-
cessing of the shearing interferograms obtained di-
rectly in the experiment. Here are the data related to
the interferogram shown in Fig. 1(a). It corresponds
to the regime of a weakly turbulent medium in a mul-
tipass cell. Processing of a real interferogram requires
considering the effect of the negative factors that arise
first of all from the noisiness of the light field. When
the noise of the image is comparable with the visibility
of the fringes, uncertainty appears in the estimation
of the phase values. This is manifested first of all at
the periphery of the field under processing. Unlike the
case with intensity, which is smoothly brought to zero
at the periphery of the distribution (physically or by
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Fig. 3. Local temporal fluctuations of intensity I (a) and phase ϕ (b). The correlation factor is 0.3.

software), the choice of the preferable phase value is
not obvious. Changing over to a narrower aperture
does not solve the problem since this complicates
phase joining related to the cyclicity of the Fourier
method at the boundaries of the image. The intensity
and phase distributions obtained from the process-
ing of the interferogram are presented in Figs. 2(e,f).
Since the transmission beam was only slightly dis-
torted due to weak turbulence of the medium, the
beam intensity profile has a near-Gaussian bell-like
shape, as is seen in Fig. 2(e). The phase distribution
(Fig. 2(f)) is close to homogeneous at the center of
the beam while at the periphery considerable pertur-
bations of the phase structure occur for the above-
mentioned reason.

On processing a series of shearing interferograms,
we obtained data on local temporal variations in phase
and intensity. Temporal fluctuations of intensity and
phase for the weak turbulence regime are shown in
Fig. 3. Though fluctuations of intensity and phase
are generally different in character, there is certain
similarity in their variations. The intensity and phase
correlation factors for the near diffraction region cal-
culated from the experimental data varied between 0.2
and 0.3. This correlation reflects the initial formation
stage of the amplitude-phase profile of the beam that
passed through the turbulent medium.

5. CONCLUSIONS

The developed method for determining amplitude-
phase characteristics of laser beams that passed
through a turbulent medium from the shearing inter-
ferograms allows the information on the intensity and
phase fluctuations to be effectively separated. This
makes the algorithms for the reconstruction of the
intensity and phase distributions in light fields simpler

and more reliable. Tests and experimental verification
of the constructed algorithms show that they are well
adapted to the conditions of radiation propagation
through randomly inhomogeneous media and allow,
in combination with high-rate recording of inter-
ferograms, parameters of the probing beam to be
estimated with the required accuracy
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