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Abstract—The nature of the hard X-ray emission from solar flares is well known. The observed emission
in both the corona and the chromosphere consists of two components: nonthermal and thermal. The non-
thermal and thermal components are attributable to the bremsstrahlung of accelerated electrons and heated
plasma electrons, respectively. Since the nonthermal and thermal hard X-ray emission spectra partially
overlap, their proper interpretation directly depends on the accuracy of the kinetic models describing the
propagation of thermal and nonthermal runaway electrons in the solar atmosphere. The evolution of the
distribution function for the latter, i.e., the electrons accelerated in the magnetic reconnection region, is
accurately described in the approximation of present-day thick-target models with a reverse current. Here
we consider a model for the thermal runaway of electrons and find an analytical solution of the corresponding
kinetic equation in which the Coulomb collisions are taken into account. The degree of polarization of the
emission has been estimated to be no greater than ∼5%. The derived distribution function can also be used
to calculate the thermal X-ray emission spectrum and, as a consequence, to interpret the observations of
the thermal component in the X-ray spectrum of a solar flare.
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1. INTRODUCTION

According to the historically first, but largely cor-
rect and fundamental theoretical views of the so-
lar flare mechanism (Giovanelli 1948; Parker 1957;
Sweet 1958, 1969; Syrovatskii 1962, 1966), strong
magnetic fields in the solar atmosphere are the flare
energy source. A key role of the peculiar redistribu-
tion of magnetic fluxes that changes their topological
connectivity, magnetic reconnection, was shown in
the mentioned classic papers. As a result of the mag-
netic reconnection effect, the energy of interacting
magnetic fluxes is converted into the kinetic energy
of charged particles and fast directed MHD plasma
flows, jets.

Despite the great variety of physical conditions
under which magnetic reconnection is realized as a
fundamental mechanism of primary energy release in
solar flares, the overall picture of the flare and its sce-
nario are currently believed to be understandable and
well known (Priest and Forbes 2000; Somov 2012,
2013; Krucker et al. 2008; Zharkova et al. 2011;
Emslie et al. 2012). The conditions necessary for
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fast magnetic reconnection are formed in the so-
lar corona before the beginning of the most pow-
erful, so-called impulsive phase, which lasts from
several seconds to tens of seconds. During such
reconnection the electrons, protons, and other ions
are accelerated by an electric field inside the high-
temperature reconnecting current layer to energies
much greater than the thermal energies of parti-
cles in the solar corona and chromosphere (Hudson
and Ryan 1995; Somov 2000; Aschwanden 2002;
Miroshnichenko 2015).

A typical flare scenario is shown schematically,
but with the sequence of physical processes and their
relative positions in Fig. 1. From the solar corona
the plasma with a frozen-in strong magnetic field
flows into the reconnecting current layer (RCL) with
a relatively low velocity v0 ∼ 10 km s−1. Inside the
current layer the freezing-in conditions are violated
and the reconnected magnetic field lines together
with the “super-hot” (an electron temperature Te �
30 MK), almost collisionless plasma move from the
super-hot current layer in opposite directions (pre-
dominantly upward and downward) with velocities
v1 ∼ 103 km s−1 (Somov 2013). The bremsstrahlung
of super-hot plasma electrons and accelerated elec-
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Fig. 1. The most significant fragment of the classical picture of a solar flare. The energetic electrons run away from a
reconnecting current layer (RCL) with temperature T1 through a turbulent front (TF) into a less hot (colder) flare-loop plasma
with temperature T2.

trons produces a source of hard X-ray emission mov-
ing in the corona. Gradually cooling, the super-hot
plasma becomes visible in less hard X-ray emission.
Figure 1 shows only the most prominent fragment
of the extended region of the entire flare, namely the
reconnected magnetic field lines B moving from the
current layer with velocity v1 downward, toward the
chromosphere (Ch) and the photosphere (Ph); N and
S are a pair of photospheric magnetic field sources, for
example, sunspots.

Penetrating into the chromosphere, where the
plasma density is much higher, the energetic elec-
trons rapidly lose their kinetic energy through
Coulomb collisions. Here, as in the corona, they
generate hard X-ray bremsstrahlung, quite often the
most intense one. The sources of this emission lie at
the footpoints of the tubes of reconnected magnetic
field lines, the so-called flare loops, and the tube
footpoints collectively form the “flare ribbons.” The
latter are accessible to the most comprehensive study
through ground-based and space observations. The
contours in Fig. 1 indicate the coronal and chromo-
spheric sources of hard X-ray emission.

In some flares (for example, with a bright coronal
source) allowance for the primary acceleration in the

reconnecting current layer turns out to be insufficient.
The scenario for the double successive acceleration
of electrons of one population (the acceleration in
the current layer plus the succeeding acceleration of
the same electrons in a collapsing magnetic trap)
was proposed by Somov and Kosugi (1997) and was
called double step acceleration. This effect should
not be confused with the so-called two-phase accel-
eration (Wild 1963), when the primary accelerated
electrons during the impulsive flare phase (several
seconds) or, possibly, quite different electrons are
accelerated to relativistic energies (as was suggested
previously, at shock waves) considerably later, during
the second flare phase (with a delay from several
minutes to hours; Sakai and de Jager 1996).

The hard X-ray emission spectrum of a solar
flare is formed by both thermal and nonthermal
runaway electrons. A complete model description
of the propagation of energetic electrons in the solar
atmosphere (heated and accelerated ones) includes
both the coronal collapsing magnetic traps accelerat-
ing both thermal and nonthermal particles (Somov
and Bogachev 2003; Bogachev and Somov 2005,
2007) and the reverse-current effect (Gritsyk and
Somov 2014). The thermal model proposed by us
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is an inseparable part of the complete description,
because it takes into account the interaction of
thermal or, more precisely, super-hot electrons with
the corona and the chromosphere. Allowance for the
emission generated by them is needed to interpret the
hard X-ray emission of a flare both in the corona and,
especially, in the chromosphere, where the target is
thick.

The nonthermal and thermal components of the
hard X-ray emission partially overlap not only in pho-
ton energy, but also in space. An additional diffi-
culty in interpreting the observed spectra and spatial
distributions of the hard X-ray emission from solar
flares stems from the fact that the energetic super-hot
electrons run away from the super-hot plasma along
reconnected magnetic field lines through a thermal
turbulent front (TF). The latter moves with a velocity
higher than the super-hot plasma velocity v1 (see
Fig. 1). Thus, the total emission in the region under
the turbulent layer is the sum of two components,
nonthermal and thermal.

The thermal component in the hard X-ray emis-
sion spectrum at low energies dominates in the case
of a chromospheric source. However, in the corona,
near the turbulent front (TF), the picture is some-
what “smeared” by the contribution from the thermal
bremsstrahlung of the super-hot plasma located near
the reconnection region. Furthermore, the presence
of a collapsing magnetic trap can produce additional
plasma heating in the corona. Despite the great
variety and complexity of physical processes in solar
flares (see, e.g., Somov 1992), a turbulent front will
inevitably be present between the super-hot plasma
and the less hot background plasma of the solar at-
mosphere in any case and within any realization of a
specific flare.

At present, there is no doubt that the observed
hard X-ray emission with a photon energy Ehν �
20 keV is attributable to the bremsstrahlung of elec-
trons accelerated by an electric field in the magnetic
reconnection region. The boundary distribution func-
tion of such particles is in the form of a power law,
while its change with depth is accurately described
in terms of the thick-target model with a reverse
current (Litvinenko and Somov 1991). In Gritsyk
and Somov (2014, 2016, 2017) this approximation
was successfully used to interpret the highly accurate
satellite observations of the December 6, 2006 and
July 19, 2012 solar flares. The model description of
the propagation of thermal electrons running away
from the reconnection region and generating X-ray
bremsstrahlung with a photon energy Ehν � 20 keV
(the thermal component in the spectra of the coronal
and chromospheric sources) is of great practical im-
portance for interpreting the total X-ray spectrum of
a flare.

The goal of this paper is an investigation and
model description of the thermal runaway electron
propagation processes during solar flares. This model
is needed to interpret the thermal component in the
X-ray emission spectra and is particularly topical in
connection with a significant increase in the accuracy
of present-day space observatories and, as a con-
sequence, the need for using more accurate kinetic
models for the propagation of electrons during flares.
The corresponding kinetic problem is formulated in
Section 2. Its analytical solution is presented in
Section 3. In Section 4, based on the solution ob-
tained, we estimate the polarization of the hard X-ray
emission. The necessary conclusions are contained in
the Conclusions.

2. FORMULATION OF THE PROBLEM

(A) Physical formulation of the problem. As
has been noted in the Introduction, the thin recon-
necting current layers located in the regions of inter-
action of the magnetic fluxes in the solar atmosphere,
predominantly in the corona, are the energy source
in solar flares. During flares in the current layers
the magnetic energy is converted into the thermal
and kinetic energies of the plasma and accelerated
particles. At the same time, the accelerated parti-
cles excite plasma turbulence that heats the plasma
electron component in the current layer to huge tem-
peratures: T1 � 108 K (Somov 1981). This layer
is commonly called the super-hot turbulent current
layer (Somov 2013). The super-hot turbulent current
layer replenish the “reservoir” of super-hot electrons.
The Maxwellian distribution of these electrons within
our problem formulation is characterized by tempera-
ture T1.

The present-day “thermal models” somehow take
into account the interaction of high-temperature
electrons with the ion-acoustic turbulence excited
by the reverse current. This interaction produces a
front of anomalous heat conduction (the turbulent
front TF in Fig. 1) propagating along the flare loop
(see Fig. 1.2.6 in Somov (1992)) into a colder (T2 �
106 K in the corona, T2 � 104 K in the chromosphere)
plasma with the ion sound speed. As a result, in con-
trast to the thick-target model (see, e.g., Syrovatskii
and Shmeleva 1972; Somov and Syrovatskii 1976),
the emitting region gradually fills the entire volume of
the magnetic flux tube as the front advances toward
the chromosphere.

The turbulent layer of anomalous heat conduction
is thin with respect to the super-hot electrons and
cannot change their Maxwellian distribution. If this
layer were thick, then, in principle, it could affect
the anisotropy of runaway electrons. However, as
our calculations will show, the angular distribution of
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super-hot electrons remains almost isotropic down to
significant depths in the chromosphere. Within our
problem formulation T2 � 104 K is the Maxwellian
temperature of the background plasma. Therefore,
there is nothing to prevent us from using the Landau
collision integral to describe the Coulomb interaction
of runaway electrons with the plasma.

Thus, we assume that the electron temperature
drops rapidly along the magnetic flux tube under
consideration to the surrounding plasma temperature
(T2 ∼ 104−106 K). To be more precise, we assume
that the characteristic length scale at the temperature
gradient is small compared to the mean free path of
super-hot electrons. In this case, the energy trans-
fer from the reservoir into the hard X-ray emission
source (the low-temperature part of the flare loop;
see Fig. 1) occurs non-diffusively. One way of such
energy transfer is the thermal runaway of electrons.
This effect ensures the propagation of the directed
flow of energetic electrons into the emission source.
In this paper we do not consider the excitation of ion-
acoustic oscillations in the surrounding plasma by the
beam and related phenomena.

(B) Mathematical formulation of the prob-
lem. Let, for simplicity, in the frame of reference asso-
ciated with the front the super-hot and cold plasmas
occupy two half-spaces, x < 0 and x > 0, separated
by a flat thin turbulent layer TF at x = 0 (Fig. 1).
The essence of the thermal runaway of super-hot
electrons through the turbulent front TF (Fig. 1) into
the colder background plasma is that the mean free
path of an electron in the plasma increases with its
kinetic energy E :

lE = lT (E/kBT1)
2, (1)

where lT is the mean free path of thermal electrons
with temperature T1 in the super-hot plasma and kB is
the Boltzmann constant. As a result, in the presence
of a temperature gradient (in general, any gradient),
some flow of fast electrons with a mean free path
greater than the characteristic length scale on which
the temperature varies, i.e.,

lE > λ ≡ T1/|∇T1|, (2)

emerges, in addition to the diffusion of thermal elec-
trons.

This causes the number of fast electrons in the
cold plasma to increase. By analogy with the run-
away of electrons in an electric field, this phenomenon
was called the thermal runaway of electrons and
was investigated, for example, by Gurevich and Is-
tomin (1979). To find the distribution function of
runaway electrons fv in the cold plasma, we used
the kinetic equation with the Landau collision integral

calculated for a fully ionized Maxwellian plasma (for
more details, see, e.g., Somov 2012):

∂fv
∂t

+ υ cos θ
∂fv
∂x

− eE

me

∂fv
∂υ

= StL(fv), (3)

where
StL(fv) (4)

=
1

υ2
∂

∂υ

[
υ2νcoll(υ)

(
kBT2

me

∂fv
∂υ

+ υfv

)]

+ νcoll(υ)
∂

∂ cos θ

(
sin2θ

∂fv
∂ cos θ

)
.

Expression (4) implies that the velocities of energetic
electrons υ � (2kBT2/m)1/2, i.e., a linearized Lan-
dau collision integral is considered. We assume that
the cold plasma is composed of electrons and protons
with a constant temperature T2.

The plasma parameters are also assumed to
change only along one coordinate x, θ is the angle
between the electron velocity vector v and the x axis;
in our formulation of the problem E is the reverse-
current electric field strength (see Somov 2012). The
subscript “v” indicates that the sought-for function
fv = fv(x, υ, θ) is the electron distribution function
in velocity vector v.

In the collision integral (4) the collision frequency
of energetic electrons with thermal electrons and pro-
tons in the cold plasma is

νcoll(υ) =
4πn2e

4

me
2υ3

ln Λ, (5)

where n2 is the electron number density in the cold
plasma and ln Λ is the Coulomb logarithm.

Gurevich and Istomin (1979) made two simpli-
fications. First, on time scales of the order of the
Coulomb collision time the injection of electrons in
the cold target plasma may be considered as a sta-
tionary process, while their distribution in the tar-
get, i.e., in the half-space x > 0 (Fig. 1), may be
considered as a steady-state one. For this reason,
the term ∂fv/∂t in the kinetic equation (3) may be
neglected. Second, the reverse-current electric field
strength E was set equal to zero.

(C) Dimensionless form of the equations. Let
us introduce dimensionless variables:

μ = cos θ,

s =
πe4 ln Λ

(kBT1)
2

x∫
0

n2(x
′)dx′

is the ratio of the penetration depth of energetic elec-
trons into the cold plasma (the so-called target) to the
mean free path,

z = meυ
2/2kBT1
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is the ratio of the kinetic energy of energetic electrons
to the thermal energy of super-hot plasma particles,

τ = T2/T1

is the ratio of the cold plasma temperature to the
super-hot plasma temperature.

In these new variables the kinetic equation (3)
takes the form

z2μ
∂ϕ

∂s
− 2z

∂ϕ

∂z

(
1− τ

∂ϕ

∂z

)
(6)

− 2τz
∂2ϕ

∂z2
+ 2μ

∂ϕ

∂μ
+

(
1− μ2

)(∂ϕ

∂μ

)2

−
(
1− μ2

)(∂2ϕ

∂μ2

)
= 0.

Instead of the distribution function fv, a new function
is introduced here:

ϕ = − ln fv. (7)

In contrast to our formulation of the problem, the
following parameter is small in Gurevich and Is-
tomin (1979):

γ =
lT
T1

∣∣∣∣dT1

dx

∣∣∣∣
max

� 1, (8)

where

lT =
(kBT1)

2

πe4n1 ln Λ

is the mean free path of thermal electrons in the
super-hot plasma, (dT 1/dx)max is the maximum
value of the temperature gradient, and n1 is the
electron number density in the super-hot plasma. The
condition (8) implies that the temperature gradient is
fairly small. Thus, Eq. (6) was in the form

zγ
2μ

∂ϕ

∂sγ
− 2zγ

∂ϕ

∂zγ

(
1− 2τγ1/2

∂ϕ

∂zγ

)
(9)

− 4γ1/2τzγ
∂2ϕ

∂zγ2
+ 2μ

∂ϕ

∂μ
+

(
1− μ2

)(∂ϕ

∂μ

)2

−
(
1− μ2

)(∂2ϕ

∂μ2

)
= 0,

where the variables sγ = 4γs and zγ = 2γ1/2z. This
allowed a solution of Eq. (9) to be sought in the form
of a series in powers of the small parameter γ, i.e.,

ϕ =
1

γ1/2
ϕ0 +

1

γ1/4
ϕ1 + ϕ2 + .... (10)

In this case, the main distribution function ϕ0 turned
out to be spherically symmetric, while the correction
to it ϕ1, on the contrary, was highly directional at
high energies. The analysis performed by the authors
showed that the non-diffusive flow of electrons, which

depends exponentially on the temperature gradient,
exceeds the diffusive one for γ > 10−2. However, as
has been noted in the Introduction when formulating
the model under consideration as applied to solar
flares, the electron temperature gradient is great, i.e.,
γ = lT /λ ≥ 1, where λ is the characteristic length
scale of the gradient. Thus, the distribution func-
tion (10) derived by Gurevich and Istomin (1979)
cannot be used in our model, because its derivation
essentially suggests the condition (8).

3. SOLVING THE PROBLEM
OF THE THERMAL RUNAWAY
OF SUPER-HOT ELECTRONS

In applications to solar flares, not γ but another
parameter, τ , is small in Eq. (9). This allows us to
find a solution for the super-hot electrons in the cold
plasma of the solar atmosphere during a flare. The
parameter γ will not be assumed to be small. On the
contrary, bearing in mind the physical conditions in a
solar flare, especially during its “hot” or “main” phase
(Somov 1992), we will set

γ = 1. (11)

Furthermore, we will first seek a solution in a small
neighborhood of the axis of the runaway electron flux,
i.e., near the point μ = 1. Neglecting the last two
terms that contain the factor

(
1− μ2

)
in Eq. (9), we

obtain the equation

zγ
2μ

∂ϕ

∂sγ
− 2zγ

∂ϕ

∂zγ

(
1− 2τ

∂ϕ

∂zγ

)
(12)

− 4τz
∂2ϕ

∂zγ2
+ 2μ

∂ϕ

∂μ
= 0.

Note that the dependence on sγ and μ enters into (12)
as the combination

η = sγ/μ, (13)

which corresponds to a simple kinematic effect. If
the angular diffusion is neglected, then the energetic
electrons moving at an angle θ to the x axis traverse
a distance equal to x/ cos θ = x/μ ∼ sγ/μ. For this
reason, the solution of Eq. (12) must depend on the
variable η. Substituting (13) into (12), we obtain the
equation

zγ
2∂ϕ

∂η
− 2η

∂ϕ

∂η
(14)

− 2zγ
∂ϕ

∂zγ

(
1− 2τ

∂ϕ

∂zγ

)

− 4τzγ
∂2ϕ

∂zγ2
= 0.
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Given the smallness of the parameter τ , we will
seek a solution of this equation in the form

ϕ (η, zγ) = Φ0 (η, zγ) + Φ1 (η, zγ) , (15)

where Φ1 (η, zγ) = 0 at τ = 0. The functionΦ0 (η, zγ)
satisfies a simple linear equation:

zγ
2 ∂Φ0

∂η
− 2η

∂Φ0

∂η
− 2zγ

∂Φ0

∂zγ
= 0. (16)

This equation can be solved by the method of charac-
teristics (see Section 3.3 in Vladimirov (1981)). As a
result, we obtain the general solution

Φ0 (η, zγ) = F

(
zγ
2

+
η

zγ

)
, (17)

where F is an arbitrary function.
Since the Coulomb collisions of high-energy elec-

trons with particles of the colder background plasma
are weak, we will seek a solution that satisfies the
boundary condition

Φ0 (η, zγ) →
zγ
2

when zγ → ∞ (18)

at any fixed η. In other words, in view of the large
mean free path (1), the very fast electrons hardly in-
teract with the plasma, while their distribution func-
tion may be deemed to be the same as it was initially.

Given the condition (18), for the solution (17) we
find

Φ0 (η, zγ) =
zγ
2

+
η

zγ
. (19)

Let us now take into account the nonlinear terms in
Eq. (14). Let

Φ1 (η, zγ) = ψ1 (η, zγ) τ + ψ2 (η, zγ) τ
2 + .... (20)

Substituting the sought-for solution in the form
(19), (20) into Eq. (14) and neglecting the high
powers of 1/zγ , we obtain an equation for ψ1 (η, zγ):

zγ
2 ∂ψ1

∂η
− 2η

∂ψ1

∂η
− 2zγ

∂ψ1

∂zγ
+ zγ −

4η

zγ
= 0. (21)

Similarly to the solution of Eq. (16), we find the
general solution of Eq. (21) by the method of char-
acteristics:

ψ1 (η, zγ) = R

(
zγ
2

+
η

zγ

)
(22)

− 2

(
zγ
2

+
η

zγ

)
ln zγ +

3

2
zγ ,

where R is an arbitrary function. We will require that

ψ1 (η, zγ) → 0 when zγ → ∞ (23)

and at fixed η. Choosing the form of the function R in
Eq. (22), given (23), we then obtain

ψ1 (η, zγ) = −η/zγ . (24)

Thus, in the first order in small parameter τ and
in 1/zγ the sought-for solution (15) is

ϕ (sγ , zγ , μ) =
zγ
2

+ (1− τ)
sγ
μzγ

. (25)

Since the temperature T1 of the super-hot plasma is
much higher than the temperature T2 of the colder
one (see Section 2), the small parameter τ may be
neglected in Eq. (25):

ϕ (sγ , zγ , μ) =
zγ
2

+
sγ
μzγ

. (26)

This means that, here and below, the energy diffusion
in Eq. (12) may be neglected within the chosen ap-
proximation. The regular energy losses of the flow
of fast electrons during their Coulomb collisions with
cold plasma particles rather than the energy diffusion
are of greatest importance. However, it should be
remembered that the energy diffusion may turn out
to be significant at low energies, i.e., when zγ → 2
(or z → 1).

Recall that the solution (26) is valid only in a
small neighborhood of the point μ = 1. In order to
find the distribution function for the electrons with
the remaining pitch angles, let us turn to Eq. (9).
However, given the results obtained, we will set τ = 0
in it; furthermore, as has already been noted, γ = 1.
We obtain the equation

zγ
2μ

∂ϕ

∂sγ
− 2zγ

∂ϕ

∂zγ
+ 2μ

∂ϕ

∂μ
(27)

+
(
1− μ2

)(∂ϕ

∂μ

)2

−
(
1− μ2

)(∂2ϕ

∂μ2

)
= 0.

At a given distance x from the transition layer TF
(see Fig. 1) a larger number of electrons with a fixed
energy moving at a small angle θ, i.e., electrons that
traversed the smallest distance while undergoing a
minimum number of scatterings, is to be expected.
In other words, the fact that the distribution function
of energetic electrons is sharply anisotropic with its
maximum at μ = 1 is to be expected. These qualita-
tive considerations are also confirmed by the solution
obtained by Gurevich and Istomin (1979). Thus, it
makes sense to seek a solution of Eq. (27) in the form
of a series in powers of the small parameter (1− μ):

ϕ (sγ , zγ , μ) = ϕ0 (sγ , zγ) (28)

+ ϕ1 (sγ , zγ) (1− μ) + ϕ2 (sγ , zγ) (1− μ)2 + ...,

where, in view of (26),

ϕ0 (sγ , zγ) = ϕ (sγ , 1, zγ) =
zγ
2

+
sγ
zγ

. (29)
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Substituting (28) into (27) and equating the terms
with identical powers of (1− μ), we obtain a chain of
equations for the functions ϕi (sγ , zγ). The first two
equations of this chain are

zγ
2 ∂ϕ0

∂sγ
− 2zγ

∂ϕ0

∂zγ
− 2ϕ1 = 0, (30)

−zγ
2∂ϕ0

∂sγ
+ sγ

2 ∂ϕ1

∂sγ
− 2zγ

∂ϕ1

∂zγ
(31)

+ 2ϕ1 + 2ϕ1
2 − 8ϕ2 = 0.

Neglecting the highest powers of 1/zγ , from (29)–
(31) we find

ϕ1 (sγ , zγ , μ) = sγ/zγ , (32)

ϕ2 (sγ , zγ , μ) =
1

2
sγ/zγ . (33)

Thus, returning to the variables s and z, we obtain the
sought-for distribution function

ϕ (s, z, μ) = z + 2
s

z
(34)

+ 2
s

z
(1− μ) +

s

z
(1− μ)2.

Let us return to the function ϕ0 (s, z). At any fixed
penetration depth s it has a minimum in energy (or
velocity υ) on the curve z =

√
2s. Consequently, the

distribution function fv0 = exp(−ϕ0) corresponding
to ϕ0 reaches a maximum in velocity on the same
curve, implying the presence of an instability that
leads to the excitation of plasma oscillations. This, in
turn, means that the derived expression for ϕ0 (s, z) is
not valid for all s and z, as follows from the derivation.

The mean free path of fast electrons in the super-
hot plasma (1) or the corresponding dimensionless
penetration depth is defined by the formula

s (z) = z2. (35)

For this reason, in the range of energies z >
√
s

at a distance s from the transition layer there are
many electrons that underwent virtually no scatter-
ings, which creates the directivity of the flow of fast
electrons. At the same time, for z <

√
s the distribu-

tion function differs little from the isotropic one. We
will assume, for simplicity, (and this is sufficient for
our analysis) that in the range of energies z <

√
s the

distribution function is isotropic and is

ϕ0 (s, z) = z + 2s1/2. (36)

It follows from Eq. (34) that the electron distribu-
tion function decreases exponentially with penetra-
tion depth into the cold plasma. Its directivity can

then be estimated as follows. The number of electrons
with energy z arriving an angle θ at point s is

Ne ∼ exp (−ξ/ξz) = exp

[
− ξ

ξT

(
1

z

)2 1

μ

]
, (37)

where ξ =
∫ x
0 n2(x

′)dx′ and ξT = lTn1.

Consider the electrons with an energy E in the
range

kBT1

(
ξ

ξT

)1/2

≤ E ≤ kBT1

(
ξ

ξT

)1/2

+ kBT1. (38)

They constitute the bulk of all the electrons described
by the function (34), because Ne ∼ e−E/kBT1 . It can
be seen from (37) that most of the electrons will arrive
at point ξ within the angle

ξ

ξT

(
kBT1

E

)2

� μ. (39)

Having estimated (kBT1/E)2 from (38), we obtain an
estimate of the directivity of the function (34):

μ � ξ(
ξ1/2 + ξT

1/2
)2 . (40)

Relation (40) suggests that the expansion (28) is
legitimate and, consequently, the solution (34) is valid
for ξ � ξT .

In the region 0 ≤ ξ ≤ ξT adjacent to the transition
layer TF (Fig. 1) the distribution function has a dif-
ferent form. The electrons described by this distri-
bution function interact weakly with cold electrons.
Therefore, neglecting the explicit dependence on μ
in Eq. (27), we obtain the sought-for distribution
function in the region 0 ≤ ξ ≤ ξT :

ϕ (s, z) = z + 2
s

z
. (41)

However, this distribution function cannot be iso-
tropic. Its anisotropy can be taken into account if
the function (41) is assigned only to those electrons
that have not yet interacted with the cold plasma, i.e.,
those flying at such an angle that μ

1 > μ >
ξ

ξT

(
kBT1

E

)2

. (42)

Finally, let us now rewrite the distribution function for
energetic electrons in dimensional variables:
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fv (ξ, E , θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K exp
[
−
(

E
kBT1

+ 2 ξ
ξT

kBT1

E

)]
, cos θ > ξ

ξT

(
kBT1

E

)2
,

ξ < aξT , E > kBT1

(
ξ
ξT

)1/2

K exp
[
−
(

E
kBT1

+ 2 ξ
ξT

kBT1

E (2− cos θ) + ξ
ξT

kBT1

E (1− cos θ)2
)]

,

cos θ � ξ

(ξ1/2+ξT
1/2)

2 , ξ > aξT , E > kBT1

(
ξ
ξT

)1/2

K exp

[
−
(

E
kBT1

+ 2
(

ξ
ξT

)1/2
)]

, E < kBT1

(
ξ
ξT

)1/2
.

(43)

Here, K is the normalization constant. For example,
in Gritsyk and Somov (2014) this constant is deter-
mined from the condition for the normalization to the
energy flux density transferred by energetic electrons.
Using the free model parameter a we can specify the
penetration depth of high-energy thermal electrons
into the cold plasma starting from which the Coulomb
collision cross section for such particles increases
noticeably. Of course, this will affect significantly
the polarization of the X-ray emission in this energy
range.

The distribution function (43) takes into account
the diffusion in angle θ, i.e., the scattering of the flow
of energetic electrons during their Coulomb collisions
with thermal electrons of the cold plasma. This can
be made sure by looking at Fig. 2. Indeed, near
the layer TF, i.e., at the boundary (ξ1 = 0), the func-
tion (43) is isotropic. As the thermal runaway elec-
trons penetrate into deeper plasma layers (ξ2, ξ3, ξ4
in Fig. 2), their distribution function decreases due
to Coulomb collisions. However, for higher-energy
particles and particles with a pitch angle cos θ � 1
this process is slower, which creates only a slight
directivity (anisotropy) of the distribution function for
super-hot electrons.

Using (43) and the expressions for the bremsstra-
hlung cross section, we can calculate the spectrum
and polarization of the hard X-ray bremsstrahlung
generated by the flow of thermal runaway electrons
during a flare. Calculating the polarization and com-
paring the estimates with observational data are of
crucial importance in checking whether the model
description of the runaway electron propagation pro-
cesses in the solar atmosphere is correct. The polar-
ization estimates obtained within the thermal model
proposed here are given in the next section.

4. POLARIZATION OF THE HARD X-RAY
EMISSION

We will use the distribution function (43) to calcu-
late the polarization of the hard X-ray bremsstrahlung

of thermal runaway electrons. Let I|| and I⊥ be
the corresponding fluxes from the source under study
with a polarization parallel and perpendicular to the
plane formed by the line of sight (the direction from
the emission source toward the observer) and the
magnetic field near the Earth. Then, according to the
formulas derived in Nocera et al. (1985), for the hard
X-ray flux we have

I⊥ + I|| (44)

= κ

[
8

∞∫
hν

AC

⎛
⎝

∞∫
0

L0dξ

⎞
⎠ zdz

+
8

3

∞∫
hν

BC

⎛
⎝

∞∫
0

L0dξ

⎞
⎠ zdz

+
12sin2ψ − 8

15

∞∫
hνν

BC

⎛
⎝

∞∫
0

L2dξ

⎞
⎠ zdz

]
.

The quantity

I⊥ − I|| = −4

5
κsin2ψ

∞∫
hνν

BC (45)

×

⎛
⎝

∞∫
0

L2dξ

⎞
⎠ zdz.

Here, ψ is the angle between the line of sight and the
direction perpendicular to the magnetic field; A, B,
and C are the differential bremsstrahlung cross sec-
tions (Elwert and Haug 1970); L0 = L0(z, ξ) and
L2 = L2(z, ξ) are the coefficients of the expansion of
the distribution function (43) into a series in Legendre
polynomials. The use of ξ here is very convenient,
because it allows us to obviate the need to make
assumptions about the plasma density distribution
in the target and the extent of the X-ray source.
In (44) and (45) the upper limit of integration over
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Fig. 2. Distribution functions for thermal runaway electrons at various penetration depths into the cold plasma: ξ1 = 0,
ξ2 = 15ξT , ξ3 = 50ξT , and ξ4 = 100ξT . The calculations were performed by assuming that the temperature of the source
of energetic electrons T1 = 108 K, the parameter a = 10, and the normalization constant K = 1. The following pitch angles
were considered: cos θ = 0.8 (a) and 1 (b).
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Fig. 3. Polarization of the hard X-ray emission generated by thermal electrons versus photon energy hν for various angles ψ.
The calculations were performed by assuming that the temperature T1 = 108 K and the parameter a = 5 (a) and 10 (b).

the penetration depth ξ of the source is infinite. The
constant κ ∼ KSHXR/R

2, where SHXR is the area
of the emission source and R is the distance from the
Earth to the Sun. Obviously, the polarization

P =
I⊥ − I||
I⊥ + I||

(46)

does not depend on specific values of this constant.
The results of our polarization calculations for

various angles ψ are presented in Fig. 3. The
degree of polarization within the thermal model
proposed here is small, because the anisotropy of
the distribution function (43) is comparatively small.
Indeed, it was shown in Section 3 that low-energy

(E < kBT1(ξ/ξT )
1/2) electrons lose their energy very

rapidly through Coulomb collisions, while their dis-
tribution function differs little from the isotropic one.
Such particles generate an almost unpolarized hard
X-ray emission. In contrast, energetic electrons
with energies E > kBT1(ξ/ξT )

1/2 penetrate to great
depths into the cold plasma, almost without scatter-
ing, and provide some anisotropy of the distribution
function.

In Fig. 3a the emission polarizations at high en-
ergies exceed noticeably those in Fig. 3b. The esti-
mates were made for a = 5 and 10 in the former and
latter cases, respectively (see Eq. (43)). This result
is easy to explain, because the low values of a imply
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that the energetic particles begin to scatter com-
paratively rapidly (i.e., at small penetration depths),
while their distribution function becomes increasingly
anisotropic (cos θ ≈ 1). In the latter case, an analo-
gous effect is achieved at greater penetration depths
of hot electrons into the cold plasma, where, however,
the number of energetic particles decreases signifi-
cantly. It should be noted that the interpretation of
the observations of the thermal component in the X-
ray spectrum of a flare depends little on the choice
of a, because at energies Ehν � 20 keV the predicted
degrees of polarization of the emission do not depend
on a either (cf. Figs. 3a and 3b).

It is fundamentally important that the distribution
function of thermal runaway electrons remains an
almost equilibrium and almost isotropic one in the
chromospheric part of the target. This manifests itself
in a very low degree of polarization of the hard X-ray
bremsstrahlung and confirms the original assump-
tions of our model.

5. CONCLUSIONS

Present-day space and ground-based observa-
tions of solar flares in various ranges of the elec-
tromagnetic spectrum with high temporal, spatial,
and spectral resolutions are an excellent basis both
for investigating separate physical processes and for
understanding the mechanism of the entire flare.
This complex electrodynamic phenomenon in a high-
conductivity plasma with a strong magnetic field is
accompanied by the acceleration of charged particles,
intense plasma heating to very high temperatures,
and, as a consequence, the thermal runaway of the
so-called super-hot electrons.

The kinetic description of the propagation of ac-
celerated electrons that is based on the approximation
of the thick-target model with a reverse current and
that takes into account the additional acceleration in
collapsing magnetic traps (Gritsyk and Somov 2017)
allows the hard X-ray observations of solar flares
to be interpreted with an accuracy corresponding to
the accuracy of present-day space experiments. The
mentioned self-consistent nonthermal model is suc-
cessfully used to describe the propagation of acceler-
ated electrons with energies E � 20 keV, which form
a power-law hard X-ray spectrum at high energies.
In contrast, thermal super-hot electrons with ener-
gies E � 20 keV generate less hard X-ray emission
with a spectrum that closely resembles a Maxwellian
distribution.

For this reason, here we considered the propaga-
tion of super-hot electrons running away along mag-
netic field lines from the heating region, a super-hot
reconnecting current layer (Somov 2013) and col-
lapsing magnetic traps, into the solar atmosphere, a

region of less hot background plasma. We formulated
and investigated the corresponding kinetic equation,
in which the Coulomb collisions of thermal runaway
electrons with plasma particles were taken into ac-
count, and found its analytical solution. Based on
the distribution function of thermal runaway electrons
found, we estimated the polarization of the hard X-
ray emission, which turned out to be very low (P ∼
−5%). An experimental confirmation of such low
polarizations remains a question of future space ob-
servations. However, the results obtained here can
be used already now to interpret the thermal X-ray
bremsstrahlung spectra of flares. The most careful
and complete kinetic description of solar flares is
needed primarily from the viewpoint of planned space
observations of solar flares (see, e.g., Grefenstette
et al. 2016).
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