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ABSTRACT

Objective stereo quality metrics are required by scientific and
manufacturing communities to properly capture, process, en-
code and transmit stereo video. Over recent years several
stereo-video quality metrics have been proposed. In this paper
we address the problem of constructing an objective method
for detecting image areas sensitive to stereo distortions. We
describe a subjective testing methodology whose goal is to
determine how image texture affects human depth perception.
We then construct our pixelwise subjective method of scoring
the sensitivity of image areas to depth-map distortions. Fi-
nally, we perform subjective validation of the results. Possible
applications of the proposed method include incorporating the
resulting predictions into existing stereo quality metrics and
encoding algorithms to achieve better correlation with subjec-
tive measurements.

Index Terms— Stereo vision, stereo image processing,
image analysis

1. INTRODUCTION

Today, content in 3D format is becoming increasingly pop-
ular. To avoid a low-quality end-user experience, the video
industry requires methods for objectively measuring 3D-
content quality. In this case subjective quality-measurement
methods cannot be applied because of their high cost and time
inefficiency. Over recent years several approaches for eval-
uating stereo-video quality have been proposed by different
authors [4, 2, 5, 1, 8]. We discuss these approaches in more
detail in the next section.

In this paper we propose an objective way to determine
the sensitivity of different image areas to depth-map distor-
tion. Our method is based on data collected during several
subjective tests whose purpose was to determine how differ-
ent textures affect human depth perception. This testing il-
lustrated dramatic variations in depth perception for different
image textures. Below, we describe the testing procedure and
discuss the results. The differences in depth perception mean
that texture characteristics should be taken into account when
constructing a stereo quality metric for better correlation with

subjective measurements. Thus, in this research we avoid
addressing the entire problem of developing a stereo-image
quality metric; instead we focus on the significance of depth-
map artifacts for different image areas. Our results, however,
can be merged into new quality metrics, and we expect them
to be especially useful for metrics that are based on a single
image plus a depth-data representation.

Our discussion begins with related work and then moves
on to our subjective testing methodology, the process of con-
structing the texture scoring algorithm and the algorithm’s re-
sults.

2. RELATED WORK

Several efforts to directly apply existing 2D quality metrics
to 3D quality measurement have been undertaken. The au-
thors of [4] evaluated PSNR, VQM and SSIM quality metrics
and reached the conclusion that VQM has a good correlation
with subjective measurements, but subjective results should
remain a “gold standard.” In [2], the authors performed sub-
jective evaluation of the SSIM, UQI, C4, and RRIQA quality
metrics and tried different ways of combining their scores for
the left and right images. Their conclusion was that despite
good correlation of the subjective results with the 2D-image
quality metrics, extensive additional work addressing binocu-
lar distortions is necessary.

In [5], the authors considered binocular distortions using
3D-DCT structure, which consists of similar blocks from the
left and right views. Another full-reference metric proposed
in [1] takes monoscopic and binocular artifacts into account
separately. Monoscopic distortions were computed using a
cyclopean image, and a disparity map was used to compute
binocular artifacts. Both approaches very closely match cur-
rent theories about how the human visual system (HVS) op-
erates.

For the present work we propose a way to model how the
HVS deals with different textures. This information can be
useful in constructing new and more-precise models of the
HVS.

A no-reference metric, proposed in [8] by Anish Mittal et



Fig. 1: Scheme of test-pattern construction.
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Fig. 2: Subjective testing results.

al., was constructed using machine-learning algorithms. The
authors showed good correlation of their metric with [3] and
other subjective data sets. Our work uses similar ideas to fit
subjective data.

3. SUBJECTIVE TESTING

To determine how different textures affect human depth per-
ception, we collected a set of 35 textures with different char-
acteristics. The resolution of each texture was 1920 × 1080.
These textures were then used to generate test patterns simi-
lar to the random-dot stereo images described in [6]; the only
difference was that we used a texture instead of random dots.
In each test pattern we encoded two digits using three-pixel
shifts. The size of two digit bounding box was 400 × 300
and it was located randomly on the entire texture. Humans
can recognize numbers only when such patterns are displayed
as stereo images; they fail to recognize these numbers when
only one view is shown. Figure 1 shows pattern-construction
scheme.

A total of 90 people were invited to take part in the sub-
jective perception testing. The average age of the participants
was 18.4 years. All participants were asked to provide infor-
mation about eye diseases they had and optical power of their
glasses and use them, if glasses were prescribed by doctor.
We used a cinema-like projector system with polarization fil-
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Fig. 3: Examples of textures with the highest (a) and low-
est (b) subjective scores. Numbers on textures correspond to
numbers in Fig. 2

ters to display the test patterns. We showed the first test image
to participants and indicated the correct response, thus offer-
ing a better explanation of the testing procedure. All other
images were shown sequentially for 20 seconds each. Re-
spondents were asked to write down the numbers that they
could see. Finally, we collected all the written response forms
and computed the percentage of correct answers for each tex-
ture (which we refer to as the “texture score”). Originally we
were going to remove all outlying results from the collected
data but there were no sufficient outliers, even the participant
with color blindness (according to information) had typical
not outlying result.

Before developing the objective method, we performed
some manual analysis of the collected data. Figure 2 shows
the distribution of scores for different textures. A noticeable
feature is that the score depends highly on texture. Figure 3
shows examples of textures with the lowest and the highest
scores. Obviously textures with a low score have no clearly
visible structure or edges; on the other hand, textures with a
high score have clearly visible structure and edges.

4. OBJECTIVE METHOD CONSTRUCTION

At this point, the main goal of our research was to develop a
method that estimates a value close to the texture score for the
given texture image–in other words, a method that gauges tex-
ture sensitivity to depth-map distortions. To accomplish this
task, we decided to use machine-learning algorithms, then
solved the two-fold problem of selecting a good feature set
to describe textures in the data set and of selecting a suitable
method for solving the regression problem.
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Fig. 4: Curve-fitting results. Parts (a)–(c) show how different models fit the subjective data set. X axis indicates subjective
score – texture score (percentage of correct answers for each texture) measured during subjective testing. Y axis indicates
predicted score – output of the obtained linear function based on the appropriate feature set. Part (d) shows the RMSE of the
cross-validation check for each model.

4.1. Feature-set selection

Owing to the small learning data set (34 textures, one tex-
ture was withdrawn because it was used for better illustration
of the subjective testing procedure), we were forced to use
a small feature set to avoid overfitting. We used two groups
of features: frequency features and derivative features. Both
of these groups are designed to take into account a range of
frequencies from different bands. Furthermore, we consider
all images to be monochromatic, having pixel intensities be-
tween 0 and 1.

To compute the frequency features, an entire texture
image was smoothed using a Gaussian kernel (σ = 0.5)
to remove high-level noise. Then for each image pixel
(I(x, y)) and its neighbors in horizontal direction, eight fea-
tures (ffreqi (x, y)) were computed using formula (1).

ffreqi (x, y) =
1

|li|
∑
j∈li

|Dj [I(x, y)] | (1)

Here, Dj is the jth 64-point discrete Fourier transform (DFT)
coefficient. The DFT was computed for each pixel and its
horizontal neighborhood. Also, {li} divides the first 32 co-
efficients of the DFT into eight segments with equal length.

Thus, each ffreqi corresponds to an average absolute ampli-
tude of frequencies in the ith band. Finally, to get frequency
features for the entire texture we use the following expression:

F freq
i =

1

|I|
∑

(x,y)∈I

ffreqi (x, y). (2)

Derivative features are based on the image’s second hori-
zontal derivatives and are computed using formula (3).

di(x, y) =
I(x− i, y) + I(x+ i, y)

2
− I(x, y)

fderivi = min(|di(x, y)|, θ) (3)

Therefore, fderivi corresponds to the absolute value of the
second derivative computed in the horizontal direction for a
pixel neighborhood width of 2i, and it is limited by a thresh-
old (θ = 0.009). We limit derivative values using a threshold
to avoid overrating images with very hard edges, since our
assumption is that the HVS perceives no difference in edge
hardness if the edge is already visible. Finally, to get feature
values for the whole texture, we also compute the average of
pixelwise features using formula (4).

F deriv
i =

1

‖I‖
∑

(x,y)∈I

fderivi (x, y) (4)
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Fig. 5: Method application to natural images. Source images are depicted on the left side and results on the right side.

Selection of both feature sets is motivated by the idea to
estimate granularity of the textures and amount of granules of
different sizes. In different ophthalmologic researches were
shown that neurons in human brain are very sensitive to edges
in case of stereoscopic perception, also it was shown [9] that
human ability to correctly perceive stereoscopic stimulus is
highly correlated with its spatial frequency. Thereby features
based on measurement of texture granularity and granules
size have some medical justification.

4.2. Regression problem solution

At this point of the research our goal was to obtain function
that for the given texture computed previously would output
value close to texture score measured during the subjective
testing. Considering that our data set was small, we avoided
complex models and used linear regression to fit the sub-
jective data collected previously. We also applied machine-
learning algorithms, like neural networks and curvilinear
regression, but their performance was significantly lower.
Root-mean-squared error (RMSE) was applied in the cross-
validation check to control the quality of the final model. For
better comparison, we also tested a model that does not take
into account any features but that approximates the training
set as an average score value (default model).

For the frequency, derivative and combined (union of fre-
quency and derivative features) feature sets, three separate lin-
ear models were constructed and tested. The RMSE values
for the default, frequency, derivative and combined models in
the cross-validation check were 0.15, 0.098, 0.089 and 0.069,
respectively. Figure 4 (a)–(c) illustrate how these models fit
the subjective data, and Figure 4 (d) compares each model’s
RMSE with that of the default model. The model relying on
the combined features set had the lowest RMSE, so it was
used to construct the final pixelwise scoring method, which is
described below.

4.3. Final pixelwise scoring

The final scoring method works as follows:

1. Blur entire image with Gaussian kernel (σ = 0.5)

2. For each pixel:

(a) Compute frequency features

(b) Compute second-derivative features

(c) Apply combined linear model described in Sub-
section 4.2



3. Perform cross-bilateral filtering (described in [7]) on
the map of score values for each pixel using the source
image

The main goal of the first step is removal of high-
frequency noise, which distorts DFT coefficients and deriva-
tive values. The second step involves separate computation
of the score for each pixel. The usage of the bilateral filter-
ing in the last step is motivated by the spatial inconsistency of
the metric values (especially along the edges) and its goal is
making the final result smoother preserving strong edges on
the entire image. The results of applying the scoring method
to different images are depicted in Figure 5 and are discussed
in the next section.

5. METHOD ANALYSIS AND VALIDATION

Figure 5 shows the results of the proposed method (based
on combined features set). In the resulting images, brighter
points should be interpreted as a higher score–in other words,
these points are very sensitive to stereo distortions.

Figure 5 (a) shows that the stone with a very strong tex-
ture has a high score, whereas the blurred background, which
lacks details, has a low score. These results are very close to
the intuitive understanding of human stereo perception.

Furthermore, to validate our results we performed one
more subjective test. The depth maps of a set of test im-
ages were distorted in the regions with the highest and low-
est scores (Figure 6 shows examples of distorted depth maps
and their corresponding image). To distort depth maps we
put small rectangular on them with different depth value in
the random position. Such selection of distortion type was
motivated by the goal to make it as noticeable for human as
possible, thus observer’s inability to find such artifact would
mean that area where distortion is located is highly insensitive
to depth map distortions. Observers were then asked to locate
these distortions. The results of this experiment were mostly
in agreement with the scores predicted by the method. Four
participants were shown eight distorted images, for seven of
the images, the participants were unable to find distortions in
regions having low scores, whereas they easily found artifacts
in areas with high scores. For one image the proposed method
predicted that distortion would be clearly visible, but none of
the participants were able to see it. This incorrect prediction
can be explained by the lack of dark textures in our training
data set and by the absence of color features in the feature list;
thus, the curve-fitting algorithm lacked sufficient data to deal
correctly with this case.

6. DIRECTIONS FOR FURTHER WORK

Despite the good correlation of our method’s predictions with
experimental data, as well as partial validation of its results,

(a) Source image

(b) Low-score distortion (c) High-score distortion

Fig. 6: Example of source image (a) and distorted depth maps
(b)–(c).

extensive further work should be pursued. A more represen-
tative set of textures should be collected and scored using the
subjective scoring procedure described in Section 3. Such a
data set will allow addition of more items to the feature set
and will enable use of more-complex models.

To determine how an image’s color and brightness affect
human stereo perception, another subjective test should be
conducted. During this test, participants should be shown a
given texture with different global color transformations. For
example, these transformations might include a global bright-
ness decrease or increase, transformation of a hue component
or reduction in the amount of red color.

Also, the current method is highly dependent on the dis-
play device and viewing distance because the only unit of
measurement was the pixel, so all computations should be
converted to device-independent measurement units.

Finally, practical applications of the proposed method
should be studied, such as construction of a full-reference
quality metric based on a 2D plus depth-map data represen-
tation or involving our method in existing stereo quality met-
rics.

7. CONCLUSION

In this paper we addressed the problem of constructing an
objective method to detect image areas sensitive to stereo dis-



tortions. Our research involved performing several subjective
experiments, the results of which were used to construct the
final method by way of machine-learning algorithms. The
proposed method was then validated using one more subjec-
tive test.
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