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ABSTRACT

The creation of S3D movies by converting 2D captured footage
often introduces depth-map inaccuracies. Such artifacts can
significantly degrade the viewing experience even if they occur
only in unsalient background objects.

In this paper we propose a method for detecting foreground
objects that are stuck to the background. Our method extracts
information about motion in the scene and detects conversion-
related discrepancies between motion strength and depth. We
demonstrate the performance of the method by applying it
to 39 full-length converted 3D movies and by providing the
results of our analysis as well as examples of detected problem
shots.

Index Terms— Stereoscopic video, quality assessment,
stereo matching, 2D-to-3D conversion, depth estimation.

1. INTRODUCTION

Interest in 3D cinema and 3D television is rising continuously,
creating demand for stereoscopic content, but development
of content-generation techniques is much slower. Content
generation comes in three common forms: capture using a
stereoscopic camera system, conversion from 2D footage, and
computer rendering. The last approach relates specifically to
animated films and postproduction effects. Capturing video
using stereoscopic cameras requires alignment of color and
geometry characteristics—a difficult and thus extremely error-
prone process. Considering the recent progress in 2D-to-3D
conversion tools [12, 15], many filmmakers prefer the con-
version approach. This preference becomes obvious when
comparing the ratio of converted/captured films over the last
60 years [18].

Although existing tools greatly simplify the various stages
of the conversion process, the work is still laborious and far
from automated. Mike Seymour [13] lists the main problems
with stereo generation given a 2D source: inaccurate inpaint-
ing of background occlusions, lack of depth texture in fore-
ground objects (the cardboard effect), cropping discrepancies
in negative-parallax foreground objects that cross the screen
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Fig. 1. Example of a problem frame detected using proposed
method: the foreground object is stuck to the background. The
filmmakers failed to draw the actress’s body on the depth map,
so the scene has unnatural perceptual qualities and may cause
visual discomfort.

frame (floating window), aggressive stereo-budget distribution
between neighboring scenes, and general depth-map quality.

“Cardboarding” and other depth-map defects that arise
during 2D-to-3D conversion often diminish the perceptual
experience. The most noticeable problems relate to salient
areas having inconsistencies between their depth and motion
edges [9, 10], which the viewer perceives as in-depth motion
or object deformation.

We aim in this work to provide a tool that automatically
examines depth-map quality, allowing filmmakers to produce
more-accurate depth maps. Our proposed method requires
as input a stereoscopic-3D video sequence and, optionally,
the depth map used during its conversion to 3D format. In
cases where depth information is unavailable, the method es-
timates the disparity map using [14, 22]. It detects problems
by comparing the depth-map edges of each frame with the
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Fig. 2. Workflow of proposed method. The disparity-
estimation step is optional and can be skipped if the original
depth map is available.

motion-strength-map edges. This approach allows us to de-
tect moving objects that are partially present in or completely
absent from the depth map. Since no generally accepted fast
and reliable method of motion estimation is available, we
apply [14] to the sequence of left views and then enhance
an estimated map using spatio-temporal filtering [5, 11, 7].
The final per-frame quality score is the intensity of the depth
and motion mismatch. The per-scene score is the average
of the corresponding per-frame scores weighted by a motion-
estimation confidence value. Section 3 describes each step in
more detail. Section 4 discusses the results of applying the
proposed method to 39 full-length S3D movies. Fig. 1 shows
an example of a detected artifact.

2. RELATED WORK

Over the years researchers have studied 2D-video quality
assessment. Wang [17] offers a comprehensive survey of
progress in this area so far. When assessing the quality of
stereoscopic content, the main particularity relates to multiple
inconsistencies between views and also to depth-budget tem-
poral consistency. Voronov et al. [16] recently proposed an
approach for detecting inter-view color, sharpness, and geome-
try mismatches. Akimov et al. [1] proposed a framework for
channel-mismatch detection.

Quality artifacts in converted content are more diverse and
have undergone relatively little study. Bokov et al. [2] pro-
posed a way to detect the three common problems in converted
S3D content: edge-sharpness mismatch, flat objects, and flat
scenes. Expectedly, their method can detect problems only for
objects that appear in the depth map. In this paper we propose
a complementary solution for detecting foreground objects
that are absent from or only partially present in the depth map.

Our proposed method is a composition of “depth from
motion” extraction and depth- and motion-contour matching.
Both problems are well studied.

(a) Horizontal-motion strength map (b) Vertical-motion strength map

(c) Source left view (d) Overall motion-strength map

Fig. 3. Example maps of horizontal (a) and vertical (b) mo-
tion extracted using a block-based motion-estimation algo-
rithm [14] for the source frame (c). The results are combined
into an overall motion-strength map (d).

A common approach to depth-from-motion extraction as-
sumes optimization of the energy function with the data term
being based on the motion-strength estimate. Zhang et al. [20]
additionally include the temporal-coherence constraint, and
they allow every color segment to rotate in the direction that
reduces energy. Their approach produces depth maps with
extremely high temporal coherence. It takes enormous amount
of time, however, and thus is unsuitable for analyzing long
sequences. A recently proposed edge-aware filter [7] allows
us to employ a less sophisticated approach: we obtain a rough
motion-strength map through a block-based motion-estimation
algorithm [14] and then enhance the result using edge-aware
convolution.

To address the contour-matching problem, several very
precise methods of closed-contour matching have recently ap-
peared. For instance, Xu et al. [19] proposed a method based
on contour-flexibility descriptors. Extension to open contours
is possible but requires extraction of problem edges using a wa-
tershed transform. This transform leads to significant growth
in second-order errors, however. Felzenszwalb et al. [6] pro-
posed a competing approach that uses a hierarchical shape tree.
Unfortunately, this method is not extensible to discontinuous
contours, which are critical to our case because motion extrac-
tion is imperfect and the resulting motion-edge maps contain
numerous discontinuities. Thus, we employ a less precise but
more robust approach to input-contour-map inaccuracies that
is similar to a distance transform [3].

3. PROPOSED METHOD

Fig. 2 shows the scheme of the proposed method for detecting
inconsistencies between object motion and the depth map used
in converting 2D to 3D video. The method input is S3D video
converted from 2D and, optionally, the depth map used during
conversion. The method outputs a per-frame score that can be
interpreted as a perimeter of objects that were absent from the
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Fig. 4. Pipeline of spatio-temporal filtering. This approach
enables us to enhance the rough motion-intensity map that we
obtain from the motion-estimation algorithm.

(a) Mean- and variance-stabilization result (b) Histogram-matching result

(c) Temporal-filtration result (d) Guided-filtration result

Fig. 5. Illustrations of each intermediate stage in spatio-
temporal filtration pipeline from Fig. 4.

depth map. It comprises the following steps:

1. Estimate left-view motion vectors between previous and
current frames.

2. Estimate disparity map between left and right view (if
no depth map is available). We can use a disparity map
instead of a depth map because our method requires
only information about depth-map edges, which match
the disparity-map edges.

3. Compute motion-strength maps using a motion-vector
field refined by temporal and spatial processing to im-
prove its temporal coherence.

4. Perform edge matching between motion-strength and
depth maps.

5. Compute area of motion-strength-map edges that are
absent from the depth map. This area is the final frame
score.

To extract both the motion and disparity maps, we employ
the block-based matching approach described in [14]. To
estimate a confidence value for the resulting maps, we use a
left/right-consistency constraint (LRC) [4] (which takes the

(a) Edges extracted from disparity map (b) Edges extracted from motion-strength map

(c) Edges extracted from source frame (d) Intersection of source and motion edges

Fig. 6. Edges extracted from the disparity map (a), filtered
motion-strength map (b), and source frame filtered using a
scale-aware method (c). The intersection of the motion and
source-frame edge maps appears in (d).

form of a previous/current-consistency constraint in the case
of motion estimation).

We compute motion-strength map M as the magnitude of
a motion-vector field (see Fig. 3 (a) and (b)). Then, to improve
the temporal coherence of the motion-strength map, we apply
the pipeline of temporal and spatial filters shown in Fig. 4.

We begin by applying a linear transform to the motion-
strength map; this transform sets the minimum value in the
map equal to 0 and the maximum value equal to 1 (i.e., auto
levels). Fig. 3 (d) shows an example intermediate result for
this step. Owing to changes in camera and object velocity as
well as errors in the motion-vector field, the resulting motion-
strength map contains a good deal of flickering. To reduce this
effect, we set the mean and standard deviation of each frame
equal to the means of these values computed over the previous
n frames (our experiments used n = 10):

M
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In (2) and (3) # denotes the number of pixels in the frame.
Fig. 5 (a) shows an intermediate result from this step. As a



(a) Estimated disparity map (b) Enhanced disparity map

(c) Visualization of final result

Fig. 7. Examples of a disparity map before (a) and after (b)
weighted-median filtering. The resulting visualization (c) that
we offer to content creators is a disparity map overlaid on the
source frame. We use blue to mark the disparity edges and red
to mark any inconsistencies between motion- and disparity-
map edges.

final global transform we apply histogram matching [5] to the
sequence of motion-strength maps. This transform makes the
histogram of each these maps match the mean histogram of
the previous n frames. An example result appears in Fig. 5 (b).

To remove any local flickering that persists after the global
transforms, we use the temporal-stabilization method proposed
in [11] (see the example result in Fig. 5 (c)).

Finally, to improve the consistency of the motion-strength-
map edges with image edges and to fill areas of low confidence,
we use a guided filter [7] with the input frame as the guide.
Fig. 5 (d) shows an example of the final motion-strength map.

Now consider the case where no depth map is available and
the disparity map is estimated using a block-based matching
algorithm.To improve the disparity map we apply a fast version
of the weighted-median filter described in [22]. This filter
refines the object contours and removes extraneous edges from
what should be smooth disparity transitions. An example of
an estimated disparity map before and after filtration appears
in Fig. 7 (a) and (b).

We apply a Scharr operator [8] to both the filtered mo-
tion strength-map and the depth map to detect their edges.
Fig. 6 (a) and (b) shows example edge maps. Since the motion-
strength edge map contains blurred edges caused by guided
filtration, we use edge information from the source RGB frame
to sharpen them. We cannot, however, use the edge map of the
source frame as is, since it contains numerous texture edges
that are not actual object edges. To remove most texture edges
we apply scale-aware filtration [21] to the source frame and
extract the edge map from the filtered frame (see Fig. 6 (d)).
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Fig. 8. Mean scores of the initial algorithm (a) for true- and
false-positive scenes, as well as mean scores computed for
the same scenes using an algorithm modified to exclude RGB
uniform regions (b).

Finally, we compute the intersection of the edges we ex-
tracted from the motion-strength map (M ) and the filtered
source frame (I) using the equation below:

M
′k
i =Mk

i max
j∈Br(i)

(Ikj ) (4)

Here, Br(i) is the neighborhood of radius r = 0 around pixel
i. We use the same procedure with r = 5 to refine the disparity
map.

To get a final quality score for the current frame, we in-
tersect the edges of the refined motion-strength map with the
edges of the disparity map using a method inspired by the
distance transform. For each pixel in the motion-strength edge
map we iteratively calculate the distance value:

Mk,0
i =Mk

i ,

Mk,t
i =Mk,t−1

i − max
j∈Bt(i)

w(i, j)

(
~Mk,t−1
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)
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(5)

In this expression, w(i, j) is a distance weight function:

w(i, j) = exp

(
‖i− j‖2

2σ2

)
(6)

Here, ~Mk,t−1
i and ~Dj are motion-strength and disparity edge

maps extracted using a Scharr operator. The resulting map
contains only edges that are present in the motion-strength
map but are missing from the depth map. These edges likely
belong to objects that do not appear in the depth map. An
example of a final result appears with red lines in Fig. 7 (c).

4. EXPERIMENTAL EVALUATION

We used the algorithm described in the previous section to eval-
uate the false-positive ratio for a set of five movies. To create a
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Fig. 9. Number of scenes with major artifacts detected during
analysis of the films.

validation data set, we manually classified the detected frames
as either true positive or false positive. The data set consisted
of 21 true-positive scenes and 31 false-positive scenes (see
Table 1).

The most common source of false-positive alerts were ob-
jects in front of textureless backgrounds (e.g., sky). Since the
block-based disparity-estimation method fails to reliably esti-
mate disparity for textureless areas, the proposed pipeline is
unable to detect differences in object and background disparity
even if the object appears in the depth map. Moreover, the
human visual system is quite tolerant of missing depth differ-
ences in areas that lack color texture. Thus, the reasonable
approach to decreasing the false-positive ratio is to exclude
from the algorithm’s consideration any objects that appear in
front of a uniform background. We did so by weighting the
output motion-edge map with the RGB variances of the input

Fig. 10. Example algorithm detection results. In these scenes
the foreground objects stick to background. For visibility, the
source frame is overlaid with a disparity map, a disparity edge
map (blue), and a map of disparity edges that the algorithm
found to be absent (red).

frame. Fig. 8 shows a comparison of scores computed using
the original and modified algorithms for scenes from the vali-
dation data set. The modified algorithm manages to distinguish
scenes with artifacts from scenes mistakenly detected by its
unmodified version.

After modifying the algorithm we applied it to 39 S3D
converted movies. In total, the algorithm detected 125 problem
scenes. Fig. 9 depicts the per-film distribution.

The average run time of the proposed pipeline when pro-
cessing a 960× 540 frame size is 3.5 seconds on a 2.67 GHz
Intel Core i7 processor with 24 GB of RAM.

Film True positive False positive

Clash of the Titans 5 5

Conan the Barbarian 4 12

Star Trek Into Darkness 1 7

Harry Potter and
the Deathly Hallows: 4 7
Part 2

The Avengers 7 0

Table 1. Number of true- and false-positive detections by
initial algorithm for the validation data set.



5. CONCLUSION

In this paper we proposed a method for assessing the quality of
converted stereoscopic video. The method detects foreground
objects that are stuck to the background in the depth map and
allows filmmakers to correct the problem.

We demonstrated the performance of our method using a
data set containing scenes from five S3D movies. We reduced
the false-positive ratio by forcing it to ignore regions of uni-
form color. Use of fast depth-from-motion extraction enabled
us to analyze 39 full-length converted S3D films and detect
125 scenes with significant artifacts that could cause visual
discomfort.
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