ФГБОУ ВО

Московский государственный университет имени М.В.Ломоносова

На правах рукописи

Шастин Владимир Алексеевич

Геометрические свойства модулярных групп

Специальность 01.01.04 — Геометрия и топология

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук Работа выполнена на кафедре высшей геометрии и топологии Механико-математического факультета $\Phi\Gamma BOV$ BO «Московский государственный университет имени М. В. Ломоносова».

Научный руководитель: Дынников Иван Алексеевич,

доктор физико-математических наук,

профессор.

Официальные оппоненты: Малютин Андрей Валерьевич,

доктор физико-математических наук,

ведущий научный сотрудник (ФГБУН Санкт-Петербургское отделение Математического института им.В.А.Стеклова Росийской академии наук, лаборатория теории представлений и динамических си-

стем)

Ландо Сергей Константинович, доктор физико-математических наук,

профессор (НИУ «Высшая школа экономики», фа-

культет математики).

Ведущая организация: Институт математики СО РАН

Защита состоится 27 мая 2016 г. в 16 ч. 45 м. на заседании диссертационного совета Д501.001.84 на базе ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова» по адресу Российская Федерация, 119234, Москва, ГСП-1, Ленинские горы, д. 1, ФГБОУ ВО МГУ имени М. В. Ломоносова, Механико-математический факультет, аудитория 14-08.

С диссертацией можно ознакомиться в фундаментальной библиотеке ФГБОУ ВО МГУ имени М. В. Ломоносова по адресу: Москва, Ломоносовский проспект, д. 27, сектор A, http://mech.math.msu.su/~snark/index.cgi.

Автореферат разослан 27 апреля 2016 г.

Учёный секретарь диссертационного совета Д 501.001.84 на базе ФГБОУ ВО МГУ имени М. В. Ломоносова, доктор физико-математических наук, профессор

Шафаревич Андрей Игоревич

Общая характеристика работы

Актуальность темы.

Пусть S — поверхность конечного топологического типа. Рассмотрим группу $\mathrm{Diff}^+(S)$ сохраняющих ориентацию диффеоморфизмов S и ее нормальную подгруппу $\mathrm{Diff}_0(S)$ диффеоморфизмов S изотопных тождественному диффеоморфизму. Фактор-группа $\mathrm{MCG}(S) = \mathrm{Diff}^+(S)/\mathrm{Diff}_0(S)$, называемая группой классов отображений или модулярной группой Тейхмюллера поверхности S, является главным объектом исследования настоящей работы.

Изучение групп классов отображений было начато в 20-ых годах прошлого века Максом Дэном и Якобом Нильсенем. В их работах 1 2 3 4 5 6 были получены важные результаты как о глобальной структуре групп классов отображений: найдены конечные системы порождающих этих групп, установлена связь этих групп с группами внешних автоморфизмов фундаментальных групп поверхностей, — так и о свойствах отдельных элементов в этих группах: доказано, что каждый элемент конечного порядка в группе классов отображений может быть реализован диффеоморфизмом конечного порядка. Впоследствии методы Дэна и Нильсена получили развитие в работах других математиков. Так разработка идей Нильсена привела Вильяма Терстона к его знаменитой теореме о классификации гомеоморфизмов поверхности ⁷, а исследования Дэна действия групп классов отображений на множестве простых кривых на поверхности получили продолжение в работах Вильяма Харви $^{8\ 9}$ о комплексе кривых — одном из основных геометрических объектов, используемых при исследовании групп классов отображений. Были развиты и другие методы изучения этих групп, берущие начало из таких разделов математики как комплексный анализ, гиперболическая геометрия, теория слоений. Кроме уже упоминавшихся, свой вклад в изучение групп классов отображений

 $^{^1}$ Dehn M. Die gruppe der Abbildungsklassen //Acta Mathematica. – 1938. – T. 69. – Nº. 1. – C. 135-206.

² Dehn M. Papers on group theory and topology. – Springer Science & Business Media, 2012.

 $^{^3}$ Nielsen J. Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen //Acta Mathematica. – 1927. – T. 50. – M. 1. – C. 189-358.

 $^{^4}$ Nielsen J. Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. II //Acta Mathematica. – 1929. – T. 53. – \mathbb{N} . 1. – C. 1-76.

 $^{^5}$ Nielsen J. Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. III //Acta Mathematica. – 1932. – T. 58. – \mathbb{N} . 1. – C. 87-167.

 $^{^6}$ Nielsen J. Abbildungsklassen endlicher ordnung //Acta Mathematica. – 1942. – T. 75. – $\mathbb{N}\!\!_{-}$ 1. – C. 23-115.

 $^{^7}$ Thurston W. P. et al. On the geometry and dynamics of diffeomorphisms of surfaces //Bulletin (new series) of the american mathematical society. – 1988. – T. 19. – No. 2. – C. 417-431.

 $^{^8}$ Harvey W. J. 14-Geometric structure of surface mapping class groups //Homological group theory. – 1979. – T. 36. – C. 255.

 $^{^9}$ Harvey W. J. Boundary structure of the modular group //Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978). – 1981. – T. 97. – C. 245-251.

внесли такие известные математики как: Липман Берс, Джоан Бирман, Алан Хэтчер, Стивен Кергофф, Ховард Мазур.

Интерес к изучению групп классов отображений объясняется глубокими связями этих групп с различными разделами математики: маломерной топологией, геометрической теорией групп, алгебраической геометрией, комплексным анализом, гиперболической геометрией, топологической квантовой теорией поля и др. В настоящее время имеется несколько обзорных статей, посвященных разным аспектам теории групп классов отображений, среди которых стоит выделить обзор Николая Иванова ¹⁰. Кроме того в 2006 году под редакцией Бенсона Фарба вышел сборник статей ¹¹, посвященный открытым проблемам в теории групп классов отображений, а в 2012 был опубликован учебник ¹², написанный Фарбом и Дэном Маргалитом, в котором изложены многие важные теоремы и методы из теории этих групп.

Первая часть этой работы посвящена изучению инвариантных метрик и соответствующих функций сложности на группах классов отображений, естественным образом возникающих из действия этих групп на пространствах Тейхмюллера соответствующих поверхностей.

Инвариантные метрики на группах являются объектом исследования геометрической теории групп — раздела математики, в рамках которого изучаются действия групп на топологических и метрических пространствах, а также связи между геометрическими свойствами пространств и алгебраическими свойствами групп, действующих на них. Классическим примером такой метрики служит словарная метрика на группе, возникающая из действия группы на ее графе Келли. Исследование конечно-порожденной группы как метрического пространства со словарной метрикой оказывается наиболее плодотворным в случае, когда группа является гиперболической, т.е. словарная метрика оказывается гиперболической по Громову. Класс гиперболических групп довольно широк; в частности, он включает все группы, которые действуют вполне разрывно и кокомпактно на пространствах отрицательной кривизны.

Всякая гиперболическая группа является конечно-представленной и для нее разрешимы проблемы равенства и проблемы сопряженности. Более того, как показали Эпштейн и Холт ¹³, проблема равенства и проблема сопряженности в гиперболической группе могут быть решены за линейное время. Хотя группы классов отображений и не являются гиперболическими в

¹⁰ Ivanov N. V. Mapping class groups. Handbook of geometric topology, 523–633. – 2002.

 $^{^{11}}$ Farb B. (ed.). Problems on mapping class groups and related topics. – American Mathematical Soc., 2006. – T. 74.

 $^{^{12}}$ Farb B., Margalit D. A primer on mapping class groups, volume 49 of Princeton Mathematical Series. – 2012.

 $^{^{13}}$ Epstein D., Holt D. The linearity of the conjugacy problem in word-hyperbolic groups //International Journal of Algebra and Computation. − 2006. − T. 16. − №. 02. − C. 287-305.

этих группах, как показал Ли Мошер 14 , также существуют быстрые алгоритмы решения проблемы равенства. Тем не менее представление элементов MCG(S) в виде произведения образующих, в некотором смысле, не является оптимальным. А именно элементы групп классов отображений можно кодировать таким образом, что слово, задающее n-ую степень скручивания Дэна, в этой кодировке будет состоять всего из $\log(n)$ символов. Такое представление для элементов группы MCG(S) было предложено И.А. Дынниковым 15 . С этим представлением естественным образом связана инвариантная метрика на группе классов отображений, которая называется сжатой словарной метрикой. Дынников показал, что для случая, когда поверхность S имеет хотя бы один прокол, проблема равенства слов в MCG(S) по отношению к этой метрике решается за полиномиальное время.

Группа классов отображений MCG(S) действует изометриями пространства Тейхмюллера $\mathcal{T}(S)$ поверхности S, снабженного метрикой Тейхмюллера. Фарбом, Любоцким и Минским ¹⁶ было показано, что метрика $\rho_{\mathcal{T}}$ возникающая на MCG(S) из этого действия, не квази-изометрична словарной метрике на MCG(S).

В диссертации исследована связь метрики $\rho_{\mathcal{T}}$ с сжатой словарной метрикой $\mathrm{MCG}(S)$. Доказано, что в случае, когда поверхность S является ориентируемой поверхностью без края и имеет хотя бы один прокол, сжатая словарная метрика квази-изометрична $\rho_{\mathcal{T}}$.

Вторая часть диссертации посвящена исследованию ограниченных когомологий групп кос.

Ограниченные когомологии дискретных групп были определены Φ . Траубером; М. Громов ¹⁷ дал определение ограниченных когомологий для топологических пространств. Р. Брукс ¹⁸ нашел связь между двумя эти понятиями доказав, что ограниченные когомологии топологического пространства совпадают с ограниченными когомологиями его фундаментальной группы.

Первые приложения теории ограниченных когомологий к исследованию групп и многообразий появились раньше, чем возникло определение ограниченных когомологий: это неравенство Милнора-Вуда ^{19 20} о препятствии

¹⁴ Mosher L. Mapping class groups are automatic //Annals of Mathematics. – 1995. – C. 303-384.

¹⁵ I. Dynnikov. Counting intersections of normal curves, unpublished preprint

 $^{^{16}}$ Farb B. et al. Rank-1 phenomena for mapping class groups //Duke Mathematical Journal. – 2001. – T. 106. – Nº. 3. – C. 581-597.

 $^{^{17}}$ Gromov M. Volume and bounded cohomology //Publications Mathématiques de l'IHÉS. – 1982. – T. 56. – C. 5-99.

 $^{^{18}}$ Brooks R. Some remarks on bounded cohomology //Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference. – 1981. – T. 97. – C. 53-63.

 $^{^{19}}$ Milnor J. On the existence of a connection with curvature zero //Commentarii Mathematici Helvetici. - 1958. - T. 32. - №. 1. - C. 215-223.

 $^{^{20}}$ Wood J. W. Bundles with totally disconnected structure group //Commentarii Mathematici Helvetici. - 1971. - T. 46. - №. 1. - C. 257-273.

к существованию плоской $SL(2,\mathbb{R})$ -связности на компактной двумерной поверхности и теорема Хирша-Терстона 21 о слоеных расслоениях с аменабельной группой голономии. К настоящему времени в рамках теории ограниченных когомологий получены важные результаты о структуре дискретных и локально-компактных групп 22 .

Основным объектом изучения в случае дискретных групп G является пространство $H_b^2(G)$ — пространство вторых ограниченных когомологий группы G. При этом особый интерес представляет подпространство $H_{b,2}^2(G)$ — ядро канонического отображения из $H_b^2(G)$ в $H^2(G,\mathbb{R})$. Элементам из $H_{b,2}^2(G)$ отвечают функции на G, которые называются квазихарактерами. Квазихарактер, ограничение которого на произвольную циклическую подгруппу является гомоморфизмом, называется псевдохарактером. Псевдо- и квазихарактеры находят важное применение в маломерной топологии 23 24 25 26 , динамике 27 28 29 , симплектической геометрии 30 31 .

Пространства псевдохарактеров групп классов отбражений имеют бесконечную размерность. Однако к настоящему времени известно очень мало явных примеров псевдохарактеров на этих группах. Так на группах кос B_n описано только две серии псевдохарактеров — так называемые закрученности ω_n и сигнатуры $\overline{\text{sign}}_n$.

А. В. Малютин 32 предложил строить новые псевдохарактеры на группах

А. В. Малютин 32 предложил строить новые псевдохарактеры на группах кос, используя операции удаления и добавления нитей, и описал соответствующие операторы R и I на пространствах псевдохарактеров групп кос. В этой работе был поставлен вопрос о взаимосвязи псевдохарактеров, полученных

 $^{^{21}}$ Hirsch M. W., Thurston W. P. Foliated bundles, invariant measures and flat manifolds //Annals of Mathematics. – 1975. – C. 369-390.

 $^{^{22}}$ Monod N. An invitation to bounded cohomology //Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006. – 2007. – C. 1183-1211.

²³ Calegari D. scl, volume 20 of MSJ Memoirs //Mathematical Society of Japan, Tokyo. – 2009.

 $^{^{24}}$ Малютин А. В. Закрученность (замкнутых) кос //Алгебра и анализ. – 2004. – Т. 16. – №. 5. – С. 59-91.

 $^{^{25}}$ Gambaudo J. M., Ghys É. Braids and signatures //Bulletin de la Société mathématique de France. – 2005. – T. 133. – Nº. 4. – C. 541-579.

 $^{^{26}}$ Brandenbursky M. On quasi-morphisms from knot and braid invariants //Journal of Knot Theory and Its Ramifications. – 2011. – T. 20. – \mathbb{N} . 10. – C. 1397-1417.

 $^{^{27}}$ Ghys É. Groups acting on the circle //Enseignement Mathematique. – 2001. – T. 47. – Nº. 3/4. – C. 329-408.

 $^{^{28}}$ Barge J., Ghys E. Cocycles d'Euler et de Maslov //Mathematische Annalen. – 1992. – T. 294. – \mathbb{N} . 1. – C. 235-265

 $^{^{29}}$ Honda K., Kazez W. H., Matić G. Right-veering diffeomorphisms of compact surfaces with boundary II //Geometry & Topology. − 2008. − T. 12. - №. 4. − C. 2057-2094.

 $^{^{30}}$ Entov M., Polterovich L. Calabi quasimorphism and quantum homology //International Mathematics Research Notices. – 2003. – T. 2003. – Nº. 30. – C. 1635-1676.

 $^{^{31}}$ Simon G. B., Salamon D. A. Homogeneous quasimorphisms on the symplectic linear group //Israel Journal of Mathematics. – 2010. – T. 175. – N. 1. – C. 221-224.

 $^{^{32}}$ Малютин А. В. Операторы пространств псевдохарактеров групп кос //Алгебра и анализ. – 2009. – Т. 21. – № 2. – С. 136-165.

применением операторов Малютина к закрученностям, и псевдохарактеров, полученных таким же образом из сигнатур. В случае группы кос из 3 нитей из работ 33 34 было известно, что сигнатура $sign_3$ выражается через ω_3 и $R\omega_2$.

В диссертации мы исследуем этот вопрос для групп кос B_n при $n \geqslant 4$ и доказываем, что сигнатуры линейно независимы от псевдохарактеров, получаемых из закрученностей применением операторов Малютина R и I. Кроме того, используя операцию уведения нитей косы на бесконечность, описанную в работе 35 , мы определяем еще один оператор на пространствах псевдохарактеров групп кос, исследуем соотношения между этим оператором и операторами Малютина и доказываем, что при $n \geqslant 5$ сигнатуры линейно независимы от псевдохарактеров, получаемых из закрученностей применением операторов R, I и J.

Цель работы

Доказать, что проекция группы классов отображений поверхности с проколами на свою орбиту при стандартном действии на пространстве Тейхмюллера является квазиизометрией между группой классов отбражений со сжатой словарной метрикой и толстой частью пространства Тейхмюллера с метрикой Тейхмюллера.

Доказать независимость псевдохарактеров сигнатур от псевдохарактеров, получаемых из закрученностей применением операторов Малютина.

Научная новизна

Все результаты работы являются новыми, получены автором самостоятельно. В диссертации получены следующие основные результаты:

- Доказано, что проекция группы классов отображений поверхности с проколами на свою орбиту при стандартном действии на пространстве Тейхмюллера является квазиизометрией между группой классов отбражений со сжатой словарной метрикой и толстой частью пространства Тейхмюллера с метрикой Тейхмюллера.
- Доказано, что при $n \ge 4$ псевдохарактеры сигнатуры на группе кос B_n линейно независимы от псевдохарактеров, получаемых из закрученностей применением операторов Малютина R и I.

 $^{^{33}}$ Gambaudo J. M., Ghys É. Braids and signatures //Bulletin de la Société mathématique de France. – 2005. – T. 133. – Nº. 4. – C. 541-579.

 $^{^{34}}$ Honda K., Kazez W. H., Matić G. Right-veering diffeomorphisms of compact surfaces with boundary II //Geometry & Topology. -2008. - T. 12. - №. 4. - C. 2057-2094.

 $^{^{35}}$ Berrick A. et al. Configurations, braids, and homotopy groups //Journal of the American Mathematical Society. -2006. – T. 19. – Nº. 2. – C. 265-326.

- Доказано, что при $n \ge 5$ псевдохарактеры сигнатуры на группе кос B_n линейно независимы от псевдохарактеров, получаемых из закрученностей применением операторов R, I и J.
- Доказано, что псевдохарактеры сигнатуры на группе кос B_n имеют нетривиальную ядерную составляющую при $n \ge 2$.

Методы исследования

Для доказательства основного результата о псевдохарактерах используется метод геометрического вычисления Антье Деорнуа, основанный на связи упорядочивания Деорнуа с топологией, замеченной впервые в работе Фенна, Грина, Рольфсена, Рурка и Виста 36 , а также метод вычисления сигнатуры степени косы, изложенный для случая кос $\sigma_1\sigma_2\ldots\sigma_n$ в работе Гамбаудо и Жиса 37 .

Для доказательства основного результата о метриках на группе классов отображений используется стандартная техника работы с простыми кривыми на двумерных поверхностях, изложенная, например, в лекциях Кассона и Блейлера 38 .

Теоретическая и практическая значимость

Работа имеет теоретический характер. Полученные в ней результаты могут быть использованы в различных задачах теории узлов и для изучения алгоритмических проблем (проблема равенства, проблема сопряженности) в группах классов отображений двумерных поверхностей.

Апробация работы

Результаты диссертации докладывались автором на следующих семинарах и общеуниверситетских, всероссийских и международных конференциях.

• Семинар «Алгебраическая топология и приложения» под руководством чл.-корр. В.М. Бухштабера, проф. А.В. Чернавского, проф. И.А. Дынникова, проф. Т.Е. Панова, доц. Л.А. Алании, механико-математический факультет МГУ им. М.В.Ломоносова в 2012 году.

 $^{^{36}}$ Fenn R. et al. Ordering the braid groups //Pacific journal of mathematics. – 1999. – T. 191. – №. 1. – C. 49-74.

 $^{^{37}}$ Gambaudo J. M., Ghys É. Braids and signatures //Bulletin de la Société mathématique de France. – 2005. – T. 133. – Nº. 4. – C. 541-579.

 $^{^{38}}$ Bleiler S., Casson A. Automorphisms of surfaces after Nielsen and Thurston //London Mathematical Society Student Texts. – 1988. – T. 9.

- Семинар «Геометрия, топология и математическая физика» под руководством акад. С.П. Новикова, чл.-корр. В.М. Бухштабера в 2014 году
- Конференция «Ломоносов» (Москва, 11.04 15.04, 2011).
- Конференция «Ломоносовские чтения» (Москва, 14.11 23.11, 2011)
- Конференция «Зимние косы II» (Кан, 12.12 12.15, 2011)
- Конференция «Дни геометрии в Новосибирске» (Новосибирск, 28.08 31.08, 2013).
- Конференция «Ломоносов» (Москва, 7.04 11.04, 2014).
- Конференция «Квантовая и классическая топология трёхмерных многообразий» (Магнитогорск, 4.07 17.07, 2014).
- Конференция «Дни геометрии в Новосибирске» (Новосибирск, 24.09 27.09, 2014).
- Конференция «Вероятность, анализ и геометрия» (Москва, 30.09 4.10, 2014).
- Конференция «Геометрия, Топология и Интегрируемость» (Москва, $20.10-25.10,\,2014$).

Публикации

Результаты автора по теме диссертации опубликованы в пяти работах, список которых приводится в конце автореферата [1–5].

Структура диссертации

Диссертация состоит из введения, трех глав, разбитых на параграфы, заключения, посвящённого дальнейшему исследованию темы диссертации, списка литературы и списка публикаций автора. Общий объем диссертации составляет 111 страниц. Список литературы включает 106 наименований.

Краткое содержание работы

Во введении формулируются основные задачи, исследуемые в работе, дается схема доказательств основных утверждений, вводятся используемые обозначения.

В первой главе приводятся необходимые определения и результаты из теории групп классов отображений, групп кос и ограниченных когомологий

групп, которые будут использоваться при доказательстве основных результатов работы.

В разделе 1.1 определяется класс поверхностей, которые мы будем рассматривать в этой работе; даются определения пространств Тейхмюллера и метрик Тейхмюллера, Терстона и Липшица на этих пространствах.

В разделе 1.2 описываются основные свойства простых кривых и дуг на поверхностях, приводится формулировка теоремы Терстона, которая описывает расстояние между гиперболическими структурами в метрике Терстона в терминах длин кривых.

В разделе 1.3 даются определения групп классов отображений, и приводятся необходимые сведения об этих группах. Описываются действие групп классов отображений на пространствах Тейхмюллера и возникающие из этого действия метрики на группах.

В разделе 1.4 дается определение групп кос Артина и формулируются основные свойства этих групп.

В разделе 1.5 дается определение когомологий и ограниченных когомологий групп, описываются свойства маломерных когомологий.

В разделе 1.6 даются определения квази- и псевдохарактеров, описываются их основные свойства, определяется операция трансфера псевдохарактеров.

Определение. Функция $\varphi \colon G \to \mathbb{R}$ называется κ вазихарактером на группе G, если величина

$$D_{\varphi} = \sup_{a,h \in G} |\varphi(gh) - \varphi(g) - \varphi(h)|,$$

называемая дефектом данного квазихарктера, конечна.

Определение. Квазихарактер φ называется $nceedoxap\kappa mepoм$ (или однородным квазихарактером), если

$$\varphi(g^k) = k\varphi(g)$$

для любых $g \in G, k \in \mathbb{Z}$.

Вторая глава посвящена описанию и доказательствам основных результатов об инвариантных метриках на группах классов отображений.

В разделе 2.1 основные результаты доказываются для группы классов отображений проколотого тора, изоморфной $SL(2,\mathbb{Z})$. А именно дается определение сжатой словарной сложности и для группы $SL(2,\mathbb{Z})$ объясняется эквивалентность функции сжатой словарной сложности и функции матричной сложности, возникающей из матричного представления группы $SL(2,\mathbb{Z})$. Элементарными методами доказывается, что функция матричной сложности эквивалентна функции сложности, возникающей из действия $SL(2,\mathbb{Z})$ на плоскости Лобачевского.

Определение. Пусть G — конечнопорожденная группа, $\mathcal{G} = \{g_1, \ldots, g_n\}$ — система порождающих G. Тогда *сэсатой словарной слоэсностью* на группе G относительно системы \mathcal{G} будем называть функцию $\mathrm{zwl}_{\mathcal{G}}$, определенную следующим образом:

$$\operatorname{zwl}_{\mathcal{G}}(g) = \min_{\substack{g = g_{i_1}^{k_1} \dots g_{i_m}^{k_m} \\ g_{i_1}, \dots, g_{i_m} \in \mathcal{G} \\ k_1, \dots, k_m \in \mathbb{Z}}} \sum_{i=1}^m \log_2(|k_i| + 1).$$
(1)

Соответствующее этой функции сложности обобщенное задание группы G определяется кодировкой элементов $g_{i_1}^{k_1}g_{i_2}^{k_2}\dots g_{i_m}^{k_m}$ с помощью последовательностей $g_{i_1}k_1|g_{i_2}k_2|\dots|g_{i_m}k_m|$, где числа k_i в этой последовательности представлены в двоичном виде.

Функции сложности $\mathrm{zwl}_{\mathcal{G}}$ соответствует правоинвариантная метрика $\rho_{\mathcal{G}}$ на группе G, которая определяется следующим образом:

$$\rho_{\mathcal{G}}(g,h) = \operatorname{zwl}_{\mathcal{G}}(gh^{-1})$$

для любых $g,h \in G$. Метрику $\rho_{\mathcal{G}}$ мы будем называть *сэкатой словарной* метрикой, соответствующей системе порождающих \mathcal{G} .

В разделе 2.2 дается определение матричной сложности для группы классов отображений произвольной поверхности с проколами. Формулируется теорема Дынникова об эквивалентности матричной сложности и сжатой словарной сложности для этих групп. Формулируется вспомогательная теорема о том, матричная сложность эквивалентна сложности, возникающей из действия группы классов отображений на пространстве Тейхмюллера. Формулируются основные результаты первой части диссертации: теоремы о квази-изометричности группы классов отображений, снабженной сжатой словарной метрикой и толстой части пространства Тейхмюллера, снабженной метрикой Липшица и Тейхмюллера.

Теорема (2.2.6.). Пусть S — двумерная ориентированная поверхность конечного топологического типа без края с непустым множеством проколов, ϵ — положительное вещественное число, σ — гиперболическая структура на S, лежащая в ϵ -толотой части пространства Тейхмюллера $\mathcal{T}_{\epsilon}(S)$ и \mathcal{G} — конечная система порождающих группы $\mathrm{MCG}(S)$, обладающая следующими свойствами:

- 1. Каждый элемент $\mathcal G$ является дробной степенью некоторого скручивания Дэна.
- 2. Каждое скручивание Дэна из MCG(S) сопряжено дробной степени некоторого элемента из \mathcal{G} .

Обозначим через i_{σ} : $\mathrm{MCG}(S) \to \mathcal{T}_{\epsilon}(S)$ отображение, которое сопоставляет $\varphi \in \mathrm{MCG}(S)$ обратный образ σ при диффеоморфизме φ . Тогда i_{σ} является квазиизометрией между группой $\mathrm{MCG}(S)$, снабженной сжатой словарной метрикой $\rho_{\mathcal{G}}$, и ϵ -толстой частью пространства Тейхмюллера, снабженного метрикой Липшица.

Теорема (2.2.7.). Пусть S- двумерная ориентированная поверхность конечного топологического типа без края с непустым множеством проколов, $\epsilon-$ положительное вещественное число, $\sigma-$ гиперболическая структура на S, лежащая в ϵ -толотой части пространства Тейхмюллера $\mathcal{T}_{\epsilon}(S)$ и $\mathcal{G}-$ конечная система порождающих группы $\mathrm{MCG}(S)$, обладающая следующими свойствами:

- 1. Каждый элемент G является дробной степенью некоторого скручивания Дэна.
- 2. Каждое скручивание Дэна из MCG(S) сопряжено дробной степени некоторого элемента из \mathcal{G} .

Обозначим через i_{σ} : $\mathrm{MCG}(S) \to \mathcal{T}_{\epsilon}(S)$ отображение, которое сопоставляет $\varphi \in \mathrm{MCG}(S)$ обратный образ σ при диффеоморфизме φ . Тогда i_{σ} является квазиизометрией между группой $\mathrm{MCG}(S)$, снабженной сжатой словарной метрикой $\rho_{\mathcal{G}}$, и ϵ -толстой частью пространства Тейхмюллера, снабженного метрикой Тейхмюллера.

В разделе 2.3 приводятся доказательства вспомогательой теоремы и основных результатов первой части диссертации.

Третья глава посвящена описанию и доказательствам основных результатов об ограниченных когомологиях групп кос. Первые два раздела этой главы посвящены описанию глобальных свойств пространств псевдохарактеров.

В разделе 3.1 описываются свойства пространств псевдохарактеров различных дискретных групп. Приводится доказательство бесконечномерности пространств псевдохарактеров групп кос.

В разделе 3.2 описывается конструкция Малютина операторов R, I, J на пространствах псевдохарактеров групп кос $P(B_n)$, отвечающих различным гомоморфизмам групп крашенных кос. Выписываются соотношения между этими операторами и доказываются теоремы о структуре пространства псевдохарактеров, возникающей из действия этих операторов. Следуя Малютину определяется ядерная составляющая псевдохарактера на группе кос.

Определение. Пусть φ — псевдохарактер на B_n , R и I — операторы Малютина. Тогда ядерная составляющая φ_{\ker} псевдохарактера φ — это проекция φ на $\ker I$ вдоль $R(P(B_{n-1}))$.

В разделе 3.3 описываются приложения квази- и псевдохарактеров к задачам из теории групп и маломерной топологии и в этом контексте объясняется важность задачи поиска явных примеров псевдохарактеров.

В разделе 3.4 определяются ограниченный класс Эйлера на группе сохраняющих ориентацию гомеоморфизмов окружности и соответствующий псевдохарактер на универсальной накрывающей этой группы. Этот псевдохарактер используется в разделе 3.5 для построения псевдохарактеров закрученности ω_n на группах кос. В этом разделе описываются также основные свойства закрученности и приводятся алгоритмы вычисления этих псевдохарактеров.

В разделе 3.6 определяются псевдохарактеры $\overline{\text{sign}}_n$, отвечающие сигнатурам зацеплений и описываются их основные свойства. В следующем разделе 3.7 описывается алгоритм вычисления этих псевдохарактеров.

В разделе 3.8 дается определение псевдохарактеров типа закрученности, формулируются и доказываются основные результаты этой части диссертации, описывающие соотношения между закрученностями и сигнатурами.

Определение. Псевдохарактер φ на группе кос B_n называется псевдохарактером $muna\ закрученности$, если его можно получить, применяя операторы R, I и J к закрученностям.

Теорема (3.8.2.). Псевдохарактер $\overline{\text{sign}}_n$ имеет нетривиальную ядерную составляющую для всех $n \ge 2$.

Теорема (3.8.5.). При $n\geqslant 4$ псевдохарактер $\overline{\text{sign}}_n$ линейно независим от всех псевдохарактеров, получаемых из закрученностей применением операторов R и I.

При $n \geqslant 5$ псевдохарактер $\overline{\text{sign}}_n$ линейно независим от всех псевдохарактеров типа закрученности. Кроме того, при n = 5 этот псевдохарактер независим от псевдохарактеров типа закрученности и всех других псевдохарактеров, полученных применением оператора Малютина R к псевдохарактерам на B_4 .

В заключении формулируются возможные обобщения полученных в работе результатов и направления дальнейших исследований.

Заключение

В этом разделе мы опишем возможные обобщения полученных в работе результатов и направления дальнейших исследований.

Теоремы 2.2.6 и 2.2.7 о квазиизометричности сжатой словарной метрики и метрик Липшица и Тейхмюллера для групп MCG(S) были доказана в предположении, что исследуемая поверхность S имеет непустое множество проколов. Возникает естественный вопрос

Вопрос 1. Верны ли теоремы 2.2.6 и 2.2.7 в случае замкнутых поверхностей?

Из доказательства теорем 2.2.6 и 2.2.7 ясно, что этот вопрос тесно связан со следующей задачей:

Задача 1. Построить аналог функции матричной сложности C_T для групп классов отображений замкнутых поверхностей и доказать для нее теорему аналогичную теореме Дынникова 2.2.2.

Для построения такой функции сложности вместо идеальных триангуляций можно было бы использовать трейн-треки или максимальные системы попарно неизотопных и непересекающихся простых кривых (так называемые «разбиения на панты»).

В теореме 3.8.5 доказана независимость сигнатур от псевдохарактеров, получаемых из закрученностей применением операторов $R,\ I$ и J. Тем не менее остался неиследованным следующий вопрос:

Вопрос 2. Пусть n>2. Представляется ли псевдохарактер $\overline{\text{sign}}_n$ в виде линейной комбинации псевдохарактеров, получаемых из закрученностей и $\overline{\text{sign}}_k$ (при k< n) применением операторов R, I и J?

Кроме того для группы кос B_4 остается открытым вопрос о соотношении между $\overline{\text{sign}}_4$ и псевдохарактерами, получаемыми из закрученностей: ω_4 , $IJ\omega_4$ $J\omega_3$, $R\omega_3$, $R^2\omega_2$.

Вопрос 3. Представляется ли псевдохарактер $\overline{\text{sign}}_4$ в виде линейной комбинации ω_4 , $IJ\omega_4$, $J\omega_3$, $R\omega_3$, $R^2\omega_2$?

Благодарности

Автор выражает благодарность своему научному руководителю И. А. Дынникову за постановку задач и неоценимую помощь в их выполнении. Автор выражает благодарность всем сотрудникам кафедры высшей геометрии и топологии механико-математического факультета МГУ за тёплую атмосферу. Автор выражает благодарность всем сотрудникам лаборатории квантовой топологии Челябинского госуниверситета за внимание к работе.

Работа выполнена при поддержке Лаборатории квантовой топологии Челябинского госуниверситета (грант правительства РФ 14.Z50.31.0020).

Список публикаций

1. Дынников И. А., Шастин В. А. О независимости некоторых псевдохарактеров на группах кос //Алгебра и анализ. — 2012. — Т. 24. — №. 6. — С. 21-41.

- 2. Шастин В. А. Комбинаторная модель метрики Липшица для поверхностей с проколами// Сиб. электрон. матем. изв. 2015 Т. 12. С. 910–929, DOI: $10.17377/\mathrm{semi.}2015.12.077$
- 3. Шастин В.А., «О некоторых свойствах сигнатуры и закрученности как псевдохарактеров групп кос», Материалы Международного молодежного научного форума «ЛОМОНОСОВ-2011» / Отв. ред. А.И.Андреев, А.В.Андриянов, Е.А.Антипов, М.В.Чистякова. [Электронный ресурс] М.: МАКС Пресс, 2011.
- 4. Шастин В.А., «Псевдометрики на модулярных группах поверхностей с проколами», Материалы Международного молодежного научного форума «ЛОМОНОСОВ-2014» / Отв. ред. Отв. ред. А.И. Андреев, Е.А. Антипов, М.В. Чистякова. [Электронный ресурс] М.: МАКС Пресс, 2014.
- 5. Shastin V.A., A combinatorial model of the Lipschitz metric for surfaces with punctures, Тезисы Международной конференции, посвященной 85-летию академика Ю. Г. Решетняка. Новосибирск: Институт математики им. С. Л. Соболева СО РАН, 2014, стр. 118.