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1. The class of compound (generalized) Poisson distributions (CPD) is fairly representative: Neyman type A, B, C 

distributions, negative binomial distribution, Hermitc distribution, etc. [1]. These distributions describc a wide range of phenom- 

ena. However, the application of CPD models often runs into the obstacle of numerical evaluation of the corresponding 

probability distribution functions. The purpose of this study is to suggest some techniques for numerical evaluation of compound 

Poisson distributions and to provide examples of their use. 

Thc compound Poisson distribution is introduced in the following way [2, 3]. Given are a random variable (r.v.) v that 

follows a Poisson distribution with the parameter 2 and a collection ~1, ~2,-'" of identically distributed r.v.s that are independent 

of one anothcr and of the number v. The distribution of the r.v. ~ = ~1 + ~2 + ... ~1, is called a compound (generalized) 

Poisson distribution. The characteristic function (c.f.) of the random variable ~ is 

tp(t) = e x p  {~,(, ( t ) - - l ) } ,  (1) 

where V'(t) is the c.f. of the distribution of the components. 

In what follows, we consider CPD only in the class of nonnegative integer r.v.s. Therefore, along with (1), we use the 

probability generating function (p.g.f.) 

q~(z) = e x p  {3. (W (z) - - l  ) }, Izl~<l, (2) 

whcre q~(z) = g , ( - i  In z) is the p.g.f, of the random variable ~j. 

Consider the following problem: given 2 and qJ(z), compute N values of the probability distribution functionpn = P{~ = 

n} at the points n = 0, 1,..., N - 1. The value of N is assumed given from some reasonable practical considerations. The 
N--I  

following stopping rules may be used to end the computation: 1)pN_ 1 < d; 2) N >_ NO, PN_ 1 < 6; 3) 1 ~ ~ pn<e, where 
tlt~0 

Pr 0, d, and e are given. 

2. Noting that q ) ( z ) = ~  pnZ", it is natural to apply one of the methods for inversion of the p.g.f. The existing 
t l ~ 0  

analytical techniques [4] usually are not adapted for numerical evaluation of p, r Our problem can be solved by applying direct 

and inversc Fourier transforms. Indeed, from the representation of the c.f. 

(t) = Be u~ = i P"e~"t = exp {L (~ (t) - -  1 )} (1 ') 
n ~ 0  

it follows that ~o(t) is 2:r-periodic andpn, n = 0, 1,..., are Fourier coefficients. Therefore 

21t 

'3" P"=-~-z qD(t)e-~ntdt= q)(z)z-"-tdz" (3) 
2~i 

0 . z l ~ l  

Approximating the first integral by the sum 

N w l  'y  p. = ~ -  ~(2am/N)exp{--2ainm/N}, n = 0 ,  N - -  1, (4) 
m ~ 0  
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we see that O n is the discrete Fourier transform of the complex periodic sequence {~,(2rcm/N)}. For numerical implementation 

of (4), we can apply the fast Fourier transform (FFT) algorithm [8]. The rounding and approximation errors of this method of 

evaluation ofpn were analyzed in [5, 6]. By (1'), the evaluation of ~o(2srm/N) reduces to evaluation of g,(2~m/N), m = O, 1,..., 

N - 1. It is possible that g,(t) is defined not in functional form but in series form 
k 

, (t) =~ Le% 
r ~ O  

k l 

whercf0,fl  .... ,fk are given, E fr = 1, and for any 0 _< 1 < k, E f , < l .  Then f o r N  _> k + 1, {~p(2~m/N)} is evaluated using the 
~'~0 t w o  

inverse Fourier transform 
N--I  

fO (2r~m/N) = ~ f,  exp {2nirm/N}, m = O, N ~ I, 
r~O 

which also can be implemented by the FFT algorithm. 

3. If the probability distribution fr, r = 0, 1 ..... k, corresponding to the p.g.f. W(z) is given, the problem reduces to 

evaluatingp, R~r known ;t andf r  It can be reduced for f0 ~e 0 to evaluation ofpn from given values 

k k 

r,, ?;=0, k (Z (5) 
r ~ l  r ~ l  

Indeed, the p.g.f. (2) is rewritten in the form 

k k ~ k~ 

a)(z)---exp{x(Xf.zr-1)}=exp{zXf.(z._l)}=exp{'£~.-[.(z._l)}=exp(-~(~,7¢._l)}" (6) 
r~O r ~ l  r ~ !  r~O 

Denoting a r = ;tfr,  r = 1 ..... k, and using (5), we obtain for the p.g.f. (2) 
lz 

q) (z) = exp { Z a, (z"-- 1)}. (7) 

The problem of evaluatingpn for CPD thus can be restated as follow: given the sequence {ar} , evaluate the distribution function 

Pn corresponding to the p.g.f. (7). In addition to the c.f. inversion method described above, this problem can be solved by 

methods based both on explicit representations of the distribution function Pn and on recursion. Different explicit forms Of Pn 
are determined by different problem formulations leading to the CPD (2), (7). 

4. Given the CPD definition from (5)-(7), the distribution functionpn, n = 0, 1 ..... corresponds to the r.v. ~ = 71 + 

72 + --- + Y/,, where {~,]} is a sequence of  independent identically distributed random variables with distribution functions 

P{Tj = r} = f r ,  r = 0, 1 ..... and ~ is a r.v. independent of ),] and Poisson-distributed with the parameter 2". Here 
k 

~ = ~ , a , ,  7 , = a , 1 " 2 ,  r = i ' , ' k ,  7,=0, r=0, k + l ,  k + 2  . . . . .  (8) 
r~----! 

Then by the complete probability formula the distribution function of ~ is [7] 

P , =  ~ P{~t=r}  P{v ,  + V ,  + . . .  + v ~ = n }  = ~ ,  e'-'f~,/rl'['n ", 

where {fn r'} - r* = {fn} is the r-fold composition of the sequence {fr,} defined recursively by 

(9) 

{ L } ' "  { f . } " - " "  • {7 . } .  - > r - , , . 7  . I1 in-- I, r =  1, 2, . .  , 
i = 0  

{Tn} °" = ( 1 ,  0, 0 . . . .  ), { f J  --{/ ,} .  

(lo) 

By (8), the distribution function p,, (9) is written in the form 

Pn=Po ~ am'/rl, n =  l, 2 . . . .  , 
r = l  

k 

=exp{--Z o,}. 
t ' ~ l  

(11) 
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because { , ( f  n r'} = {an) r*, a n = £ f  n, n = O, 1 ..... 

The evaluation of Pn from (11) is restricted by the technical capabilities of the computer due to the presence of 

factorials in the formula. Thus, it becomes impossible for n > 21 on the Bt~SM-6 computer and for n > 59 on ES-1045. 

However, the computational process based on (11) can be organized differently. Indeed, denoting An(r) = anr*/r!, we replace (11) 

with the algorithm 

k 

{A~! )} ={a=}, P0 = e x p { - -  E A~')} ' 
n~l 

(le) n 

{A(nr)}=(IA~r-')}*{A~t)})/r, r=2, n, Pn =Po~. A~ "), n=l, 2 ..... 
r~l 

5. Anothcr explicit form of the distribution function is obtained from the following formulation of the problem for CPD 

(7). Let ~r, r = 1 ..... k, be independent Poisson r.v.s with the respective parameters a r Then the r.v. ~ = ~1 + ~ 2  + -.. + k~k 

with the p.g.f. 
k 

X r~ r k k k 

~ ( z )  = E g  =~ = 1 7  E z r b = [ - [ f f ~ b ( z O  = ~ e x p {  a" ( z ~ -  1)}' 
r = l  r ~ l  r = l  

which obviously coincides with (7) is distributed according to a CPD. 

Let us determine the explicit form of the distribution function of ~ which follows directly from its representation. 

/ t ( r )  
Consider the events o . %  = {¢r = it}, r = 1 .. . . .  k, i 1, i 2 ..... i~ are nonnegative integers. Let ~ t  = , I g  ...... ~k 

k 
t - s  t , ~ l r )  . . 

= l !  ~, , Z ~ l b e  

k 

a family of events and let I = {i = (i 1 ..... ik): 0 _< i r are integers, r = 1 ..... k}. It is clear from the condition that P (~lt) = 1-'I e-%a~'lirl. 
r = l  

Isolate from *~l, i ~ I, the family of mutually exclusive events a t ,  i ~ ln, where 

k 

l n = { i = ( i ,  . . . . .  ik): II k) =~ '~  fir = n }  ~ 1 ,  n = O ,  I . . . . .  
r m l  

For k > n > 0 we obviously have 

, r  _ {i = ( i ,  . . . . .  in, 0 . . . . .  0 ) :  I~ "~ = n},  10 = {i = (0 . . . . .  0)} .  

Then, denoting m = min{k, n}, we can write for any k = 1, 2 ..... n = 0, 1 ..... 

k 

l n = { i = ( i l  . . . . .  it,): I[ " 0 = n ,  E i t - - 0 } ,  n = 0 ,  1 . . . . .  
l=ra+ 1 

The event {~ = n} = {~l + 2~2 + --. + k~k = n} occurs if at least one of the mutually exclusive events of the family .~i ,  
i ~ I. ,  occurs, i.e., 

~ k 

= = e "a,'I,,l = e x p { - -  E ~ a~,li, t, I, = , " (  to X P (",) E n -° ' " a,} lel , , = o  . . . . .  
ieG :~1 n .,Ira)___ n r=l ,=l ll,n~=n r=l (13) 

The evaluation of Pn from (13) is difficult because it requires finding all the nonnegative integer solutions of the 

equation l:(m) = n over which summation is performed. Note that this set of solutions is described by the integer relationships 

0 ~ i,~ ~ [n/m], 0 ~ i , , - t  ~ [ ( n - - m i , , ) / ( m - -  1)], 
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0 ~ im-~ <~ [(n--l(,,m-)l)/(ra--2)], 

. . . .  O ~ i, ~ [(n--l(r~.~)/r], . .  , 0 ~ < i ~ < [ ( n - -  13 ("))/2], i~ = n - - l ~  ") 
rn 

where I~ m) = Z  lit and [" ] is the whole part. Then Pn may be written as the m-fold sum 
I------r 

k [(n--li-~-~)/r] 
".=°xp{-Z".} E fl'4"/,.z. ,.=o. . . . . .  

r n l  l r.JO , r .um,"2,  l t ~ n - - l ( r n )  t. ,Jl 

h 

or fo rk  > 2 a s  the (m - 1)-fold sum (p0-~exp{--~"~. ar }) 

Jc"-~,C~l)/'! ._, , , , , )  , ,  , 
P. = Po ~ a, = I (n- -  l~"~)y [1  a ;%r ,  n = 1, 2 . . . . .  

re-o. r . m . - - - ~  t .2  

For (14), as for (11), denoting Ar (l) = arl/l?, we obtain the following algorithm for the evaluation ofpn: 
k 

- E . 4 "  
A(O)_ 1, A~tp --(~,-u . - -  -----apt, tL,, i , = 1 ~  [air], r = ' i ,  m. P o = e  , - i  

it,-, ,~.Vl)/, j  

p.= p° A'. fl = I .  = . . . . .  
it--O, r,.rn,'-"~ r--2 

6. Note that the rov.s fir = r~r, r = 1, ..., k, are independent and follow the "r-fold" Poisson distribution 

p(') = P {~, = n} ---- { e-=raT/'/(n/r)['O, nn ~--~ O0 (mOd(mod r),r) 

with the p.g.£ 

~ r  (Z) = (l) L (Z0 ----- exp {a~ (z r -  | )} .  

(14) 

(15) 

Then the probability distribution {Pn} of the random variable ~ = r h + r]2 + ... + r]k may be written, as in (9), in terms of a 

(k - 1) composition of the distributions {pn(r)}: 

{pn} = {p(l)}, {p(2)}, . . . ,  {p~)}. 

By the obvious recursion for nonzero probabilities pn (r) 

p(nr)=ra,P(nt)/n , n = r l ,  l = I, 2 . . . . .  p(0 ' )=e -at ,  

the algorithm for evaluation Ofpn is based on the equalities 

p(o "~ = e"% r = 1, k, p(.') = { ra~p~±r/n' n =--. 0 (rood r), n #= 0, 
0, n = 0 (modr), (16) 

{,On} = {P(n ')} * {P(n ~)} * . . .  * {P~)}. 

The algorithm (16) is applicable only when k is finite. Let us improve it in the following way. 

7. Denoting bn(r) = earpn(r) , r = 1 ..... k, {bn(°)} = (1, 0,...), we have 

k 

{p,,} = { e - "  b~ ')} * . . .  • {e-%b~ k~} =e  r= ,  {b(n')} , . . . ,  {b~)}. 

Consider the case n < k. Since 

{b(. r)} = (1, 0 . . . . .  O, ar, 0 . . . . .  O, 2 a./=, 0 . . . .  ) ,  

r~.*l t - - I  
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TABLE 1 

Double precision n Pn [9] (19) (20) 

0 
1 
2 
3 
4 
5 
6 
7 
8 

' 9  
I0 
II 
12 
13 
14 
15 

Total 

0,00673 
0,0336 
0,08422 
O,14O37 
0,17546 
O,17546 
0,14622 
0,10444 
0,06527 
0,03626 
0,01813 
0,00824 
0,00343 
0,00132 
0,00047 
0,00015 

0,99993 

8 
90 
4 
4 
7 
7 
3 
5 
8 
6 
8 
2 
4 
1 
2 
7 

79 
897 
43 
38 
73 
73 
27 
47 
79 
55 
28 
22 
42 
09 
17 
72 

01 

79 
897 
43 
39 
73 
73 
27 
47 
79 
55 
28 
22 
42 
09 
17 
72 

02 

79469990855 
897349954273 
43374885683 
38958142805 
73697578507 
73697678507 
28081398756 
4862957O540 
80393481587 
55774156437 
27887078219 
21766853736 
42402855723 
08616482970 
17363029632 
72454343211 

09917581441 

i.e.. the first (n + 1) components of all sequences {bn(r)}, r = n + 1 . . . . .  k, are 1, 0 . . . . .  0, then {Pn} = po{bn (I)) * "'" * {bn (n)}" 

Thus, for any k = 1, 2 . . . . .  n = 0, 1 . . . . .  we replace (16) with the algorithm 

k 

p 0 = e x p { - E a ,  }, b o"=x, r = L , , , ,  
r ~ l  

{ . .  ~,(r) 
b(n r) = "~ 'n- -r /n ,  n ~ - - O ( m o d r ) ,  n~,~0, (17) 

0,  n ~ 0 (rood r),  

to,} =po {t,(, ' } • , . . .  * ) }. 

8. Finally, let us consider an algorithm based on the recursive property of the CPD: 

m 

Po = e x p  - -  a ,  P" = -2"  . . . .  
r ~ l  r ~ l  

Indeed, from the inversion formula for the p.g.f. (12) and Leibniz formula we obtain the chain of equalities 

n- - |  

P,, = q~(~) (O)/nl ----- ~, (q~ (z) ~ '  (z))(n-l) /nl  [z=o --- ~ ~ C~-1 q~("-1-~(O) ~.(l+l) (0) = 

(18) 

7, + ¢(.-,1(o) 
n z . a  ( n - - r )  I 

r = l  

mln{k,n} 

r = l  

which coincidcs with (18). 

9. The algorithms described above for the evaluation of the compound Poisson distribution Pn, n = 0, 1 .... , N - 1, can 

be classified in three distinct groups. Algorithm (4) performs computations simultaneously for all the required N points. The 

algorithms of the second group (12), (15)-(17) evaluatepn at one point n using onlyp0 (with the exception of algorithm (16)). 

The rccursive algorithm (18) successively evaluates Po, Pl ,  . . . ,  P N - 1  and is the simplest to implement. 

The explicit dependence of Pn on P0 in algorithms (12), (15), (17), (18) obviously makes them inappropriate for 
k 

computer implementation when P0 is the machine zero, e.g., when ~ a,  > 44.361 (for BESM-6) or ~ ar > 180.218 (for ES- 
r = l  c ~  r = l  

10451. For  these algorithms, the evaluation of p0 usually requires summing the numerical series E at" If the CPD is defined by 
r = l  

the p.g.f. (2), then this sum is 2(1 - qJ(0)) = 2(1 - f  o). The algorithm (16) evaluates Pn when e x p { - -  max at} is not the 
i <~r<k 
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TABLE 2 

n P n  Double 
p r e c i s i o n  

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
II 
12 
13 
14 
15 

Total 

0,006737 
0,030320 
0,071590 
0,117492 
0, 15007 
0, 15856 
0,143938 
0,115184 
0,08278 
0,054190 
0,03266 
0,01828 
O, 009580 
0,004723 
O, 002202 
0,000975 

0,99931 

(4) (12) 

9 
8 
7 
9 

6 72 
7 8O 

9 
7 

41 37 
6 2 

43 39 
9 89 

3 
I 
4 
6 

87 92 

(15) (16) 

9 
8 
7 
9 

71 71 

8 3 i 
2 
0 39 

89 
3 
1 
4 
6 

95 85 

(17) (18) 

9 
8 

7 7 
9 

72 72 
8 80 

3 3 

4 39 
8 89 

3 
1 
4 
6 

95 90 

9469990855 
7614958846 
6868652831 
9507965528 

72413624427 
81073855090 

9540995388 
7715476334 

38032579862 
2095787301 

39746362272 
89177674320 
3420491393 
1120760430 
4533136666 
6101325029 

98433636572 

machine zero (P0 may be the machine zero in this casc). The dependence of the evaluated Pn on smallness of p0 is weakened in 

algorithms (12), (15), (17) if we change to In Pn" 
Let us demonstrate the evaluation of the compound Poisson distribution by each of the algorithms described above. For 

k = 1 for the compound Poisson distribution Pn = e-alal n/n! the algorithms (12), (15), and (17) reduce to the procedure 

p 0 = e x p { - a ~ } ,  b0--1, b,,=a~bn-dn, pn----pobn, n = l ,  2 . . . . .  (19) 

and the algorithms (16) and (18) reduce to the recursion 

p0-----exp {--al},  p~,=aap~-l/n, n= 1, 2 . . . . .  (20) 

The results obtained forpn for a 1 = 5 on the ES-1045 computer in single and double precision are presented in Table 1. 

Double-precision computat ion by the proccdures (19) and (20) produces identical results up to the 16th digit after the 

decimal point, inclusive. Accepting these values of the distribution function as true, we can estimate the error of the algorithms 

in single-precision computation. We see from Table 1 that (19) and (20) produce values of the Poisson distribution function that 

coincide (up to rounding) with the tabulated values (see [9]), with the exception of p l  0 (due to a misprint in [9]). The results 

differ starting with the 7th digit due to rounding errors. The accuracy, of the inversion algorithm (4) obviously depends on the 

number N of points where the distribution function is evaluated. Thus, it is only for N > 64 that we obtain six correct decimal 

places for the first 16 points in single-precision computation. 

The specific features of algorithms (12), (15)-(18) obviously have an essential effect only for k >_ 2. For  k = 2, for the 

Hermite distribution function [10, 11] 

l./.Jl 
p,,= e-",-": ~ aT-2?(n--2i)! a~lil, n = 0 ,  1 . . . . .  (21) 

i = 0  

The computation results with a 1 = 4.5, a z = 0.5 obtaincd on the ES-1045 computer are given in Table 2. 

As in the previous case, when the input values a 1 and a 2 are exactly given, all the algorithms produce values of the 

distribution function (21) that coincide up to the sixth decimal digit (up to rounding). The differences in higher digits are 

attributable to rounding errors. 

The same picture is observed for the evaluation of the Neyman type A distribution with two parameters 11, 12 [11, 12] 

with the p.g.f. 

oo 

q) (z) =exp {,~, (e~,(z-1)-- 1)}= exp { E  a,. (z'-- 1)}, 
r = l  

--~'2 
where a ,  =~xe  X~tr!. The results obtained for the corresponding distribution function 

co 

p, =e--~., n! ~ r! r n, / 2 = 0 ,  1 . . . .  
r = O  
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TABLE 3 

Double 
n Pn (4) (12) {17) {18) prec is ion 

0 
l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I1 
12 
13 
14 
15 

Total 

0,042400 
0,077990 
0,11072 
0,12870 
0,131282 
0,121442 
0,10396 
0,083514 
0,06357 
0,04619 
0,032227 
0,02168 
0,01412 
0,008933 
O,O05500 
0,003304 

0,99556 

0 
4 

28 
46 
2 
0 

70 
9 

10 
41 
7 

52 
51 
9 
8 
5 

62 

33 
50 
4 
1 

38 
6 

)6 
17 
4 
[9 
[8 
7 
7 
3 

52 53 

)7 
38 
4 
[8 
~8 
7 
7 
3 

55 

1747986612 
7630525148 

33773469912 
52146942847 
6848831338 
4197128772 

71930918091 
9687065808 

09388114603 
39819498639 
5581023135 

49887620505 
49021920053 

7473532265 
71OO207643 
3733745820 

79968531191 

by algorithms (4), (12), (17), (18) and the values obtained in double precision for 21 = 5, .,t 2 = i are presented in Table 3. Note 
that here, contrary to the previous examples, the coefficients a r are computed. 

Our examples of the evaluation of the distribution function Pn for three typical representatives of the CPD class show 

that, with at, r = 1, 2,..., known exactly or with machine accuracy, the values of p,, are computed correctly to six decimal places 
by all algorithms on ES-104f 
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