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The proximity effect between a bulk superconductor and a thin layer of a normal metal is 
analyzed within the framework of a microscopic theory of superconductivity for the case of finite 
transparency of the SN-boundaries. The densities of states in the N-metal are found for a number 
of parameter values characterizing the boundary transparency ( y, ) and the proximity effect 
( y,,, ). The conditions in which superconductivity suppression in the electrodes is negligible and 
calculation results are valid for high-temperature superconductor (HTSC) electrodes are 
determined. The critical (I, ) and quasiparticle currents in SNINS and SNIS tunnel junctions are 
calculated with different values of y, and y, . It is demonstrated that using HTSC electrodes in 
such structures makes it impossible to achieve optimum characteristic voltages V, . The 
calculated V, ( T )  relations for the case where y, < y, holds are in qualitative agreement with the 
experimental data obtained from studies of the intergrain boundaries in HTSC materials and 
explain the quantitative discrepancy between the experimental values of V,. and the estimates for 
ideal tunnel junctions with HTSC electrodes. 

1. INTRODUCTION 

The fabrication technology for Josephson tunnel struc- 
tures based on ordinary "hard" superconductors is rather 
well developed today.'** The dielectric interlayer in such 
junctions is produced by either oxidation of the lower elec- 
trode or by predeposition of a thin layer of another material, 
such as Al, onto the lower electrode. However attempts to 
carry over this technology for use in fabrication of junctions 
with high-temperature superconductor (HTSC) electrodes 
have encountered a number of difficulties. First, the high 
chemical activity of metal oxide superconductors facilitates 
chemical reactions at the HTSC boundary with both the 
conventional dielectrics used in microelectronics and virtu- 
ally all normal metals, with the exception of Ag and Au 
(Refs. 3 and 4) .  Second, high-temperature annealing is ac- 
companied by intense mutual diffusion5 of the chemical ele- 
ments in the dielectrics and the high-temperature supercon- 
ductors, resulting in structural changes in a broad (of the 
order of 0.5 p m )  boundary region. Such events have little 
effect on the critical temperature of HTSC-films of sufficient 
thickness ( > 0.5 p m ) ,  since metal oxide superconductors 
have a short coherence length. However they do play an 
essential role in the fabrication of tunnel junctions with 
HTSC electrodes. Indeed efforts to use the "natural" barrier 
at the boundaries of YBaCuO/Nb (Refs. 6 and 7),  YBa- 
CuO/Pb (Refs. 8 and 9 ) ,  LaSrCuO/Pb (Ref. 10) as the 
dielectric interlayer were unsuccessful: The critical current 
of these junctions was zero at T-4.2 K. 

One escape from this situation lies in fabricating buffer 
layers of chemically less active materials such as Ag and Au 
between the HTSC-film and the dielectric layer. It has been 
proven experimentally that the use of Ag or Au buffer layers 
between the dielectric substrate and the HTSC-film not only 
limits the diffusion of the dielectric material into the HTSC- 
film but also causes texturing of the film,%hile the poor 
diffusion of silver in, for example, YBaCuO, causes an in- 
crease in Tc of this compound." Utilizing the Ag and Au 
layers in the YBaCuO/Au/AlO, /Nb (Ref. 12), YBaCuO/ 

to obtain junctions with a substantial critical current and a 
characteristic voltage Vc > 0.04 mV. However unlike the in- 
terface surface of ordinary metals, the YBaCuO/(Ag, Au) 
boundary has a finite resistance whose typical value lies in 
the range R, - 10-X-lO-10 fl.cm2 (Refs. 13 and 14). 

The current level of development of HTSC-materials 
technology therefore makes it possible to use such materials 
to fabricate tunnel SNINSor SNIS 'junctions, where S ' is an 
ordinary superconductor and the S N  boundaries of such 
structures can have a random transparency. A complete the- 
ory of the Josephson effect in such structures does not yet 
exist even for the case of ordinary isotropic S- or N-metals. 
The purpose of the present study is to formulate such a theo- 
ry and to determine the conditions in which superconductiv- 
ity of the S-material will not be lost due to the proximity 
effect with the N-metal. When these conditions are satisfied 
the spatial variations in the superconducting properties of 
HTSC-electrodes are negligible. Moreover in spite of the sig- 
nificant spread of experimental values of the 2 A ( T  
= O)/Tc ratio in metal oxide superconductors, the vari- 
ation of A ( T) with temperature is similar to that predicted 
by BCS theory. Hence the results derived in this case will 
also be valid for junctions with HTSC-electrodes. 

2. JUNCTION MODEL AND ITS DESCRIPTION 

We assume that one or both electrodes of the Josephson 
tunnel junction take the form of an SN-sandwich, while the 
insulating layer has such negligible transparency that it is 
possible to neglect the effect of the currents on the state of 
the electrodes. Moreover we assume that the dirty limit con- 
ditions hold for the S- and N-materials, the critical tempera- 
ture of the N-material is equal to zero and the transverse 
dimensions of the junction are much less than the Josephson 
depth of penetration y,; all quantities can be assumed to 
depend solely on a single coordinate x normal to the inter- 
face surfaces of the materials. We will limit the analysis to 
the most important practical case 

A ~ / P ~ o ,  /Pb (Ref. 13 ) tunnel-structures made it possible dsBEs, ~ N K E N ,  (1 )  
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where d , ,  and f , ,  are the thicknesses and coherence 
lengths of the S- and N-metals. The first condition makes it 
possible to neglect the reduction in the critical temperature 
of the SN-electrode compared to the T, of a bulk S-metal, 
while the second condition allows us to assume that all quan- 
tities within the N-layer are independent of x. In the ordi- 
nary relation of tunnel theoryI5 

I=Re I,  ( E )  sin q+Im I , ( & )  cos cp+Im I q ( & ) ,  

e l+e  e  ' 
Im I, ( e )  = - th -]Im F ,  ( s t + & )  

2 T - - 
xIm F, (E' )  ds', (2c) 

this latter condition makes it possible to assume that the 
density of states N(E)  and the functions Im F(E) ,  Re F(E) 
are equal to their values at the SN-boundary, i.e., it is possi- 
ble to neglect the low-probability electron tunneling pro- 
cesses from the bulk of the SN-electrode. In Eqs. (2 )  R,, is 
the resistance of the junction in the normal state; q, is the 
phase difference of the order parameters of the electrodes: 
Re I, (E) ,  Im I, (E) ,  Im I, (E)  is the Josephson supercur- 
rent, the interferential current component and the quasipar- 
ticle current amplitudes, respectively; the indices 1 and 2 
refer to the first and second electrodes. 

As noted in Ref. 16 the problem of determining the 
functions N(E) ,  Im F ( E ) ,  and Re F(E)  entering into (2 )  
hus t  be solved in two stages. It is first necessary to determine 
the spatial dependence of the order parameter in the SN- 
electrode A(x) .  Then after using this function it is necessary 
to solve the analytically-continued Usadel equations. 

3. THE PROXIMITY EFFECT WITH RANDOM TRANSPARENCY 
OF THE SN-BOUNDARY 

With these assumptions the proximity effect in a system 
of two "dirty" metals can be described within the framework 
of the equations (the domain x)O is occupied by the super- 
conductor, while the domain d, <x<O is occupied by the N- 
metal) : 

where @,, are modified Usadel functions, I h  w are the Moss- 
bauer frequencies, A is the modulus of the order parameter, 
and the prime designates differentiation with respect to the 
coordinate x. Equations ( 3 )  must be supplemented by 

boundary conditions in the bulk of the S-electrode 

= A  ( m )  = A  ( T ) ,  (4)  

as well as the N-metal-dielectric boundary ( x  = - d, ) 

@ N r  ( -dN)=o ( 5 )  

and the N-metal-superconductor boundary ( x  = 0 )  " 

Here A( T) is the absolute value of the order parameter of a 
homogeneous superconductor at T, p , ,  are the resistivities 
of the N- and S-metals, while R ,  is the product of the resis- 
tance of the NS-boundary and its area. 

By virtue of the second inequality ( 1 ) we can neglect 
nongradient terms in Eq. (3c) in a first approximation in 
(dN/{, ) and, by using ( 5 ) ,  obtain in the next approxima- 
tion 

Determining @k (0)  from ( 7 )  and substituting the resulting 
equation into conditions (6 )  we arrive at boundary condi- 
tions closed to the functions @, 

and a relation determining the functions @, : 

which are independent of the coordinate x to first order in 
drv/fN. 

It follows from ( 8 )  and ( 9 )  that the problem of the 
proximity effect of a superconductor with a thin normal met- 
al layer is reduced to solving Eqs. (3a, b )  with the boundary 
conditions (4)  and (8 ) .  This solution is simplified in a num- 
ber of particular cases. 

With small values of y, , 

~ M K  ( I f y s )  ( I -TIT , )" ,  (10) 

to lowest order in y, we have @A = 0 and the solution of 
equations (3a, b )  reduces to 

@ s = A s = A ( T ) ,  @N=A ( T )  [l+ys ( 0 2 + A 2 ) ' " / n T , ] - i .  ( 11) 

It follows from (1  1) that the values of the functions @, 
decay monotonically and proportional to y; with increas- 
ing y, in the range where y, % 1 holds. 

Reversing the inequality ( 10) 

to first order in y, ' the functions @, in the immediate prox- 
imity of the SN-boundary ( 0  < x <c, ) are equal to Ref. 18: 
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In this approximation we obtain values independent of y, 
from (a ) ,  (9),  and (12) for @,: 

In the near-critical range of temperatures where T- Tc 
holds, the Ginzburg-Landau equations are valid in the S- 
electrode. Determining the appropriate boundary condi- 
tions by the method discussed in Ref. 19 we obtain 

where 

( x )  and f (x )  are the digamma-function and zeta-function, 
respectively. 

Numerical techniques were used to solve equations (3) ,  
(4) ,  and (8 )  with random temperatures and values of y, 
and y, . The calculation results are given in Fig. 1 as plots of 
@, ( W  = n-T, x = 0 )  and A(x = 0 )  as a function of the pa- 
rameter y, for various values of y,. 

The broken brace in Fig. 1 represents the asymptotic 
result derived from (9 )  corresponding to y, = 0: 

where y* = 1.78 is Euler's constant. As is evident from Fig. 
1 with small values of the parameter yM the diminishing 
boundary transparency (i.e., the growth of the parameter 
y, ) will result in a sharp drop in @, characterizing the 
superconductivity induced in the N-layer. With large y, the 
function @, has a weak dependence on barrier transparency 
all the way to y, - y,. When Tis approximately equal to T, 
we can easily see from ( 15) that the values of the functions 
@, are in fact independent of y, when y, < 1 + y, holds, 
and are determined by the temperature-dependent param- 
eter r, = y,gs (T)/gs. With large y, the finite transpar- 
ency of the NS-boundary will result in additional suppres- 
sion of @, proportional to y; '. Therefore although the 
values of the functions @, grow as the boundary transparen- 
cy decreases (@, -A( T) as y, - m ), the functions @, de- 
cay monotonically, whence @, a y; ' when y, > max{l, 
y,) holds and they are virtually independent of y, for 
smaller values of this parameter and larger values of y, 
(yM > 1).  

FIG. 1 .  The function @ ,  for o = nT ( a )  and theorder 
parameter in the S-region near the SN-boundary 
A, ( x  = 0 )  ( b )  plotted as a function of the transparen- 
cy of the SN-boundary for various values of y, = 0; 
0.1; 0.5; 1;  2; 5; 10 (curves 1; 2; 3; 4; 5; 6; 7, respective- 
ly) .  

4. CALCULATION OF THE STATE DENSITIES 

In calculating the state densities in equations (3 )  and 
boundary conditions ( 4 )  and (8 )  it is convenient to go over 
to new functions @ = w tan 8, G = cos 8 and to then carry 
out the substitution w = - i ~ :  

EsZ8s"+ i~ sin Os+d(x)cos Os=O, (17) 
gsOsl(O, e) =-icyM sin Os (0, c) [ I-yB2eZ-2ie cos Bs (0, c)]  - I h ,  

(18a) 

0, (m, E )  =arctg(i& ( T ) l e ) ,  ( l a b )  

where we have set Z- = &/n-Tc, = A/n-Tc . From relation 
(9 )  for 8, determining the desired functions, 

N(e)=Re(cos ON), Im F (e)=Im(sin ON), 

Re F ( E )  =Re (sin ON) 

we have the expression 

in which the functions 8, (O,.F) must be found from a solu- 
tion of the boundary problem (17),  (18) with the known 
function A (x) .  

The solution of this problem is simplified in the limit of 
small y, . Indeed the boundary condition ( 18a) reduces to 
8 ;. (0,Z) = 0 when y, is equal to 0 and the boundary prob- 
lem ( 17), ( 18) is satisfied by the solution ( 18b) which is 
independent of the coordinate x; substituting this solution 
into ( 19) we have 

sin €),={I-z2 [ ~ + ~ ( I - Z ~ ) ' ~ ] ~ ) - ' ~ ~ ,  

z=EIA (T), B=yBA(T), (20) 

cos ON=-iz [ I f 8  (1-2') "1 sin ON. (21) 

It follows from (20), (21) that the desired state densities 
have two singularities for z = 1 and z = z,,, where 

I [ I +  (AZ- l ) '"] '"+[I- (A2--I ) '"]"' ,  
1 (82-3)"3 

z,=- - + 
3 38 

PGBO, (22) 
2 c o ~ [ ' / ~  arccos A ] ,  B2p0, 

However the nature of the divergences is somewhat weaker 
than in BCS theory for a spatially-homogeneous supercon- 
ductor: 
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z [ l + $ ( l - ~ ~ ) ~ ~ ]  
zo<z<l,  

(z"I+$ ( l - ~ ~ ) ' ~ ] ~ - l ) ' ~ '  
N (z) = 

0, zo<z<l,  
Re F (z) = 

[a+ (a2+b2) '"1 '" (23b) 1 - (z2- I )  'I4 [ 2  (a2+ b2) ]  I ' 
0 1 ,  

(2" 1+p ( 1 - ~ ~ ) " ' ] ~ - 1 ) - % ,  zo<zcI ,  
I~ F (z) = ( 2 3 ~ )  

z > l ,  
( ~ " 1 ) " ~ [ 2 ( a ~ + b ~ )  ] I b  ' 

w i t h a =  ( z 2 -  1 ) ' 1 2  ( f i 2 z 2 -  I ) ,  b=2fiz2. 
It is interesting to note that relations ( 23 )  correspond 

exactly to the results of McMillan's phenomenological tun- 
nel theory of the proximity effect if we assume the following 
parameter values in this theory: AN = 0, I', = 0, 
r, = .rrTc/2y,, i.e., ifwe go outside the limits of applicabili- 
ty of the model."' 

Equations ( 17) and ( 1 8 )  were solved by numerical 
techniques with random values of E and the parameters y, 
and y, . Figure 2 shows the state density relations for the SN- 
boundary when T< Tc holds and for various values of y, 
and y,. It is clear that for y, = 0 the state densities have 
two singularities when E = A ( T )  and E = zoA ( T )  hold, 
while the nature of the behavior of N ( E )  near these points 
will depend on y, . When y, is equal to 0, the parameter z, is 
equal to 1 and the regular expressions for the state densities 
of a homogeneous superconductor then follow from (23) .  
The parameter zo drops below unity with increasing y, and 
two singularities appear in the state density. However the 
nature of the behavior of N ( z )  is different in the neighbor- 
hood of these singularities: 

FIG. 2. The state density N ( E )  in the N-region of 
the SN-sandwich for T g T ,  (a-y, = 1; b- 
y, = 5 )  and various values of y, = 0; 0.1; 0.3; 0.5; 
1; 2 (curves 1; 2; 3; 4; 5; 6, respectively). The verti- 
cal dotted line corresponds to d a T ,  
= A(O)/rT, = y * r z 0 . 5 6 .  

It follows from (24)  that the singularity is sharper for 
E = A ( T )  ( Z  = 1 )  than for E = z, ,A(T),  while its width de- 
cays in proportion to y,"' when y, exceeds unity at the 
same time that the width of the singularity in this limit is 
independent of y, when E = zoA( T )  holds. The singularity 
shifts towards lower energies as the parameter y, increases 
when E = z, ,A(T) holds, and for y, 3 1 we have z,, 
= TT,  / A y ,  . The quantity zoA ( T )  is the energy gap in the 

elementary excitation spectrum in the N-area of the SN- 
sandwich. 

The divergences in the state density are eliminated for 
y, > 0 for z = zO and z = 1. The function N ( z )  has peaks of 
finite height at these energy values, as we see from Fig. 2, and 
the singularity smears more rapidly for z = 1 compared to 
the case when z = zo holds with an increasing parameter yM . 

It is possible to estimate the height of the peak for z = 1 
in the case where y, < 1 holds by using the first integral of 
Eq. ( 17 )  in the approximation A = const together with 
boundary condition ( 1 8 )  which yields the relation: 

For the state density in the N-region we obtain from ( 19) 
and ( 25 ) :  

i l+ 1/yByM2d, yB>yM-', (26a 
. V ( E = ~ )  = (3/4)Ib (8yB/yw16)'", yM4<+fs<~M-2, (26b) 

l / y  Y B ~ M ‘ .  ( 2 6 ~  ) 

Whenz = zo the singularity will smear to a lesser degree 
with an increasing parameter y, . As is clear from the results 
of numerical calculations shown in Fig. 2 the singularity 
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evens out entirely with sufficiently large values of y, when 
E = A ( T) holds, and only the maximum when E = z,A ( T) 
holds is conserved and we arrive at the results obtained pre- 
viously in Ref. 16 in a model with a completely transparent 
SN-boundary (y, = 0) .  For y,, y, % 1 the energy gap in 
the N-region of the SN-sandwich 

and the maximum of the state density N(E) is smeared for 
E -  a,, while we have N(E) + 1 when E %  a,, holds and this 
function has no singularities. 

It is important to note that the state densities obtained 
above entirely determine the voltage dependence of the dif- 
ferential conductivity of an SNIN tunnel junction 
d(Im I, )dV-N(eV) at low temperatures ( T& T, ). 

Knowledge of the function @, and the state densities in 
the N layer of the NSsandwich makes it possible to calculate 
the tunnel current in SNINS- and SNIS1-junctions. 

5. STATIONARY PROPERTIES OFSNINS- AND SNlS '- 
STRUCTURES 

The expression deriving from (2b) for the critical cur- 
rent of the tunnel junction is easily recast in the Matsubara 
representation: 

where 1, 2 refer to first and second electrodes. For an 
SNINS-junction utilizing expressions (9 )  for the functions 
@,,, we obtain 

while for an SNIS '-junction we have 

where A ' = A1/rrT: holds, A' is the energy gap of the S '- 
electrode. 

@, = A ( T) is valid for y, g 1 and the asymptotic ex- 
pressions for the critical current I, of the SNINS junction 
follow from (28a) for y, % 1 : 

and for the SNIS ' junction for T< T, : 

It is clear that the I,  (y, ) relation for the SNINS-junction 
will be different for T = 0 and T- T, , while at low tempera- 
tures the decay of I, for the SNIS1-junction will be slower 
than for the SNINS junction. 

With large values of the parameter y ,  ( y, > 1 ) and us- 
ing the solution ( 13), ( 14) for @, we obtain asymptotic 
expression from (28a) for the critical current of the SNINS- 
junction 

With random values of y,, y, the critical current was 
determined numerically using the solutions found above for 
the functions @,. Figure 3 provides numerical results for 
the I, (y, ) relations for SNINS and SNIS' junctions for 
T = 0, where a superconductor with TI = 0.1 T, was used as 
theS '-electrode. Moreover the temperature relations A, ( T) 
and A& ( T) were used in the calculations together with the 
relation between A ( T  = 0 ) ,  A1(T = 0 )  and T,, T i  which 
are valid within the framework of the BCS model. 

As is clearly evident from the results shown in Fig. 3 the 
critical current of the junctions decays monotonically with 
increasing y, and for y, > max{l,y,) it converges on the 
asymptotic relations (29), (30). The nature of the variation 
of I, with small values of y, is highly dependent on y,. For 
y, % T, /T the critical current is determined by relation 
( 3  1 ) and is virtually independent of y, up through y, - yJW. 
With small values of y, the diminishing transparency of the 
SN-boundary is accompanied by a sharp drop in I, (in the 
rangeO<y, < 1) .  

The absolute magnitude of critical current suppression 
is highly temperature-dependent. The I, ( T) calculation re- 
sults for SNINS- and SNIS1-junctions for y, = 1 and a var- 
iety of values of the parameter y, are given in Fig. 4. In the 
case where a normal interlayer is not present, i.e., in the case 
of the SIS junction for y, = 0, y, = 0 the I, ( T) relation is 
determined by the Ambegaokar-Baratoff (AB) formula" 
and is represented by the dashed line in Fig. 4a. It is clear 
that in addition to the reduction in the absolute value of I, 
the N-layer will produce a qualitative change in the nature of 
the I,. ( T )  relation. Thus when y, > y, holds 

FIG. 3. Critical current plotted as a function of the 
transparency of the SN-boundary for different values 
of the parameter y,,, : a-SNINS junction; b-SNIS' 
junction; the numbers next to the curves represent the 
values of y,,, . 
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I, - ( T, - T)2 will be valid for the SNIS-junction near T, , 
while I, - (T, - T)"' will hold for the SNINS-junction at 
the same time that I, - (T, - T) will be valid for the SIS- 
junction according to the AB theory. The form of the I, ( T )  
relations indicated above can be attributed to the fact that 
when T=: T, is valid the critical current is proportional to 
the product of the order parameters of the electrodes which 
depend on temperature either as ( T, - T) ' I 2  in the absence 
of the proximity effect (y, = 0 )  or as T, - Twhen y, > 0 
holds (Ref. 19). Therefore as we see from Fig. 4 the I, ( T) 
relations for an SNINS-junction will have a positive slope at 
sufficiently high temperatures. 

Small values of the parameter y, are of special interest. 
As noted above the values of the functions @, at the SN- 
boundary coincide with A(T) for y, < 1, while the @, func- 
tions which determine the level of the critical current in the 
SNINS-junction are represented as in ( 1 1 ). The I, ( T) rela- 
tions for various values of the parameter y, and calculated 
by formula (28) with @, = A (  T) are shown in Fig. 4c. It is 
clear that the critical current level decays more rapidly at 
high temperatures T z  T, with increasing y, in complete 
accordance with (29) compared to the range T< T,. This 
serves to alter the nature of the relation I, ( T )  which goes 
from negative to positive slope over a broad temperature 
range beginning at y, - 1. 

In this same figure the dashed line represents the experi- 
mental I, (T)/I, (0)  relations obtained in Refs. 23 and 22 
from investigations of the critical current of the intergrain 
boundaries of HTSC-materials. It is clear that the experi- 

FIG. 4. The temperature dependence of the critical cur- 
rent for y, = l and various values of y ,  = 0; 0.5; 1; 2; 5; 
(curves 1; 2; 3; 4; 5, respectively): a-SNINS junction 
(the dotted line curve in a is the I, ( T) relation for tunnel 
junctions"); b--SNIS' junction; c-I, ( T )  relation for 
y,  = 0 and various values of y, (represented by the 
numbers labeling the curves); broken curve: Experimen- 
tal data from Ref. 23; dot-dashed curve: From Ref. 22. 

mental relations are in qualitative agreement with the calcu- 
lated relations with values of y, z 3  (Ref. 22) and y, z 1 
(Ref. 23). Since the values of y, obtained in this manner are 
greater than or equal to 1, then, as follows from ( 11 ) , the 
values of the functions @, and, consequently, the absolute 
values of the critical current will be approximately 1 + y, 

FIG. 5. I-V characteristics of the SNINS junction for T = 0; y, = 1 and 
various values of y ,  = 0; 0.1; 0.3; 0.5; 1; 2 (curves 1;  2; 3; 4; 5; 6, respec- 
tively ). 
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FIG. 8. I-V characteristics of the SNIS'  junction for T = 0; y,, = 5 and 
FIG. 6. I-V characteristics of the SNIS'  junction for T = 0; y, = 1 and various values of y ,  = 0; 0. I; 0.3; 0.5; 1; 2 (curves 1; 2; 3; 4; 5; 6, respec- 
various values of y, = 0; 0.1; 0.3; 0.5; 1; 2 (curves 1; 2; 3; 4; 5 ;  6, respec- tively). 
tively ) .  

6. NONSTATIONARY PROPERTIES OF SNINS- AND SNIS '- 
times lower than the values predicted by AB theory for STRUCTURES 
T<< T, .  It is this fact together with the effect of the finite Figures 5 and 6 present numerical results of the quasi- 
thickness Of the N-la~er ( d N  >i'N ) that can the low particle current Im I, ( V )  for SNINS and Sm / junctions 

Of ( O )  to those predicted for T = 0, y, = 1 and for different values of y,, . The 1-V 
by AB theory for 2A(O)/T, = 3.5. characteristics of the SNINS and SNIS ' structures vary dif- 

One possible physical reason for the of the ferently as the parameter y, increases. It is clear that unlike 
ProPoSed model '0 a descri~tion of 'he ProPerties of the in- the results from standard tunnel theory 15 there is a sloping 
tergrain boundaries is the formation of poorly-conducting section in symmetrical junctions for y ,  instead of a 
normal layers on atomic scales near the boundaries. The fi- current jump when (. = 2h holds; this section begins at the 
nite transparency of the intergrain boundaries is due to their voltage eV= 2z,,A and terminates in a sharp singularity at 
sharpness on the interatomic ~ c a l e . ' ~ . ' ~  

eY/xc 
FIG. 9. I-V characteristics of theSNfNSjunction for T = 0; y, = 100 and 

FIG. 7. I-V characteristics of the SNlNSjunction for T =  0; y,, = 5 and valuesof y ,  = 20; 10; 5 (curves 1; 2; 3, respectively) and theSNIS'junc- 
various values of y ,  = 0; 0.1; 0.3; 0.5; 1; 2 (curves I; 2; 3; 4; 5; 6, respec- tion in the case T :  = 0.1 T, for y, = 50; 20: 5 (curves 4; 5; 6, respective- 
tively ). ly). ~, . "  
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eV = (z,, + 1 ) A which produces a kinked structure in the 
I-V characteristic. The singularity smoothes out with in- 
creasing growth of y, , while the Im I, ( V) relation becomes 
linear. Moreover a weak singularity occurs with small values 
of y, fore V = 2A. A sloping section occurs on the I-V char- 
acteristics of asymmetrical SNIS ' junctions beginning at the 
voltage eV= A' + z,,A, and a weak, kinked singularity ap- 
pears for small y, (y, <0.5) for eV= A' + A; this singu- 
larity smears with increasing y, . 

Figures 7 and 8 provide the Im I, ( V )  relations for 
SNINS and SNIS'  junctions for T = 0, y, = 5. In this case 
the I-V characteristics of the SNIS and SNIS ' junctions are 
qualitatively identical. The kinked structure when e V = 2 4  
holds (0,) is the gap width in the excitation spectrum of the 
SN-sandwich) does not exist in either case even when y, is 
equal to zero. Singularities appearing as peaks for 
eV= (z,, + l ) A  are found in the I-V characteristics of 
SNINSjunctions together with the correspondingly weaker 
singularities for eV = A' + A for the SNIS' junctions with 
small values of the parameter y, (y, < 0.5). 

With large values of the parameters y, and y, ( y, $1  
and y, ) 1) the I-V characteristics of the SNINS- and 
SNIS '-structures in the low voltage range are shown in Fig. 9 
for the case where T = 0. The structure appearing in the I-V 
characteristics at high voltages (e  V$ maxi l/y, , l/y, ) 
holds for SNINSjunctions and eV - A'$ maxi l/y, , l/y, ) 
holds for SNIS' junctions) is completely smeared. 

7. DISCUSSION OF RESULTS 

The properties of SNINS- and SNIS '-tunnel structures 
with finite transparency of the SN-boundaries therefore dif- 
fer substantially from the properties of both standard SIS- 
junctions andSNINSand SNIS ' structures with transparent 
SN-boundaries. The nonzero resistances of the SN-bound- 
ary produce specific features in the I-V characteristics due to 
the complex structure of the electron state density in the N- 
layer of the compound SN-electrode and will also suppress 
the critical current of the junctions while reducing 
V, = I,R,,. 

The latter fact makes SNINS- and SNISf-structures 
with HTSC-electrodes rather unpromising for practical ap- 
plications. Indeed an analysis of the experimental data on 
the surface resistance of the YBaCuO/Ag(Au) inter- 
facel3.l4 yields y, > 100 and y, > 10. Such large values of 

y, and y, result in severe suppression of the critical current 

of the tunnel structures and make it impossible to achieve 
optimum values of V, not only at liquid nitrogen but also at 
liquid helium temperatures. Moreover the slope of the I-V 
characteristics of such junctions in the gap voltage range is 
small compared to the analogous value in SIS-junctions em- 
ploying ordinary superconductors. 

However as suggested by the results obtained in Sec. 5 
high-quality tunnel junctions based on HTSC materials can 
be fabricated by extracting from the polycrystalline film the 
tunnel structures formed by the natural boundaries of large 
superconducting grains. 
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