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Autostereoscopic displays are expected to gain higher popularity in comparison 
with devices that require a viewer to wear special glasses to see 3D. Nonetheless, 
the industry might not be ready to deliver high quality 3D to viewer. In this 
article we examine each stage of the 3D content lifecycle from its creation to 
display in the user’s home. We present various algorithms for solving existing 
problems in each of these steps.

To avoid the creation of low quality 3D, we propose a set of methods for 
automatic quality assessment. To enable easy multiview content creation, a 
disparity estimation method is proposed. We discuss two methods of efficient 
3D compression to save bandwidth in wireless channels. We propose a system 
for 3D display quality assessment to ensure that 3D video quality is not 
affected by the display device. Finally, we describe a system for carrying  
out subjective comparisons that will assist in further improvement of the 
above-mentioned methods.

Introduction
The challenge of video transport in future wireless networks includes the 
increasing prevalence of new data types like HD and 3D. While HD (high-
definition) video increases data size by expanding resolution, 3D (stereoscopic) 
video increases it through the use of dual video streams, one intended for each eye 
of the viewer, or even more than ten video streams for multiview autostereoscopic 
displays, enabling the watching of 3D from several points of view without 
special glasses. Raw 3D video data is thus at least twice the size of raw 2D video, 
although much work has been done to develop compression standards (for 
example, MVC extensions to H.264/AVC) that improve data size in practice.

A viewer’s perceptual system relies on several cues to extract information 
about the relative distance between objects within 3D space. These can be 
divided into two groups: monocular cues and binocular cues. While 2D video 
systems use only monocular cues (such as motion parallax, perspective, and 
occlusions), 3D video systems also utilize binocular cues to give the viewer an 
even stronger sensation of scene depth. For example, binocular parallax refers 
to the difference between left and right images, something the human visual 
system automatically translates into perceived depth. Eye convergence refers to 
the manner in which human eyes point inward at one another as an object gets 
closer to the viewer. 

While conventional approaches to 3D video formatting like Side-By-Side and 
Top-and-Bottom incorporate separate left and right images into a single video 
frame or temporally interlace left and right images sequentially within the data 
stream (frame sequential), newer approaches leverage the notion of a depth map. 
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Depth maps provide information on the relative distances of surfaces within 
a scene from a viewpoint and, when combined with 2D or multiview video 
data, can be used to reconstruct a second view frame at the decoder using 
depth-image-based rendering (DIBR) techniques. Depth maps may be used 
to adjust the disparity between views on different displays and to generate 
multiple views in autostereoscopic displays. They may also be associated with 
compression strategies for transmitting 3D video in capacity-constrained 
wireless networks.

We believe the challenge of transporting 3D video over wireless networks of 
the future requires an end-to-end approach that considers all phases of the 
transport pipeline: content creation, delivery, and display. Content creation 
determines the encoding and formatting of data, matching data to user display 
requirements and creating opportunities for data compression. Delivery 
considerations include the role of data compression and robustness against 
errors that occur due to wireless channel effects. Display considerations focus 
on device characteristics, as well as complexity and performance of rendering 
and playback. How to define and measure quality in 3D video playback for a 
particular device and 3D encoding scheme is a key challenge.

This article reviews our research contributions to each part of this end-to-end 
pipeline within the VAWN research program. The next section, “Content 
Creation: Disparity Estimation and Processing, and Quality Metrics,” discusses 
our work on content creation, including disparity estimation, which is a 
building block for depth map construction, the handling of common errors in 
depth map construction, and our development of VQMT3D, a tool for 3D 
video quality assessment. In the section “Delivery,” we review our contributions 
to 3D data delivery, including multiview video compression based on depth 
map propagation, multiview video plus depth coding with depth-based 
prediction mode, and mixed resolution stereoscopic coding. In the section 
“Display,” we discuss our work on 3D displays including autostereoscopic 
displays, tools for subjective testing, and automatic device testing. In the section 
“Conclusion,” we close with recommendations to the industry community.

Content Creation: Disparity Estimation  
and Processing, and Quality Metrics
There are two common approaches to creating 3D content (besides 
rendering): capturing with a stereo camera system or converting from a 
2D video. Capturing with a  stereo camera rig seems to be the most natural 
way to create stereo video, but typically, captured video suffers from various 
mismatches in camera settings and inaccurate spatial alignment. This 
implies the need for 2D-to-3D conversion instead of capturing for some 
scenes, even for feature films. Converting from a 2D video to 3D has its own 
difficulties.

The process of 2D-to-3D conversion first requires the content creator to 
determine the distance of each pixel from the camera for each one of the 
frames of the entire 2D video. These distance values associated with each pixel 
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are then stored as a separate 2D video called the depth map. While conversion 
can potentially allow the production of 3D content without any impairments, 
the quality of the converted video strongly depends on the quality of the depth 
maps. The labor-intensive nature of depth map creation typically leads to 
low-quality conversion. In this section, we will also discuss methods for visual 
quality estimation for both captured and converted content.

It is also possible to capture 3D content with more than two cameras. Such 
a multiview video capture process is even more challenging because the 
complexity of camera alignment increases with the number of views. This is the 
main reason for limited availability of multiview video content which requires 
autostereoscopic displays. Thus multiview content creators commonly prefer 
an intermediate approach; that is, capturing stereo video with subsequent 
conversion. In the case of stereo-to-multiview conversion, the depth map 
associated with each of the views can be estimated without manual labor. For 
this, the pixels of the left-view image are matched with pixels of the right-view 
image in order to estimate a shift map, referred to as the disparity map. Given the 
disparity map, the depth map can easily be calculated, which enables synthesis of 
additional views.

In this section, we present methods for 3D content creation, beginning with 
our disparity estimation algorithm.

Disparity Estimation
Disparity estimation is an integral problem associated with the delivery of 3D 
content (2D + depth, multiview + depth format), and it plays a direct role in 
both compression efficiency and the need for wireless network capacity to deliver 
3D content to mobile devices. In a two-camera imaging system, disparity is 
defined as the vector difference between the object point in each image relative 
to the focal point. It is this disparity that allows for depth estimation of objects 
in the scene via triangulation of the object point in each image. Figure 1 shows 

Figure 1: Relating depth to disparity
(Source: Ramsin Khoshabeh, PhD thesis: “Bringing Glasses-free 
Multiview 3D into the Operating Room,” UCSD, 2012)
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the inverse relationship between depth z and disparity d, as identified next to the 
figure.

The proposed disparity estimation algorithm consists of five main components: 
similarity measure, support weight, disparity computation, occlusion filling, 
and total variation (TV) refinement. The block diagram of the overall system is 
shown in Figure 2.

For similarity measure, we propose a three-mode census transform with a noise 
buffer to be more tolerant of image noise in flat areas and a cross-square 
census to increase the reliability of census measure. We suggest the effective 
combination of three cost measures formulated as
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where ∆Hqqd , ∆Iqqd , and ∆Gqqd stand for census, color, and gradient respectively.

For support weight, the adaptive support weight is based on the strength of 
grouping by similarity and proximity. We suggest the following conditional 
adaptive support weight:

w(c, q) = �
gg s(∆Scq)

gg s(∆Scq) gg p(∆pcq)

if ∆Scq< E

otherwise
	 (2)

where rs and rp are empirical similarity parameters, ∆Scq is the RGB color 
difference between the center pixel and the neighboring pixel, ∆pcq is the spatial 
distance between pixel c and pixel q, and E is a color difference threshold 
determining the similar color between two pixels.

For disparity computation, once the support weights are calculated, the 
aggregated cost is computed by aggregating the raw similarity measures, scaled 
by the support weights in the window. The aggregated matching cost between 
pixel c and pixel cd is given in the weighted mean as

A(c, cd ) =
Σq ̈ Wc,qd ̈ Wcd w(c, q)w(cd ,qd)c0(q,qd )

Σq ̈ Wc,qd ̈ Wcd w(c, q)w(cd ,qd)
	 (3)

where Wc and Wcd represent the left and right support windows, respectively, 
and the function w(cd, qd) is the support weight of pixel qd in the right 
window. After the aggregated matching costs have been computed within 
the disparity range, the disparity map is obtained by determining the 
disparity dp of each pixel p through the Winner-Takes-All (WTA) algorithm.

For occlusion filling, first a left-right consistency check is performed to 
detect unreliable pixels. The unreliable pixels are defined as the ones that have 
nonmatching disparities on the left and right images.

Then, the reliable pixels within a cross-based neighborhood vote for the 
candidate disparity value at (x, y). The pixels with missing disparity values 
are then filled with the majority votes of the reliable pixels in the voting 
region.
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Figure 2: Block diagram of the proposed disparity 
estimation approach
(Source: Zucheul Lee, PhD thesis: “Disparity 
estimation and enhancement for stereo panoramic 
and multi-array image/video,” UCSD, 2014)
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An augmented Lagrangian method solves the above minimization problem by the 
following steps (at the Kth iteration):

		

Figure 3: Space time minimization overview
(Source: Ramsin Khoshabeh, PhD thesis: “Bringing Glasses-free Multiview 3D  
into the Operating Room,” UCSD, 2012)
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The final step in the algorithm is the TV refinement. The block diagram 
illustrated in Figure 3 captures how this refinement process works at a high level. 
TV refinement involves solving the following minimization problem:

	 minimum µ || f − g ||1 + || Df ||2	 (4)

where g = vec ( g (x, y, t)) and f = vec (f (x, y, t)) are the initial disparity and the 
optimization variables, respectively. The operator D is the spatiotemporal 
gradient operator that returns the horizontal, vertical, and temporal forward 
finite difference of f.
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In the iterative method described above, the first problem (known as 
the f-subproblem) can be solved using Fast-Fourier Transform for fast 
computation.

The performance evaluation makes us of the Middlebury datasets with ground 
truth disparity maps provided by the Middlebury online benchmark.[1][2] Table 1 
summarizes the quantitative results taken from the Middlebury database 
methods. Our method achieves excellent results, ranking 13th out of about 
130 methods and it is the best performing local method.

Methods Rank Avg Err(%) Tsukuba Venus Teddy Cones

Proposed 13 5.12 2.10 0.12 5.46 2.12

PatchMatch 15 4.59 2.09 0.21 2.99 2.47

CostFilter 20 5.55 1.51 0.20 6.16 2.71

InfoPermeable 21 5.51 1.06 0.32 5.60 2.65

GeoSup 28 5.80 1.45 0.14 6.88 2.94

AdaptDisCalib 37 6.10 1.19 0.23 7.80 3.62

SegmentSupport 53 6.44 1.25 0.25 8.43 3.77

AdaptWeight 67 6.67 1.38 0.71 7.88 3.97

Table 1:  Local method performance evaluation on the Middlebury datasets.
(Source: Zucheul Lee, PhD thesis, “Disparity estimation and enhancement for stereo panoramic and multi-array 
image/video,” UCSD, 2014)

To assess the performance of the proposed method quantitatively on stereo 
videos, we use five synthetic stereo videos with ground truth disparity from 
the University of Cambridge.[3] We compare three methods without occlusion 
filling to compare their performance. The LASW method ranks 67th and the 
Cost-filter, which is one of the best performing local methods, ranks 20th 
on the Middlebury benchmark. Table 2 shows the average percentage of bad 
pixels over all frames and illustrates that the proposed method has the best 
performance.

Video # of frames LASW CostFilter Proposed method

Tunnel 99 1.435% 2.157% 0.997%

Book 40 5.933% 4.919% 3.601%

Temple 99 10.15% 10.70% 10.36%

Street 99 9.978% 7.305% 7.246%

Tanks 99 5.714% 4.826% 4.811%

Table 2: Performance comparison of methods on five stereo videos
(Source: Zucheul Lee, PhD thesis, “Disparity estimation and enhancement 
for stereo panoramic and multi-array image/video,” UCSD, 2014)
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Depth Upsampling and Processing
As mentioned earlier, the depth map is critical for efficiently displaying and 
transmitting 3D content, especially for multiview displays where multiple views 
can be generated at the display using the depth map rather than transmitting 
each view separately. The more accurate the depth map, the more efficiently the 
content can be compressed. This reduces the capacity needed when sending  
over a wireless network and allows a higher quality rendering to be achieved.  
A depth map is typically estimated using stereo vision systems and the disparity 
estimation procedure; however recent advances in capture technology also allow 
capturing the depth maps directly using real-time depth sensors. Regardless 
of whether the depth maps are estimated or directly captured, depth maps 
contains errors. These errors can be roughly categorized into two broad 
categories:

•• Errors in transition areas: Inadequate calibration, occlusion areas, or motion 
artifacts often lead to wrong depth values at object boundaries when aligned 
with color images.

•• Random noise on geometrically flat or smooth surfaces: Properties of the 
object surface, lighting conditions, or systematic errors may generate noise 
on the surface.

In our work, we investigate a method that can fix both of these errors. Our 
method takes a color image I and a corresponding lower resolution depth 
map D as inputs. The process consists of upsampling, sample selection, 
sample refinement, and robust multilateral filtering of the depth map. Before 
the refinement step, we begin by measuring the depth reliability and finding 
the unreliable regions. In this sample selection stage, for every pixel in the 
unreliable region, we collect depth samples from reliable regions and select 
the best sample that yields the highest fidelity. Then these samples are refined 
by sharing their information with their neighbors’ selected samples. Finally, 
a robust multilateral filter is applied to reduce noise in smooth areas, while 
preserving sharpness along the edges.

The proposed method has been implemented with GPU programming and 
tested on a computer with an Intel® Core™ i7 2.93-GHz CPU and an NVIDIA 
GeForce GTX 460* graphics card. Our implementation can produce an output 
of 26 fps on average for a 640×480 input video.

For a quantitative comparison with the state-of-the-art methods presented 
by Garcia et al.[4], we utilize the Moebius, Books, and Art scenes from the 
Middlebury dataset.[5] In this dataset, the disparity maps are of the same 
resolution as the color images. Hence, we generated the input disparity maps 
by downsampling the ground truth by a factor of 3x, 5x, and 9x.

Garcia et al.[4] use the structural similarity (SSIM) measure to compare the 
evaluated methods; however it is not appropriate for evaluation in this context. 
SSIM cannot yield meaningful results for the regions with unknown depth values 
and Middlebury’s ground truth disparity maps contain such regions. Instead, for 
a fair comparison, we calculate the average percentage of bad pixels 
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In addition, we further evaluate our refinement method by applying the 
algorithm to all the disparity maps generated by the methods submitted to  
the Middlebury stereo evaluation. Figure 5 shows the improvement in terms 
of the percentage of bad pixels. Note that the proposed method improves the 

Dataset JBU[6] PWAS[7] AMF[4] Proposed

3x 7.43 4.68 4.5 3.62

Moebius 5x 12.22 7.49 7.37 4.87

9x 21.02 12.86 12.75 9.02

3x 5.4 3.59 3.48 2.38

Books 5x 9.11 6.39 6.28 3.58

9x 15.85 12.39 12.24 7.11

3x 15.15 7.05 6.79 5.07

Art 5x 23.46 10.35 9.86 6.91

9x 38.41 16.87 16.87 11.7

Table 3: Quantitative comparisons (average percentage of bad pixels)
(Source: Kyoung-Rok Lee, PhD thesis, “Accurate, efficient, and robust 3D 
reconstruction of static and dynamic objects,” UCSD, 2014)

with an error threshold of 1 for all known regions. In this measure, pixels with 
a disparity error greater than the threshold are regarded as bad pixels. This is the 
same scoring scheme employed in the Middlebury evaluation. Figure 4 and  
Table 3 show that our method performs better than all the competing methods.

(a) Color image (b) Ground truth (c) JBU (d) PWAS (e) AMF (f) Proposed

Figure 4: Visual comparison on the Middlebury dataset. The upsampling methods include: (c) JBU[6], (d) PWAS[7], 
(e) AMF[4], (f) proposed method
(Source: Kyoung-Rok Lee, PhD thesis, “Accurate, efficient, and robust 3D reconstruction of static and dynamic 
objects,” UCSD, 2014)
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disparity estimates for the majority of the methods. One limitation of the 
proposed algorithm is that its performance drops when the input images are 
small and complex, or when the initial disparity estimates contain significant 
errors.

VQMT3D: Video Quality Measuring Tool for 3D
The quality of experience for any video viewing is important, especially for 3D 
and multiview content. As such, it’s important to understand all the different 
aspects of 3D that affect the end user quality of experience. As such when it 
comes to evaluating the rate vs. distortion/quality tradeoff for delivering the 
content, the communications rate, pre- or postprocessing, and end user quality 
can all be jointly optimized. Therefore, significant effort in this project went 
towards understanding 3D video quality impairments and towards creating 
tools that can help identify these issues. A cinematographer of a 2D film 
should consider many factors simultaneously, such as scene composition, color 
camera settings, light, focus position, depth of field, and amount of zoom. A 
cinematographer of a stereoscopic film additionally pays attention to depth 
budget distribution and various cameras cross-settings, such as geometry, color, 
blurriness, and time synchronization.

We have checked the quality of 30 well-known films (besides converted films) 
and found more than 1000 frames with inter-view mismatches or excessive 
parallax.[8] In summary, we have concluded that manual quality control leaves 
a lot of artifacts even in released versions, resulting in less consistent and thus 
less redundant video-content, which is harder to compress. Therefore process 
automatization is a necessary and important requirement in stereoscopic video 
creation.
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Figure 5: Percentage improvement in terms of number of bad pixels after applying the proposed algorithm to all the 
109 methods on the Middlebury stereo evaluation[2]

(Source: Kyoung-Rok Lee, PhD thesis, “Accurate, efficient, and robust 3D reconstruction of static and dynamic 
objects,” UCSD, 2014)
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We started a project to automatically detect all common problems (Video 
Quality Measurement Tool 3D). Within the project, we developed a 
distributed system that produces per-frame charts of each metric and 
automatically extracts problem frames. Finally, the quality-estimating report 
is generated. We have already published four reports and collected feedback. 
More than 20 stereographers provided valuable feedback on found artifacts, 
and their comments were included in our reports.

Some films are captured in 2D and then converted to S3D at the 
postprocessing stage to avoid various mismatches during S3D capturing. 
However this approach produces its own specific artifacts, with no reliable 
classification. Currently, we propose algorithms to detect the cardboard effect 
and edge-sharpness mismatch artifacts. In future work, we plan to investigate 
other artifacts.

We believe that our work will motivate the development of stereoscopic video 
quality standards. In relation to VAWN program goals, that means that 
network traffic will be decreased since low-quality stereoscopic video contains 
inter-view mismatches requiring extra bits from encoder.

Quality Issues in Stereo Video Capturing
Usually, the binocular impairments belong to one of the following types:

•	 geometry mismatch

•	 color mismatch

•	 sharpness mismatch

•	 time asynchrony

We designed a set of methods to automatically estimate each of them 
excluding time asynchrony. Another problem with stereoscopic videos is 
excessive parallax that causes accomodation-vergence conflict. We have a 
method to detect potentially problematic frames with respect to excessive 
parallax.

Excessive parallax. Many authors[9][10][11][12][13][14] consider the accommodation-
vergence problem caused by excessive parallax to be the primary cause of visual 
discomfort and fatigue associated with viewing 3D. The problem, in essence, is 
that under natural viewing conditions, vergence and accommodation stimuli are 
equal to each other, whereas in stereo films, they can be significantly different 
due to excessive horizontal parallax. Normally, even in natural viewing, there 
exists a certain degree of tolerable mismatch between accommodation and 
vergence, since neither mechanism is ideal and both have limited accuracy 
and sensitivity. A large depth of focus makes accurate accommodation useless 
because retinal image quality is constant when changing accommodation by 
(0.2–0.3) D, an exact tuning to the object distance appears to be excessive, 
and accommodation mechanisms perform only minimal adjustment. From a 
functional point of view, high accuracy is not very important. On the contrary, 
a viewer must see clearly both the object of interest and its surroundings. Some 
quantitative data on this topic is provided by Daum.[15]

“We believe that our work will 
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Geometry distortions. When stereo images are displayed on a screen 
frontoparallel to the viewer so that horizontal lines on the screen are parallel 
to the line joining the eyes, all the conjugated points corresponding to virtual 
objects in the spatial scene should have only horizontal displacement, not 
vertical. Indeed, in the real world, any point in space, along with the two 
eyes of the viewer, defines the epipolar plane that intersects the screen in a 
horizontal line. Therefore, the rays directed from the eyes to a single object 
should intersect the screen at points located on horizontal lines; that is, at 
points displaced horizontally on the screen. Thus, to simulate a real scene, a 
correct stereo pair should have no vertical disparities, and on the screen, the left 
and right images must be presented without vertical disparities.

At the same time, it is necessary to take into account that in natural vision, 
vertical disparities are usually present. For example, in cases where the distances 
from the left and right eyes to the object in view are different, the two retinal 
images will be of different sizes in both horizontal and vertical dimensions. 
Psychophysical experiments reveal that the vertical-disparity gradients 
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Figure 6: Example of a parallax control chart for the movie Pina. The parallax clearly differs from scene to scene and 
a large parallax is achieved only in a small portion of scenes.
(Source: Lomonosov Moscow State University, 2013)

We designed an algorithm to detect excessive-parallax scenes.[16] It can be briefly 
summarized by the following steps:

1.	 Rough estimation of the inter-view disparity map

2.	 Disparity map filtering

3.	 Creation of a distribution graph that shows the number of pixels according 
to the disparity in the timeline. Beforehand, we ask the user to input the 
display system characteristics where the maximum artifact-free parallax level 
can be obtained.

4.	 Detection of the problem scenes.

An example of parallax monitoring graph is shown in Figure 6. We then mark 
frames that have a parallax exceeding a certain value.



Intel® Technology Journal | Volume 19, Issue 1, 2015

Delivering Enhanced 3D Video   |   173

significantly affect perception of 3D form, depth, and size.[17][18][19] Regarding 
quantitative data, Stevenson and Schor in 1997[20] found that matching stereo 
images is not restricted to epipolar lines and that people are able to estimate 
depth accurately even in cases of vertical disparities up to 451 (retinal angular 
minute). Currently we estimate vertical parallax and tilt.[16][21]

Color mismatch. It is well known that under natural viewing conditions 
involving a real scene, the binocular visual mechanisms use not only geometric 
disparities (cues based on the relative positions of objects in depth) but also 
differences in luminance, contrast, and color between the left and right 
images, as well as asynchrony in their temporal changes.[22] In particular, 
local differences in luminance are characteristic of images containing lustrous 
surfaces and transparent objects. In this way, color and luminance differences 
can cause false perception. Our system of binocular vision, however, is 
sufficiently robust to handle color differences between views. Recently, new 
data has surfaced indicating that depth perception can survive significant 
interocular differences in luminance levels up to 60 percent.[23][24]

Our metric of color differences is described elsewhere.[16][21][25]

Sharpness mismatch. The effect of blur can significantly affect binocular 
perception. Specialists in binocular vision have long been aware that when 
image blur is asymmetric, the quality of the binocular percept is determined 
mainly by the sharper of the two images. In particular, this conclusion was 
mentioned by Stelmach et al.[26] This conclusion is true only for a certain range 
of stimulus parameters, however. A more recent study[27] has shown that the 
perceived quality of an asymmetrically degraded image pair is roughly the 
average of both perceived qualities when one of the two views is degraded 
by very strong JPEG compression. Kooi and Toet[28] also note that fusing a 
good image with a blurred image requires a few more seconds than fusing the 
original image pair. Unfortunately, insufficient data is available (concerning 
various questions that need to be clarified) to perform a comprehensive analysis 
of the issue.

A detailed description of our sharpness-mismatch detection algorithm is 
presented elsewhere.[21][25] The metric is designed to detect differences in high 
frequencies caused by focus mismatches and also by inaccurate postprocessing, 
differences in motion blur, and asymmetric compression.

Quality Issues in Stereo Video Conversion
Converted videos are potentially better for VAWN goals since there exists a 
ground-truth sequence of depth maps, thus they can be easily represented in 
2D+Z or MVD formats (we will discuss the advantages of these formats for 
compression in the section “Delivery”). However, the process of conversion 
requires significant manual work (including depth drawing), thus the price/
quality ratio is low, resulting in audience distrust. Our research on the quality 
of captured stereoscopic video motivates us to study the quality of 2D-to-3D 
conversion. We believe that our work will improve quality of stereo creation by 
2D-to-3D conversion.

“Our system of binocular vision, 

however, is sufficiently robust to 

handle color differences between 

views.”

“Our research on the quality of 

captured stereoscopic video motivates 

us to study the quality of 2D-to-3D 

conversion.”
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Edge-sharpness mismatch. The term edge-sharpness mismatch (ESM) describes 
defective stereo pairs with specific asymmetric impairments. It refers to any 
inconsistencies in object edges between the stereoscopic views (edge-sharpness 
variation, edge doubling, and so on). Under the viewing conditions in a real 
environment, such situations rarely occur. In the case of 2D-3D conversion, 
however, the likelihood of ESM occurrence can be rather high. During the 2D-3D 
conversion workflow, ESM can be caused (besides an inaccurate depth map) by:

•• Use of a “rubber sheet” occlusion-filling technique, defined as warping the 
pixels surrounding the occlusion regions to avoid the explicit occlusion-
filling step (Figure 7a)

•• Lack of proper alpha-channel treatment (Figure 7b)

•• Simple occlusion-filling techniques where background or foreground pixels 
are stretched across the entire occluded region (Figure 7c)

Our proposed approach[29] is based on edge detection and matching:

1.	 Disparity map construction

2.	 Estimation of edge map for each view

3.	 Matching edge pixels using disparity map

(a) Result of “rubber sheet” occlusion filling	 (b) Result of the absence of proper alpha channel

(c) Result of a very simple occlusion-filling technique 
based on stretching foreground and background pixels

Figure 7: Examples of edge-sharpness mismatch. Each example is a magnified fragment of a 
stereoscopic picture
(Source: Lomonosov Moscow State University, 2014)
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4.	 Per-pixel edge sharpness mismatch estimation

5.	 Rejecting the results when the background changes significantly

Cardboard effect. Cardboard effect is a term referring to an unnatural flattening 
of objects in perceived visual images (the objects look like pieces of cardboard 
placed parallel to the screen). Long before video professionals gained widespread 
experience with stereoscopic movies, stereo photographers observed the 
cardboard effect. These photographers analyzed its causes and tried to formulate 
shooting conditions that minimize it.[30] In the case of 2D-3D conversion, 
the cardboard effect refers to mismatch between the perceived frontal size of 
the object (the visual angle occupied by the object in the visual field) and its 
perceived depth (thickness).

The proposed algorithm[29] for flat foreground objects detection consists of the 
following steps:

1.	 Disparity map construction

2.	 Mean-shift segmentation of the obtained map

3.	 Calculation of the median disparity value for each segment

4.	 Calculation of the variance around this value

Delivery
The main problem underlying the VAWN program is the rising amount 
of video content being transferred over wireless networks while network 
bandwidth remains the same. The increasing popularity of 3D video makes 
the problem even worse because of the additional data required for 3D. 
Hence the delivery of 3D video with the least amount of bitrate increase  
is desired. Although some communication networks cannot be extended for 
various reasons (such as cost and physical limitations), a 3D-specific video 
codec can help minimize this additional bitrate. However, most existing  
3D video compression methods yield a significant bitrate increase over  
their 2D counterpart to achieve the same perceptual quality.

The current standard for 3D video compression is the multiview coding 
(MVC) extension of H.264/AVC. Bitrates generated by MVC are linearly 
proportional to the number of encoded views[31], and thus not scalable for use 
with autostereoscopic displays. Moreover, with multiview video representation, 
the number and location of the views are restricted to the captured data. In this 
work we pay attention to promising encoding techniques based on depth map 
storage that address the limitations of MVC. Specifically, two approaches to 
compact depth map storage are presented based on existing MVD and 2D+Z 
formats (Figure 8).

Multiview + depth format (MVD) assumes depth map storage and 
transmission for one view or several views. The presence of a depth map 
significantly decreases the complexity of intermediate view generation. This 
format is also compatible with display systems with two views. The size of 
additional data is even larger here than for pure multiview formats. However, 

“In this work we pay attention to 

promising encoding techniques based 

on depth map storage…”
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the additional depth information enables new coding tools that exploit the 
correlation between the views of a 3D video better than existing tools. With 
depth-based 3D video, it is possible to synthesize virtual views and use them 
as a means of prediction within the codec. Currently, the Joint Collaborative 
Team on 3D Video Coding Extension Development (JCT-3V) is working on 
the standardization of a depth-based 3D video representation and its coding 
methods.

The 2D+depth format is supported by the 2D-to-3D video conversion industry, 
Dolby 3D format[32], and several TV set manufacturers. This format provides 
a 3D video experience with minimal additional data. The depth map can be 
compressed very effectively so almost all available bandwidth is used for 2D 
streaming. Consequently, this format is the most promising one in terms of 
compatibility with 2D devices and minimal additional data. This section presents 
three main options for reducing the overall bitrate needed to deliver 3D content: 
(1) 2D+depth compression, (2) MVC+depth compression, and (3) mixed 
resolution coding. 

Multiview Video Compression Based on Depth Map Propagation
Let’s consider the additional data that should be added to a 2D video stream to 
provide a 3D video experience. To minimize this data, we use the most effective 
3D video format: 2D+depth.

The naïve solution for 2D+Z compression is using conventional 2D video 
codecs for both 2D and depth maps. This approach doesn’t take advantage 
of the strong correlation between the 2D view and depth map. The depth 
map also has a structure different from the video structure, and since it has 

Format

2D data

Additional
data

(for 3D)

Depth

View 2 View 2

Depth Depth 1

Depth 2

View 2

View 1
Single
view

2D 1 Depth Multiview
Multiview 1
one depth

Multiview 1
depth

View 1View 1

Figure 8: Comparison of 3D video formats in terms of additional data required for 
extending 2D video to 3D
(Source: Lomonosov Moscow State University, 2013)
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no texture, conventional video compression approaches are not efficient. 
There are several methods for utilizing correlation in 2D video and depth 
maps. For example, Choi et al.[33] use a 2D image to increase the frame rate 
and resolution of the depth map obtained using a depth sensor. Modified 
cross-bilateral filtering is used to increase spatial resolution. Frame rate is 
doubled using temporal interpolation based on motion vectors estimated 
from 2D video. Depth map restoration from sparse key frames requires 
a more complex interpolation procedure because of the larger difference 
between distant frames.

De Silva et al.[34] perform joint compression of video and depth maps using 
motion vectors estimated from the source video. The input scene is segmented 
and extracted background is transmitted independently. Depth maps are 
considered only for foreground objects. Additionally, motion vectors are 
estimated and transmitted with the compressed video stream.

Our proposed approach is based on sparse representation of depth maps. The 
general pipeline is shown in Figure 9, where only downsampled key  
frames for a depth map are compressed. In the simplest case, the encoder for 
a depth map only selects every nth frame, downsamples it, and compresses 
using any conventional image or video codec, yielding a very low bitrate for the 
depth map.

Left view Right view

Depth map2D video

Depth map estimation

2D video
processing

H.264
Encoding

Compression

Decompression

Compressed 2D video

Decoded 2D video
Decoded 2D video

Decoded depth map

...

Temporal
restoration of
intermediate

frames

Compression

Key

Proposed
block

Third party
block

Data

Downscaling

Compressed depth map

Compression based on
depth propagation

View NView 1

View synthesis

Decompression
Resolution
restoration

Key frames
selection

H.264
Decoding

Figure 9: Depth propagation-based compression scheme for 3D video
(Source: Lomonosov Moscow State University, 2013)
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The decoder decompresses the 2D video stream and then uses it for depth 
map decompression. First the decoder restores spatial resolution of the depth  
map for key frames using appropriate decoded high-resolution 2D frames.  
This can be done using numerous depth map upscaling methods.[4][6][35] 
The method is used by YUVsoft Depth Upscale[35], where rough edges 
in a low-resolution depth map are enhanced using a high-resolution  
2D color frame.

Then the decoder restores missing depth maps for the rest of the frames. We 
use block-based motion estimation to get information about object motion 
from the 2D video. The depth map is assumed to be correlated to 2D video 
motion flow and the depth map can be interpolated using key frames and 
motion information. Appropriate nonlinear edge-aware postprocessing is 
used to conceal motion compensation artifacts. Such a propagation procedure 
is held for each video interval between key frames. Depth is propagated 
from the first and the last depth key frame of the interval. Then the two 
depth maps are merged according to the degree of confidence in motion 
information, based on Simonyan et al.[36]

The final decoding step depends on the target device, where the required views 
are generated using a dedicated algorithm.

Quantitative Results
The performance of depth-propagation–based compression is compared with 
depth map compression using x264 codec. 2D video compression is the same 
for both cases, so the bitrate of 2D video is not considered. We consider only 
the bitrate of additional data (that is, depth map bitrate).

Due to the complexity of stereoscopic perception there is no generally 
accepted method for quality measurement. Research in this direction is still in 
progress.[37][38] The most common approach is using a conventional 2D quality 
metric (such as PSNR). Direct measurements of the depth map difference 
before and after compression are not relevant because the depth map 
influences synthesized view quality in a nontrivial way. Therefore 2D quality 
metrics are applied to synthesized views, for example by Lee et al.[39] Both 
methods were used for quality evaluation of the propagation-based approach. 

In our experiments, we used constant intervals between key frames. We tested 
intervals of 10, 20, 40, and 100 frames. Depth key frames were downscaled 
using factors 1, 2, and 4. For key frame compression we used the JPEG 2000 
image codec. Full-resolution key frames are restored using YUVsoft Depth 
Upscale.[35] The full depth map is restored from key frames using YUVsoft 
Depth Propagation.[40] We took the best settings of the proposed propagation 
scheme in terms of quality and bitrate.

The proposed technique demonstrates very promising results (Figures 10  
and 11). It outperforms depth map coding using x264 up to 15 times in 
bitrate while preserving the same quality. The highest gain is achieved on the 
lowest bitrates.

“Due to the complexity of stereoscopic 

perception there is no generally 

accepted method for quality 

measurement.”
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While the depth-propagation–based approach demonstrates good potential 
compression, there are a number of ways it can be improved. One of the 
improvements is adaptive key frames selection. Static scenes require a lower 
bitrate, so the algorithm can use sparser key frames. Dynamic scenes must be 
encoded using dense key frames to achieve acceptable quality. Starting from 
a sparse arrangement, we add key frames to maximize the target metric. An 
example of per-frame SSIM of stereo for a part of the Basketball sequence is 
presented in Figure 12. Adaptive key frames selection demonstrates even more 
gain in comparison with the basic approach with equidistant key frames, 
shown in Figure 13.

Advantages and Disadvantages
The proposed technique demonstrates good compression performance, where 
a quality 3D experience is delivered with minimal additional bandwidth. 
Compression efficiency is achieved at the expense of high computation cost 
of decompression. Depth map propagation on the decoder requires a rather 
large buffer of decoded 2D frames. The number of frames depends on the 
compression rate, which can reach tens of frames. Consequently, a small 
delay at the decoder is inevitable. The depth-propagation–based approach 
inherits all the advantages and disadvantages of the 2D+Z video format. 
This format and MVD support an arbitrary number of displayed views and 
arbitrary parallax tuning in a reasonable range. This capability is important 
due to the variety of existing 3D display sizes and formats. Each of them 
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requires appropriate stereo parameters. The 2D+Z format is also supported 
as a native format in a variety of displays. The 2D+Z format is impossible 
to use for correct processing of semitransparent objects. However, this 
drawback can be concealed by additional data for semitransparent region 
representation. The quality of the final image strongly depends on the quality 
of stereo occlusion processing. The inpainting algorithm for these areas is 
critical, although the inpainting area is typically small. On small screens, 
parallax must be high, but the overall size of the display is low. On the large 
screens, parallax must be small, so the area to fill is not very big. This allows 
one to successfully apply inpainting algorithms.

Multiview Video Plus Depth Coding with Depth-based  
Prediction Mode
An alternative to the 2D+depth compression technique discussed in the 
previous section is to utilize depth information as a complement to existing 
multiview coding (MVC). This section describes how this can be done and 
quantifies the resulting improvements in quality and bitrate needed to deliver 
the content.
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trailer. Only the bitrate of additional data is considered
(Source: Lomonosov Moscow State University, 2013)
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Depth-based Prediction Mode (DBPM)
DBPM allows the use of a synthesized reference picture for prediction without any 
high level syntax changes to the MVC and requires only simple macroblock-
level syntax changes to the standard. It can be used concurrently with existing 
prediction modes of MVC without introducing a significant overhead due to 
changes in syntax.[41][42]

In our codec, the base (first) view video and its associated depth map are 
encoded with H.264/AVC individually. Then while encoding a frame of an 
additional view, a virtual view is rendered from the base view data at the 
corresponding time instance. The virtual view is rendered simply by the well-
known Depth Image Based Rendering (DIBR)[43] algorithm by projecting the 
base view pixels onto the current viewpoint, without any hole filling at the 
disocclusion regions. Once the proposed mode is signaled to the decoder, 
the decoder refers to this reference virtual view and copies the collocated 
macroblock for prediction. If there is additional residual information in the 
bitstream it also adds the residual information. An illustration of DBPM 
is provided in red in Figure 14a along with the DIBR operation, which 
is depicted in blue. A block diagram of the proposed codec is provided in 
Figure 14b.
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Rate-Distortion Analysis
We compare the coding performance of the proposed codec with MVC using 
rate-distortion (RD) curves and Bjontegaard Delta Rate (BD-Rate).[44] RD 
curves measure the coding performance of a codec in terms of a quality metric 
(such as PSNR) and the corresponding bitrate levels. BD rate values measure 
the percent bitrate savings between two RD curves, where negative values 
signify gain. We analyze the rate-distortion performance of DBPM in two 
different contexts. First, we provide results for the proposed MVD codec. The 
proposed codec encodes the texture videos and the depth maps, both with 
DBPM support. In comparison, we use MVC to encode texture and depth 
channels disjointly. Second, to isolate the contribution of the DBPM support 
for depth maps, we analyze its prediction performance in the context of depth 
map coding.

The BD rate results for coding MVD data using the proposed codec versus 
MVC are reported in Table 4. These results show that the proposed codec can 
achieve up to 9.2 percent bitrate savings with DBPM support, and as expected, 
the gains vary depending on the depth map quality. For example, GTFly and 
UndoDancer are among the sequences with the largest gain since they are 
computer-generated sequences with ground truth depth maps. In comparison, 
the depth maps of the Newspaper1 sequence are noisy and consist of both 
temporal inconsistencies and spatial errors. This leads to inefficient coding 
of the depth maps and geometric distortions in the rendered references for 
DBPM. Thus, Newspaper1 is among the sequences that benefited the least from 
DBPM support.

Depth QP PoznanHall2 PoznanStreet UndoDancer GTFly Kendo Balloons Newspaper1

26 -5.26 -3.81 -7.06 -9.19 -2.03 -2.57 -2.55
31 -5.35 -4.04 -5.52 -9.03 -2.53 -3.16 -3.17
36 -4.95 -3.75 -3.93 -8.51 -2.84 -3.33 -3.52
41 -4.49 -3.09 -2.94 -7.50 -2.88 -3.53 -3.64

Table 4: BD rate (%) for coding MVD data, 3 views—measured against MVC
(Source: C. Bal and T. Q. Nguyen, “Multiview Video Plus Depth Coding With  
Depth- Based Prediction Mode,” IEEE Trans. Circuits Syst. Video Technol., 
vol. 24, no. 6, pp. 995–1005, Jun. 2014)

BD rate allows measurement of bitrate savings in a concise manner, yet it fails 
to associate these savings with the absolute number of bits saved. Hence, in 
addition to the BD rate results, we also provide the RD curves for the GTFly 
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sequence, which yields the most gain for the proposed codec. Figure 15 shows 
that the proposed codec can deliver the same quality of MVD data with up to 
900 kbps less bitrate than MVC.

We also provide BD rate results for depth map coding in Table 5. Since depth 
maps consist of piece-wise smooth regions, DBPM faces stronger competition 
against existing MVC prediction modes. Looking at the results in Table 5, 
DBPM proves to be successful with up to 9.9 percent bitrate savings when 
the depth maps are accurate. On the other hand, for depth maps with limited 
accuracy, the encoder chooses DBPM infrequently and the DBPM-enabled 
codec starts to yield slightly worse performance than MVC. These bitrate losses 
are limited to around or less than 1 percent, and they are due to the syntax 
overhead introduced by DBPM.

PoznanHall2 PoznanStreet UndoDancer GTFly Kendo Balloons Newspaper1

1.03 −1.69 −2.98 −7.56 0.08 0.32 0.75

Table 5: BD rate (%) for coding depth maps, 3 views—measured against MVC
(Source: C. Bal and T. Q. Nguyen, “Multiview Video Plus Depth Coding With Depth- Based 
Prediction Mode,” IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 6, pp. 995–1005, 
Jun. 2014)
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Mixed Resolution Stereoscopic Coding
A final technique to reduce the required over-the-air bitrate is to blur 
one eye’s view compared to the other, allowing for a lower overall bitrate. 
Mixed resolution stereoscopic coding (MRSC) relies on the perceptual 
phenomenon of binocular suppression, where if one eye’s view of the world 
is blurry while the other eye’s view is sharp, then the fused 3D percept of 
the scene will appear almost as sharp as the high resolution view and will be 
faithfully represented in depth.[45] Mixed resolution coding implements this 
idea by transmitting a stereo pair comprised of one full resolution image and 
one lower resolution image.

One concern for MRSC is that one eye continually receives a low resolution 
or blurry input. In the following subsection, we investigate the perceptual 
response for two methods of MRSC.[46] The first method, single-eye blur, is 
to blur all frames of the video corresponding to one of the eyes. The second 
method, alternating-eye blur, is to blur alternate frames of each view, such that 
there is one blurry and one sharp frame at each time instance, and the view that 
is blurred alternates with each frame.

There are applications, such as high quality viewing or decoder-side 
processing, for which a full-resolution stereo pair is beneficial. A super-
resolution algorithm for single-eye blur MRSC videos is presented by Jain 
and Nguyen.[47]

Quality Experiment
In order to compare the perceived quality of the two processing methods, we 
asked subjects which of the pair of videos, each processed according to one 
of the two methods, they preferred. We used four high quality stereoscopic 
video clips, four blur levels corresponding to a diameter of 2, 4, 8, or 16 
pixels (1.1 arcmin to 9.0 arcmin) of a disk kernel, and three frame rates: 
30 Hz, 60 Hz, and 120 Hz. Each of the 48 unique test conditions was 
repeated four times for a total of 192 trials, which were tested in random 
order. Stimuli were presented on a pair of CRT displays viewed through a 
mirror stereoscope at a distance of 6.4 feet (6° horizontal per eye). Twenty-
three subjects participated.

Figure 16 shows the proportion of trials where subjects preferred single-eye blur 
over alternating blur, as a function of blur diameter, for the three different 
frame rates. We did not see any consistent difference in preferences for blur 
type between the four different source videos, so we have combined data 
across that factor.

For a refresh rate of 30 Hz it is clear that single-eye-blur is preferred. For 60 Hz 
and 120 Hz, there is no real evidence of a preference below blur diameters of 
8 pixels.

“Mixed resolution stereoscopic 

coding (MRSC) relies on the 

perceptual phenomenon of binocular 

suppression…”
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Fatigue Experiment
In this experiment, we compiled video clips into a single 5-minute source 
video and looped it twice to make a 10-minute exposure. We showed 
subjects this video processed according to each of the two processing 
methods and had them continuously rate their visual comfort level using 
a slider with scores ranging from 1 (very uncomfortable) to 5 (very 
comfortable) using the system presented by Jain et al.[48] Twenty-two subjects 
participated.

The mean scores across subjects over the duration of the test videos are  
shown in Figure 17. For both test methods, the mean scores generally  
range from 3 to 4 (fair to good comfort). The alternating blur method is 
rated higher, with an overall mean of 3.86 compared to 3.74 for the  
single-eye blur.

The dashed lines in Figure 17 indicate the ends of each of the four clips,  
and the dotted lines indicate a scene change. In addition to the general 
preference for alternating blur over time, there is some dependence on the 
type of content as certain clips are less straining to watch than others. For 
instance, the “Looney Tunes” clip from about 2:05–4:25 and again from 
7:05–9:25 reflects the largest difference in scores between the two  
methods, with the alternating blur being preferred. The animation contains 
high contrast, flat textures, and sharp edges. All of these features produce 
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Figure 16: Proportion of trials in which single-eye blur was preferred 
over alternating-eye blur
(Source: Ankit K. Jain, PhD thesis, “Perceived Blur in Stereoscopic 
Video: Experiments and Applications,” UCSD, 2014)
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artifacts under asymmetric blur, which are quite salient in the single-eye  
blur case.

The mean scores are relatively high for both methods considering the level of 
blur applied to the sequence. A 20-pixel diameter was chosen for the disk filter, 
which corresponds to a downsampling ratio of 8.33 in each dimension or about 
69.44 overall.

Display
Usually, the quality of compression is measured by a rate-distortion ratio, 
thus there exist two ways to decrease traffic over networks:

•• to decrease the bitrate for the same distortion level,

•• to decrease the level of distortions for the same bitrate.

This section is mainly about the second approach, but viewing the distortion 
and quality from the end user perspective. For 3D viewing, quantifying quality 
is still an unknown and difficult task. Without a way to quantify quality for 
different bit rates and distortions, it is difficult if not impossible to optimize 
the end-to-end delivery system, which was an objective of the VAWN research. 
The final viewing quality is determined by the quality of the video itself and 
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the display equipment. Thus, it is important to study the quality of the whole 
stereoscopic video life cycle and the problems of automatic stereoscopic-display 
adjustment and choice of the proper content. The first part of this section 
will cover the unique processing requirements needed to render content for 
autostereoscopic displays, which relies heavily on an accurate depth map as 
discussed earlier. Then a tool will be presented that helps to capture subjective 
quality scores efficiently, which can hopefully be used more broadly with the 
industry in order to better quantify 3D video quality for different content, 
bitrate, and distortions. Finally, another tool is presented to help automatically 
compare the quality of the end display, since displays have a significant impact 
on the end user quality. It is hoped that these tools will help move the industry 
towards a deeper understanding of the end user perception of 3D video quality.

Autostereoscopic Display
Various autostereoscopic display technologies have surfaced in recent years.  
In general, they work by projecting images of a scene into the space in front of 
them to create two or more spatially separated perspectives. Then, based upon 
where an individual stands in reference to the display, each eye will perceive a 
different viewing angle, which leads to a disparity between what each eye sees. 
This disparity is translated into depth perception by the human visual system.

Although we typically use an 8-view display for a richer 3D effect, for 
simplicity Figure 18 illustrates a display with just two views using a sheet of 
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Figure 18: A top-down view of a 2-view lenticular display
(Source: Ramsin Khoshabeh, PhD thesis: “Bringing Glasses-free Multiview 3D into 
the Operating Room,” UCSD, 2012)
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lenses called a lenticular sheet. The curved lenses angle the light emitted from 
a traditional LCD in such a way that the image incident on the left eye is 
slightly different from that of the right eye, creating a 3D sensation. As can be 
readily seen from Figure 18, with just a 2-view display, only one viewer can 
perceive 3D from a fixed location. Using an 8-view display allows for eight 
viewing zones with eight different perspectives, also known as sweet spots. 
This effectively allows all onlookers to see 3D from multiple vantage points. A 
typical problem with autostereoscopic displays is that moving between these 
sweet spots can produce an experience that resembles double vision when, for 
example, the eyes are seeing half of two separate views.

While autostereoscopic displays offer users the ability to see 3D without 
having to wear any specialized glasses, they require multiple viewpoints of the 
scene in order to display content. Typically, they require five, eight, or nine 
stereoscopically aligned views in order to properly display a 3D effect. In our 
case, this means that we would need to construct a camera system with at 
least eight cameras. In addition, there are strict requirements that the cameras 
must be as nearly identical to each other as possible, and extremely and fixed 
in orientation for an accurate 3D representation. Therefore, it is impractical to 
capture data with such camera systems. Instead, we limit ourselves to capturing 
the data with just two cameras. With that, it becomes a matter of providing a 
robust stereo-to-multiview conversion solution to take in the camera input and 
visualize it on an autostereoscopic display. Figure 19 shows the result of our 
work rendering the remaining six stereoscopically aligned views given a pair of 
images as input.

Tally: A Subjective Testing Tool
Many labs around the world conduct research that relies heavily on perceptual 
experiments with video. Commonly, data is collected by asking subjects to write 
their responses to stimuli using pen and paper, and then manually entering this 
data into computerized spreadsheets. Not only is this process extremely slow, 

Figure 19: Rendering of six interpolated views from a stereo pair
(Source: Ramsin Khoshabeh, PhD thesis: “Bringing Glasses-free 
Multiview 3D into the Operating Room,” UCSD, 2012)
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it is also prone to error. Some researchers have written custom software to 
automate this process, but it is not generally applicable, is not made widely and 
freely available, does not work for both 2D and 3D content, and does not permit 
testing multiple subjects simultaneously.

We developed Tally[48], a subjective testing tool, as a web-based system to 
solve these problems. Additionally, Tally’s web-based design allows data to be 
accessible from anywhere, allows many people to use the same system with 
their individual history and data securely saved and privately accessible, allows 
experiments to be repeated with identical parameters and methods, and allows 
remote collaboration between labs through a sharing feature.

Our system consists of three major pieces: the desktop application, the 
web front end, and the server back end. The basic workflow of a subjective 
experiment is depicted in Figure 20. Prior to the experiment, the researcher 
uses the web front end to create a test and run it. Then, subjects log into the 
web front end (website) and select the appropriate test to begin. Once they are 
ready, the server tells the desktop application which video to play. The desktop 
application receives the command and plays the video to the display device.

Note that only the file name is sent across the network; the actual videos are 
stored locally on the machine connected to the display. Subjects then vote on 
the video using any web-enabled device such as a smartphone, tablet, laptop, 
or desktop, and their scores are transmitted to the server and recorded. Once 
the video is done playing, the server tells the desktop which video to play next, 
and the process repeats until all test videos have been shown. After the test, the 
server automatically aggregates the data and makes it available for download in 
several different formats.

Tally is free, open source, cross-platform, and very customizable. Any web-
enabled device can be used to vote, most any video player can be used to play 
the videos, and any display device can be used to show the videos. We natively 

1. Display video

Network Network

2. Subjects watch videos

3. Subjects vote using web forms
    and server records votes

4. Server synchronizes video
    display of desktop application

Figure 20: Workflow of the subjective testing tool
(Source: Ankit K. Jain, PhD thesis, “Perceived Blur in Stereoscopic 
Video: Experiments and Applications,” UCSD, 2014)



Intel® Technology Journal | Volume 19, Issue 1, 2015

Delivering Enhanced 3D Video   |   191

support most of the standard test methods of the ITU[49], but also allow for 
custom test methods to be added. Tally, along with full documentation and 
installation instructions, is available for  download at the project website 
(http://github.com/canbal/Tally).

Automatic Device Testing
Finally, the display device itself has a significant impact on the end user 
perceived quality of the 3D video. Therefore, it’s important to understand 
how to evaluate the quality of the display and how different displays compare. 
Eventually, this information could be used to optimize the compression and 
bitrates needed to deliver a good quality of experience that takes into account 
the specific characteristics and quality of the display. The problem of viewing-
device fair comparison existed long before the market of 3D viewing devices 
started growing and some solutions were proposed.[50] Nowadays the problem 
is urgent again. The 3D viewing devices are much more diverse than 2D ones 
and the space of their characteristics has more dimensions. Figure 21 shows a 
partial classification of existing device types.

Absence of a fair comparison methodology leads to unfair competition between 
manufacturers and undermines user confidence in the whole market. Creation 
of easy-to-use software that performs a complete estimation of 3D viewing 
device characteristics and a database with a detailed description of each device 
is needed.

Figure 21: Partial classification of existing stereoscopic devices
(Source: Lomonosov Moscow State University, 2012)
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Content creators are also interested in understanding end-user display devices 
because they could provide device-specific content and require device-specific 
settings for that content.

Proposed Pipeline
Our proposed pipeline is based on the well-known concept of special patterns 
that enable estimation of each individual device characteristic. However, 
understanding patterns is not an easy-to-use approach, especially when the 
required result is a quantitative one. Consequently, we propose a system 
requiring from the user a series of device shots and locating automatically the 
relative position of the shot using special QR codes placed behind the screen, 
robustly estimating device characteristics at each spatial position in front of 
the device (normally, manufacturers declare the best value). The result of the 
measurement is continuous maps of each characteristic spatial distribution 
interpolated from points of shots. We briefly illustrate how the system works  
in the Figure 22. Some common problems for specific technologies are:

•	 Crosstalk

•	 Geometric distortions (stereoscopic two-projector systems)

•	 Time asynchrony (stereoscopic two-projector systems)

•	 Brightness decrease

Figure 22: Brief illustration of our proposed pipeline. A user performs a series of shots from different positions in front 
of the device. The system determines each shot position relative to the device using QR codes placed behind the 
device and estimates a set of available characteristics. Finally, sparsely estimated characteristics are interpolated 
into a continuous map
(Source: Lomonosov Moscow State University, 2013)

Marking

Hand-held shooting

Moreover, some integral characteristics are important to improve viewing quality:

•	 Optimal observing distance

•	 Width of view zones (autostereoscopic displays)

•	 Actual resolution

•	 Actual number of views (autostereoscopic displays)
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Estimated Characteristics
Brightness and crosstalk. Viewing quality of a 3D device can not be expressed by 
one single value. Actually, viewing quality significantly changes with respect to 
the observer’s position. Mainly, it is determined by changes in brightness and 
amount of crosstalk (view mixes). To simplify the testing process, we use the 
pattern from Figure 23b, enabling us to measure brightness and crosstalk maps 
for each view simultaneously.

Resolution. Most of the S3D viewing devices assume decreases in horizontal 
resolution up to the number-of-view-zone times. The exact number depends 
on the amount of crosstalk. Normally, the resolution reduction is spatially 
uniform, thus we measure only one number (not a map). We show the test 
image we used to estimate actual resolution in Figure 23a.

Conclusion
Although most of the wireless optimization techniques studied as part of 
the VAWN research program were focused on the delivery of 2D content, 
it’s important to also understand how these same concepts could be 
applied to 3D eventually. As such, this research was intended to increase 
the fundamental understanding of the various factors that impact 3D 
content delivery, from content creation to compression to end user quality 
prediction. The studies mentioned in the previous sections lead us to 
several conclusions, which we would like to communicate to the industry 
community:

•	 3D content creation requires more quality control than 2D creation does. 
The VQMT3D project revealed that most 3D films contain numerous 
impairments that can potentially cause eyestrain and headaches. Recent 
waining interest in 3D can be explained by it’s unacceptable quality.  

Figure 23: Examples of test images to measure characteristics of a 3D viewing device
(Source: Lomonosov Moscow State University, 2012)

(a) Test image to measure map of actual device 
resolutions

(b) Test image to measure map of device brightness and 
crosstalk
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To avoid further decrease in interest, the industry needs to introduce strict 
quality standards to the 3D creation stage. Additionally, high quality 3D 
can be better compressed than video with a large amount of stereoscopic 
impairments.

•	 Autostereoscopic multiview devices are expected to gain popularity over 
displays that require users to wear glasses. Capturing content for the 
autostereoscopic displays with camera arrays is currently impractical. The 
content for such devices should be generated using depth maps, which can 
either be estimated from data captured by stereo cameras or captured by 
real-time depth sensors.

•	 3D representations employing depth maps look promising due to their 
scalability (that is, support for various autostereoscopic displays) and low 
amount of additional data in comparison with 2D streams. Unfortunately, 
as autostereoscopic multiview devices gain popularity, due to its additional 
bitrate requirements the MVC standard will not suffice to deliver 3D videos 
to multiview displays over current modern wireless networks. Hence it is 
important to invest effort into developing 3D codecs specific to depth-based 
3D video representations.

•	 It is important to study the quality of the entire end-to-end 3D system 
and not focus only on the rate distortion ratio of the codec. No one will 
watch a video with significant artifacts introduced at the creation stage 
despite the absence of distortions introduced during delivery and display 
stages. Any quality gain at the delivery stage can easily be negated at the 
display stage due to a low quality display. Therefore a quality standard 
for 3D displays should be created. Also an update to the conventional 
ITU recommended methodologies for subjective experiments is 
required. The software tools developed for measuring 2D video quality 
can no longer be used for 3D. Our open source software, Tally, is a good 
candidate solution to this problem both for industrial and scientific 
communities.

In this article, we presented several issues arising in the 3D-video life cycle 
(content creation, delivery, processing, and display) and proposed several 
concepts to mitigate these issues. A considerable amount of work still remains 
to be done. Results reported on depth-map–based compression schemes must 
be validated by conducting extensive subjective tests.

We would like to highlight the work that should be done to better 
understand how various factors influence 3D visual quality. In the content 
creation section, we have proposed several methods to detect artifacts that, 
according to medical experts’ opinions, can potentially cause eyestrain. 
Measurement of the correlation between proposed metrics values and actual 
eyestrain is still an open problem. Actually, determining the value of the 
viewer’s eyestrain is a challenge on its own, although some promising work 
exists in this field.[51] We hope that the research studies presented in this 
article will help to bring high-quality 3D video to every home while avoiding 
wireless network overload.
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