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Introduction

Consider the Banach algebra A and a A –bimodule E . A linear
mapping

D : A−→E

is called a derivation (or differentiation) if, for any elements
a, b ∈ A , the so-called Leibniz identity (with respect to the
two-sided action of the algebra A on the bimodule E )

D(ab) = D(a)b+ aD(b), a, b ∈ A.

holds (see Definition 1.8.1 in the Dales paper (2000) [6]).

H. G. Dales Banach Algebras and Automatic Continuity,
Clarendon Press, Oxford University Press, New York, 2000
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Introduction

Denote the space of all derivations from A to E by Der(A, E) .
The inner derivations Int (A, E) ⊂ Der(A, E) , are defined by
the adjoint representations

adx(a)
def
= xa− ax, x ∈ E, a ∈ A.

The quotient space Out (A, E) = Der(A, E)/Int (A, E) is
called the space of outer derivations; this space can be
interpreted using the one-dimensional Hochschild cohomology of
the algebra Awith coefficients in the bimodule E :

H1(A;E) ≈ Out (A, E),
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Introduction

The derivation problem is as follows: is it true that every
derivation is inner? (See Dales(2000) [6], (Question 5.6.B,
p. 746)); i.e., is it true that

H1(A;E) ≈ Out (A, E) = 0?

A simpler and more natural case occurs when the bimodule E is
isomorphic to the algebra A , which is certainly a bimodule over
the algebra A itself.

5



Introduction

The passage to more general bimodules enabled V. Losert to
solve Johnson’s problem by finding inner derivations using
elements of an algebra larger than A rather than elements of the
original algebra A.
Namely, the derivation problem is stated as follows: are all
derivations inner? This problem was considered for the group
algebras A = C[G] of some group G rather than for all algebras.
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Introduction

In this very setting, Losert ([5]) proved that

Out (L1(G),M(G)) = 0,

where M(G) stands for the algebra of all bounded measures on
Gwith the multiplication operation defined by the convolution
of measures.
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Introduction
Choice of an appropriate class of algebras

In the present talk, we are interested in a dense subalgebra
A = C[G] ⊂ A of the Banach algebra A = L1(G) only rather
than in the whole algebra A = L1(G).The subalgebra A = C[G]
consists of a kind of smooth elements of the algebra
A = L1(G).
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Statement of the problem

Consider the group algebra A = C[G].We assume that the
group G is a finitely generated discrete group. There is a
natural problem to describe all derivations of A . The inner
derivations of A = C[G] form an ideal Int (A) ⊆ Der(A) in the
algebra Der(A) of all derivations.
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Statement of the problem

To every group Gwe assign the groupoid of the adjoint action of
the group G , G , and show that every derivation of the algebra
A = C[G] is uniquely defined by an additive function on G which
satisfies some natural finiteness conditions for the support.
For the case in which the group G is finitely presented and its
presentation is of the form G = F < X,R > , one can transfer
the presentation using the generators and defining relations to
the groupoid G : G = F < X ,R > . This presentation enables
us to construct the Cayley complex Ca(G) of the groupoid G as a
two-dimensional complex whose vertices are the objects of the
groupoid G , the edges are the system of generating morphisms,
and the two-dimensional cells are formed by the system of
defining relations.
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Statement of the problem

Thus, the problem is to prove that the algebra of outer
derivations Out (A) = Der(A)/Int (A) of the algebra A is
isomorphic to the one-dimensional cohomology of the Cayley
complex K(G) of the groupoid G with finite supports:

Out (C[G]) ≈ H1
f (K(G);R).
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Groupoid of the adjoint action of a group
Linear operators on the group algebra

Consider the group algebra A = C[G].We assume that G is a
finitely presented discrete group. An arbitrary element u ∈ A is
a finite linear combination u =

∑
g∈G

λg · g.Consider an arbitrary

linear operator on the group algebra A = C[G] , X : A−→A.
The linear operator X has the following matrix form:

X(g) =
∑
h

xhg · h ∈ A.

The matrix X = ‖xhg‖g,h∈G must satisfy the natural finiteness
condition:

(F1) For every subscript g ∈ G , the set of the superscripts
h ∈ G for which xhg is nonzero is finite.
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Groupoid of the adjoint action of a group
Linear operators on the group algebra

If a matrix X = ‖xgh‖g,h∈G satisfies condition (F1), then it well
defines a linear operator X : A−→A . All this justifies that both
the operator X and its matrix X = ‖xhg‖g,h∈G are denoted by
the same symbol X.
Consider now a so-called differentiation (derivation) in the
algebra A , i.e., an operator X for which the following condition
holds:

(F2) X(u · v) = X(u) · v + u ·X(v), u, v ∈ A.
The set of all derivations of the algebra A is denoted by Der(A)
and forms a Lie algebra with respect to the commutator of
operators.
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Groupoid of the adjoint action of a group
Derivations on the group algebra

There is a natural problem to describe all derivations of the
algebra A . To this end, it is necessary to satisfy two conditions,
(F1) and (F2). It is more or less simple to verify each of the
conditions separately. The simultaneous validity of these
conditions is one of the tasks of this talk.
All inner derivations satisfy automatically both the conditions
(F1) and (F2).
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Groupoid of the adjoint action of a group
Definition of the groupoid G of the adjoint action of the group G

Denote by G the groupoid associated with the adjoint action of
the group G . The groupoid G consists of the objects
Obj(G) = G and the morphisms

Mor(a, b) = {g ∈ G : ga = bg or b = ad(g)(a)}, a, b ∈ Obj(G).
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Groupoid of the adjoint action of a group
Definition of the groupoid G of the adjoint action of the group G

It is convenient to denote the elements of the set of all
morphisms Mor(G) in the form of columns

ξ =

(
a−→b
g

)
∈Mor(a, b), b = gag−1 = ad(g)(a).

17



Groupoid of the adjoint action of a group
Definition of the groupoid G of the adjoint action of the group G

Note that the groupoid G is decomposed into the disjoint union
of its subgroupoids G〈g〉 that are indexed by the conjugacy
classes 〈g〉 of the group G :

G =
∐
〈g〉∈〈G〉

G〈g〉,

where 〈G〉 stands for the set of conjugacy classes of the group G.
The subgroupoid G〈g〉 consists of the objects Obj(G〈g〉) = 〈g〉 and
the morphisms Mor(G〈g〉) =

∐
a,b∈〈g〉

Mor(a, b) .
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Groupoid of the adjoint action of a group
Linear operators as functions on the groupoid G

A linear operator X : A−→A is described by the matrix
X = ‖xhg‖g,h∈G satisfying condition (F1). The same matrix X
defines a function on the groupoid G :

TX : Mor(G)−→R,

associated with X , which is defined by the formula:

TX(ξ) = TX

(
a−→b
g

)
= xga=bg

g .
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Groupoid of the adjoint action of a group
Linear operators as functions on the groupoid G

Condition (F1) can be reformulated in terms of the function T
on the morphisms Mor(G) of the groupoid G :

(T1) for every element g ∈ G , the set of morphisms of the form

ξ =
(
a−→b

g

)
for which TX(ξ) 6= 0, is finite.
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Groupoid of the adjoint action of a group
Linear operators as functions on the groupoid G

Then the condition (T1) imposed on the function T can
equivalently be reformulated as follows:

Proposition

A function T : Mor(G)−→C , is defined by a linear operator

X : A−→A, T = TX ,

if and only if, for any element g ∈ G, the restriction (T )|g
is a

finitely supported function.

In this case we say that T is locally finitely supported.
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Groupoid of the adjoint action of a group
Linear operators as functions on the groupoid G

Denote the set of locally finitely supported functions on the
groupoid G by Cf (G) .

Theorem

The homomorphism

T : Hom (A,A)−→Cf (G)

is an isomorphism.
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Derivations of the group algebra as characters on the
groupoid

The algebra of derivations Der(A) treated as linear operators is
a subspace of Hom (A,A) . Thus, the correspondence T takes
the algebra of derivations Der(A) to some subspace
Tf (G) ⊂ Cf (G) .

Consider two morphisms ξ =
(
a−→b
g1

)
and η =

(
b−→c
g2

)
, which

thus admit the composition

η ∗ ξ =

(
a−→c
g2g1

)
.
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Derivations of the group algebra as characters on the
groupoid

Theorem

An operator X : A−→A is a differentiation (i.e., a derivation)
if and only if the function TX (on the groupoid G ) associated
with the operator X satisfies the additivity condition

(T2)
TX(η ∗ ξ) = TX(η) + TX(ξ)

for every pair of morphisms ξ and η admitting the composition
η ∗ ξ .
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Derivations of the group algebra as characters on the
groupoid

Every function T : Mor(G)−→R on the groupoid G satisfying
the additivity condition (T2) is called a character. Denote the
set of all characters on the groupoid G by T(G).Denote the
space of all locally finitely supported characters of the groupoid
G by Tf (G) ⊂ T(G).
Thus, the correspondence T defines a mapping from the algebra
of derivations Der(A) to the space Tf (G) of locally finitely
supported characters on the groupoid G :

Theorem

The mapping
T : Der(A)−→Tf (G),

is an isomorphism.
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Cayley complex of a groupoid

Here we intend to apply the so-called geometric methods of
combinatorial group theory to study the problem of describing
the derivations of the group algebra of a finitely presentable
discrete group. Following, for example, the book of R. Lyndon
and P. Schupp (1980, [24]), one can assign to every discrete
finitely presentable group the so-called Cayley graph and its
two-dimensional generalization, the Cayley complex, which
consists of the elements of the group as vertices, of the system
of generators as edges, and of the system of defining relations as
two-dimensional cells. The topological properties of the Cayley
complex are responsible for certain algebraic properties of the
group G itself.
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Cayley complex of a groupoid

The geometric construction of the Cayley complex for a finitely
presentable group G can be generalized to the case of groupoids;
in particular, to the case of the groupoid G of the adjoint action
of the group G . Since the derivations of the group algebra
Der(C[G]) can be described as characters on the groupoid G, it
follows that the topological properties of the Cayley complex
Ca(G) of the groupoid G enable us to describe some properties of
derivations.
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Cayley complex of a groupoid
Presentation of a finitely presentable group

Consider a finitely presentable group G ,

G = F < X,R >,

where X = {x1, x2, . . . , xn} is a finite set of generators and
R = {r1, r2, . . . , rm} is a finite set of defining relations.
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Cayley complex of a groupoid
Presentation of the groupoid of the adjoint action of a group

The finite set of generators X = {x1, x2, . . . , xn} and the finite
set of defining relations R = {r1, r2, . . . , rm} are transferred to
the generators and relations of the groupoid G , which we
denote by X and R . Thus, the set of morphisms Mor(G) can
be denoted by F < X ,R >,

Mor(G) = F < X ,R > .

Let us define X as the set of all morphisms of the form

X =

{
ξ =

(
a−→b
x

)
: x ∈ X, a ∈ Obj(G), b = ax

}
.

Let Y = X t X−1; consider Y as an alphabet,

Y =

{
ξ =

(
a−→b
y

)
: y ∈ Y = X tX−1, a ∈ Obj(G), b = ay

}
.
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Cayley complex of a groupoid
Presentation of the groupoid of the adjoint action of a group

The set S(Y) is the set of all admissible words s in the alphabet
Y, i.e., words formed by the letters of the alphabet Y,
s = ξ1ξ2ξ3 · · · ξl such that

ξi =

(
ai−→ai+1

yi

)
, ξi ∈ Y, 1 ≤ i ≤ l.

Every admissible word s ∈ S(Y) defines a morphism
ξ(s) ∈Mor(G) by the formula

ξ(s) = ξ1 ∗ ξ2 ∗ ξ3 ∗ · · · ∗ ξl.
Define first the system of relations R generated by the set R of
defining relations for the group G.Every relation ri ∈ R is
written out in the form of a word

ri = yi1yi2yi3 · · · yili , yij ∈ Y.
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Cayley complex of a groupoid
Presentation of the groupoid of the adjoint action of a group

The relations ri generate the system of admissible words
ρi,a, a ∈ Obj(G), of the form

ρi,a =
(
a1−→a2

yi1

)(
a2−→a3

yi2

)(
a3−→a4

yi3

)
· · ·
(
ali−→a1

yili

)
,

a = a1, aj+1 = a
yij
j , 1 ≤ j ≤ li, ali+1 = a1,

which serve as the defining relations of the groupoid G.Denote
the set of all admissible words of the form ρi,a by R,

R = {ρi,a : 1 ≤ i ≤ li, a ∈ Obj(G)},

R ⊂ S(Y).
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Cayley complex of a groupoid
Presentation of the groupoid of the adjoint action of a group

Thus, two admissible words s and s′ define the same morphism,
i.e.,

ξ(s) = ξ(s′) ∈Mor(G),

if and only if the words are equivalent, s ∼ s′ , i.e., when there
is a finite sequence of operations of two types:
1) the operation of reduction,
2) the operation of admissible insertion.
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Construction of the Cayley complex of the groupoid G
Cayley complex of a group G

Before constructing the Cayley complex of the groupoid G by
analogy with the Cayley complex of the group G itself, recall
the construction of the Cayley complex of G from its
presentation in the form of finitely many generators X and
finitely many defining relations R , F(X)/R.
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Construction of the Cayley complex of the groupoid G
Cayley complex of a group G

By the definition in the book by Lyndon and Schupp (1980,
[24], p. 174), for the group G , the Cayley complex Ca(G)
consists of vertices, edges, and two-dimensional cells. The set of
vertices Ca0(G) is the set of all elements the group G.
The set of edges is formed by the morphisms of the form

ξ =
(
a−→ag

g

)
, g ∈ X tX−1, i.e., ξ ∈ X t X−1 = Y.
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Construction of the Cayley complex of the groupoid G
Cayley complex of a group G

Thus, the edges ξ ∈ Ca1(G) are defined by the set X of
generators of the groupoid rG .
The set of two-dimensional cells, Ca2(G) , is defined using
sequences of morphisms defined by words
ρ ∈ R tR−1 ⊂ S(X t X−1) = S(Y) .
The two-dimensional cells are the planar orientable polygons
σ(ρ) defined by the words ρ ∈ R tR−1 that determine the
boundaries of the polygons σ(ρ) as closed cycles formed by the
edges of the word ρ.
The two-dimensional cells σ(ρ) are pasted to the 1-skeleton of
the complex Ca(G) by the natural identification of the edges of
the boundary of the cell σ(ρ) with the corresponding edges of
the complex Ca(G), preserving the orientation.
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Construction of the Cayley complex of the groupoid G
Cayley complex of the groupoid G of adjoint action

The only difference between the groupoid G and the group G is
that the former is defined by another action of the group G ,
namely, the adjoint action: Adg(a) = gag−1 , g, a ∈ G .
Therefore, the Cayley complex of the groupoid G is constructed
by analogy with the Cayley complex of the group G .
Namely, the vertices, i.e., the zero-dimensional cells Ca0(G) of
the complex Ca(G), are the objects, a ∈ Obj(G) ≈ G.
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Construction of the Cayley complex of the groupoid G
Cayley complex of the groupoid G of adjoint action

The one-dimensional edges, i.e., the oriented cells of dimension
1, K1(G) , joining vertices a and b , are the morphisms
ξ ∈Mor(a, b) of the form

ξ =

(
a−→b
y

)
, y ∈ Y = XtX−1, a ∈ Obj(G), b = yay−1 ∈ Obj(G).

The set of edges described above is denoted by X ; let
Y = X t X−1 . These edges form a system of generators of the
groupoid G , i.e., every morphism η ∈Mor(a, c) can be
represented as an admissible composition of generators,

η = ξ1 ∗ ξ2 ∗ · · · ∗ ξk, ξi ∈ Y 1 ≤ i ≤ k.
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Construction of the Cayley complex of the groupoid G
Cayley complex of the groupoid G of adjoint action

Finally, the two-dimensional cells K2(G) are the planar
orientable polygons σ(ρ) given by words ρ ∈ R tR−1 that
define the boundaries of the polygons σ(ρ) as closed cycles
composed of the edges of the words ρ.The two-dimensional cells
σ(ρ) are pasted to the 1-skeleton of the complex Ca(G) by the
natural identification of the edges of the boundary of a cell σ(ρ)
to the corresponding edge of the complex Ca(G) , preserving the
orientation.
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Groups of chains of the Cayley complex of the groupoid
G

The two-dimensional Cayley complex Ca(G) generates the
cochain complex

C0(Ca(G))
d0−→C1(Ca(G))

d1−→C2(Ca(G)).

This cochain complex has a natural subcomplex of finitely
supported cochains, because every cell of dimension 0 or 1
satisfies the condition that the set of cells that abut on cells of
lesser dimension is finite.

41



Groups of chains of the Cayley complex of the groupoid
G

This, taken together, gives the commutative diagram

C0(Ca(G))
d0 // C1(Ca(G))

d1 // C2(Ca(G))

C0
f (Ca(G))

df0 //

∪

OO

C1
f (Ca(G))

df1 //

∪

OO

C2
f (Ca(G)).

∪

OO

We identify the one-dimensional finitely supported cochains
C1
f (Ca(G)) with the derivations Der(C[G]) by the composition

of the mappings

H : Der(C[G])
T−→Tf (G)

ϕ∗
−→C1

f (Ca(G)).
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Groups of chains of the Cayley complex of the groupoid
G

We have the commutative diagram:

C0(Ca(G))
d0 // C1(Ca(G))

d1 // C2(Ca(G))

C0
f (Ca(G))

df0 //

∪

OO

C1
f (Ca(G))

df1 //

∪

OO

C2
f (Ca(G)).

∪

OO

Int (C[G]) //

H

OO

Der(C[G])

H

OO

// 0

OO
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Groups of chains of the Cayley complex of the groupoid
G

Theorem

The homomorphism H is a monomorphism onto the kernel of
the differential d1 :

Im (H) = Ker (df1) ⊂ C1(Ca(G)).

The image of the algebra of inner derivations
H(Int (C[G])) ⊂ C1(Ca(G)) is equal to the image of the

differential df0 :

H(Int (C[G])) = Im (df0) ⊂ C1(Ca(G)).
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Groups of chains of the Cayley complex of the groupoid
G

Corollary

The homomorphism H induces an isomorphism of the algebra of
outer derivations Out (C[G]) onto the group of the
one-dimensional cohomology with finite supports of the Cayley
complex of the groupoid G of the adjoint action of the group G :

H : Out (C[G])
≈−→H1

f (Ca(G);R).
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Description of the Cayley complex of the groupoid G
Let K(X,R) be the two dimensional complex associated with
the representation (X,R) of the group G = F 〈X,R〉 . Then the

universal covering K̃(X,R) is homeomorphic to the Cayley
complex of the group G :

Ca(G) ≈ K̃(X,R).

Then the Cayley complex Ca(G〈a〉) is homeomorphic to the

covering K̃(X,R)
CG(a)

that corresponds to the subgroup
CG(a) ⊂ π1(K(X,R)) ≈ Gwhere CG(a) is the centralizer of the
conjugated class 〈a〉 ∈ 〈G〉 :

Ca(G〈a〉) ≈ K̃(X,R)
CG(a)

.
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Description of the Cayley complex of the groupoid G

In particular one has

Theorem

H∗f (Ca(G);R) ≈
⊕
〈a〉∈〈G〉

H∗f (Ca(G〈a〉);R).
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Description of the Cayley complex of the groupoid G

For outer derivation one has

Corollary

The homomorphism H induces the isomorphism of the algebra
of outer derivations Out (C[G]) onto the direct sum of one
dimensional finite cohomologies of the Cayley of groupoids G〈a〉
of adjoint action of the group G :

H : Out (C[G])
≈−→H1

f (Ca(G);R) ≈
⊕
〈a〉∈〈G〉

H∗f (Ca(G〈a〉);R).
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Thank you!
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