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Abstract

Using the Usadel approach, we provide a formalism that allows us to calculate the critical current
density of 21 different types of Josephson junctions (JJs) with a ferromagnetic (F) barrier and
additional insulating (I) or/and normal (N) layers inserted between the F layer and superconducting
(S) electrodes. In particular, we obtain that in SES JJs, even a thin additional N layer between the S layer
and F layer may noticeably change the thickness df of the F layer at which the 0-7 transitions occur.
For certain values of dg, a 0-7 transition can even be achieved by changing only the N layer thickness.
We use our model to fit experimental data of SIFS and SINFS tunnel junctions.

1. Introduction

Superconducting spintronics is an intensively developing field [1]. It is based on the effects resulting from the
competition and coexistence of magnetic and superconducting ordering. The mixing of spin and charge degrees
of freedom with superconducting correlations in hybrid nanostructures leads to a rich spectrum of unusual
physical phenomena [2—4]. Moreover, a new generation of supercomputers has been developed based on
superconducting spintronics [5, 6]. One of the main goals of the recent superconducting spintronics
development is the creation of rapid single flux quantum logic (RSFQ) elements, such as Josephson phase
batteries [7—12] and magnetic memory [13-23]. Both, Josephson phase batteries and magnetic memory are
based on ferromagnetic Josephson junctions (FJJs).

We consider an FJJ consisting of two thick superconducting (S) electrodes with a ferromagnetic (F) film between
them; see figure 1(a). This canonical arrangement was considered in many theoretical works [2, 3]. The key property
of this structure is the possibility of having negative critical current density J. in some ranges of F layer thickness dp.
The transition from positive to negative J. corresponds to the transition from the 0 to the 7 ground state of the JJ.
For applications, one tries to choose such a thickness df, for which the (absolute) value of J. in the 7 domain is as
high as possible. This is usually the case inside the first m domain along the F axis. For the simple SFS structure,
shown in figure 1(a), the boundaries of m domains and the whole J. (dr) dependence is known [24].

However, experimental 7 JJs often include extra insulating (I) layers [25, 26] and/or normal (N) layers
[26, 27] between SF or FS layers. The purpose of the additional I layer(s) is to enlarge the characteristic voltage,
especially in the 7 state. It was shown [28, 29] that the presence of extra insulating layers shifts the first 0-7
transition to smaller values of dr. There are also several reasons to consider N layer(s), as follows.

First, a so-called ‘dead’ layer exists in many sputtered ferromagnetic films. The dead layer is a surface layer of
the ferromagnet, which behaves as a non-magnetic metal. It usually appears due to the surface roughness or the

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. The Josephson junction configurations we consider. In (a) we show the basic geometry consisting of two thick
superconducting (S) electrodes separated by a ferromagnetic (F) weak link of thickness dg. Our formalism covers all 21 Josephson
junctions resulting from the insertion of one of the layers shown in (b) at the SF interfaces in (a). These layers are composed of
insulating (I) or normal metal (N) films. The case of no additional layer is denoted by T (transparent interface). In (c) and (d) we define
parameters for the derivation of our formalism.

(b)
(c)

mutual dissolution of atoms at the interface between N and Flayers. Such a dead layer is inherent, for example in
NF interfaces involving Cu and its alloys with 3d metals, which are very popular as spacers. Usually it is naively
assumed that the dead layer makes the effective F layer thinner and adds an extra N layer (non-magnetic F).
Many experimental data match the theory only if one assumes such a dead layer of finite thickness [24, 26, 30—
34]. However, sometimes such a naive fit gives questionable results because it does not take into account the
correctboundary conditions at all interfaces.

Second, an N layer between F and S is often technologically necessary to produce high-quality JJs
[24,26,27,30-33, 35-38], for example by preventing diffusion between F and S films [39]. The presence of an N
layer in FJJs was not taken into account in any theoretical work [44, 40—43, 45] (see also [2, 3] for review) in spite
of numerous experiments. We show that this is reasonable only if the F and N metals behave fully identically,
except for their magnetic properties. Otherwise, the presence of the thin N layer changes the boundary
conditions, which affects the dependence of the Josephson current J. on dg. Recent experiments [46], which use
anew continuous in situ technology allowing the deletion of this layer, actually exhibit a change of the 0-7
transition points in the J (dr) dependence.

The overall effect of these extra I and N layers is not studied in detail. Therefore, we present a formalism in
the following, which allows us to calculate the critical current density of FJJs with additional  and/or N layers
inserted between SF and/or FS layers. The heterostructures under question can be constructed by selecting one
of the items of figure 1(b) and inserting it by following one of the arrows into figure 1(a). At the other arrow
position we insert either the same or another item from figure 1(b). In this way we obtain 21 possible
configurations of layers in FJJs.

The article is organized as follows. In section 2 we describe our model based on the Usadel equations
supplemented with Kupriyanov—Lukichev boundary conditions. Different types of interlayer boundaries are
analysed. Section 3 presents the obtained dependencies of the critical current density on the F layer thickness as
well as the analysis of the 0-7 transitions in the framework of a linear approximation. We use our formalism in
section 4 to fit experimental data of SINFS and SIFS junctions. Section 5 concludes this work. Details of the
calculation can be found in the appendix.
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2.Model

2.1. The boundary value problem

The basic Josephson junction configuration we consider is sketched in figure 1(a). It consists of two thick S
electrodes enclosing an F layer of the thickness dg along the x axis. Our model allows to consider an additional I
or N layer at the SF interfaces as well as I layers at the SN or NF interfaces, as illustrated by figure 1(b).

We calculate the critical current density J. of these configurations by determining their Green’s functions in
the “dirty’ limit. In this limit, the elastic electron scattering length is much smaller than the characteristic decay
length of the superconducting wave function. We determine the Green’s functions with the help of the Usadel
equations [47], which we use similar to [3] in the form

0? 0?
2
fj(Gj@Fj -~ Vox?

Gl +FEE=1, j€ (N, F}, (1)

Gj) - (@ +nG)E=0o,

in the N and Flayer, where F;and G;are the Usadel Green’s functions, while P; (w) = F]-* (—w). The frequencies

Q) = Q + ih contain the scaled Matsubara frequencies 2 = w/(n1.), where w = 7T (2n + 1) atthe
temperature T, and T is the critical temperature of the superconductor. By using the definition n = 1/(7,7T¢)
we take, similar to [28], the spin-flip scattering time 7y, into account. This approach requires a ferromagnet with
strong uniaxial anisotropy, for example, Cu alloys with transition metals, which are used in many experiments.
Equation (1) should be satisfied for any integer number 1. The scaled exchange energy h = H /(7 T.) of the
ferromagnetic material, where the energy H describes the exchange integral of the conducting electrons, is
assumed to be zero in the N layer.

In our model we use the coherence lengths

— DN _ DF _ &
£N - 271_,1.& > €F - 27TTC > é-H - H (2)

of the superconducting correlations, which are defined with the help of the diffusion coefficients Dy and Dy in
the normal and ferromagnetic metal, respectively. We use the scaling defined by 72 = kg = 1.

The decay length & of superconducting correlations in the ferromagnet is usually in the order of nm. This is
sufficiently small (§; < d) to consider the supercurrent as a result of interference of anomalous Green’s
functions induced from the superconducting banks. It was shown [28] that this ansatz is valid even for small
distances dp ~ &, thatis, in the region of the first 0-7 transition.

It is convenient to consider this problem in theta parametrization [48]

F =e¥isinb, Gj= cos0j, (3)

where ¢, is independent of the coordinate x. It corresponds to the phase ¢, = +¢/2 of the order parameter of
the S banks for the right and left superconducting electrode, respectively, while 0; satisfies the sine-Gordon—type
differential equation

2
7,
Ox?

Since we assume that the superconductivity in the S electrodes is not suppressed by the neighbouring N and

Flayers, we obtain

f? (5 + 7 cos Hj) sin 0; = 0. 4)

A
fs = arctan — 5)
w
analogous to Vasenko et al [28] at the interfaces of the superconductor, where A is the absolute value of the order
parameter in the superconductor. The validity of this assumption depends on the values of the suppression
parameters

_ RpspAgsk _ psés
= SE =

YBSF = ————» 5
Prér Prér
RpsnA
YBsN = BSN BSN’ on = psés (6)
PxéN PnéN

at the Sboundaries, which we discuss in more detail in subsection 2.3. We use the resistances Rggp, Rpsy and the
areas Apgr, Apsy of the SFand SN interfaces. The values py, ppand pg describe the resistivity of the N, Fand S
metals, respectively.

The Kupriyanov—Lukichev boundary condition [49, 50] at the superconducting interface, shown in
figure 1(c), is
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) [ 0
5111(91:,5 - 95) = vBsrép —9F] ) ™)

where g s = 0 (xsp), while in figure 1(d) itis

. [ 0
Sln(eN,S - 95) = vBsnén _aeN]xSN) (€]
where 6y s = 0 (xsn), at the SN boundary and
. 0
SIH(QF,N - 9N,F) = 'YBNngliaeF]xNF 9

at the NF boundary. Here we defined 0g y = 65 (xnr) and Oy r = Oy (xng). Additionally, we use the
differentiability condition

0 0
’YNFfF[—eF] = §N[—9N] . (10)
0x L Ox i
The suppression parameters
RgnpA
VeNE = — N, g = Py (11)
PESE Prér

are defined analogous to (6), but not restricted to only small or large values.
In order to finally extract the critical current density J. from the current phase relation J (¢) = J. sin ¢ we
will calculate the total current density [2]
T & 0 0
J(¢) = 15 > [Fp(w) 8—xFEk(*w) - F(—w) a_xFF(W)] (12)

x=0

F w=—-00

flowing through our device, with the help of the Green’s function Fy in the F layer. Here we chose the position
x = 0; see figure 1(a), in order to simplify the calculation.

2.2. Critical current density
In this section we rewrite expression (12) to be able to directly calculate the critical current densities of all SFS
Josephson junctions of the type sketched in figure 1(a), which may include each of the layers, shown in
figure 1(b) at the SF interfaces.
In order to solve the Usadel equations (1) in the Flayer we use the ansatz [28, 51]

Fp(x) = e1¢/2 sin[@l?(x)] + etio/2 sin[@f{(x)], (13)

where each function 0 (x) and 1 (x) solves the non-linear differential equation (4) for j = F. Additionally we
use the conditions #F = 0 and 90 /0x = 0at x = Foo. Then the solution 0 (x) will turn out to be most
dominant in the left side of the F part and to decay exponentially in the right side of the junction. Therefore, it
has practically no overlap with the solution 0} (x) which is dominant in the right side of the Flayer.

We obtain both solutions 6 (x) and 6 (x) by integrating the differential equation (4) for j = F twice. The

first integration results in
£ +
i@% =4+ i, Q + 1 cos? o sin H—F, (14)
Ox & 2 2

where 0F = 07 (x). A second integration leads us, by using the definition g = +/ Q-+ 7, to the equation [28, 52]

+

~d =+
JO 4+ ncos? & — gcos
\/72 Zi = giexp[iz—q(x T ﬁ)] (15)

~Y +
Q+77c05297F -i—qcos%F S 2

Here g™ are the integration constants. In the F layer we can assume small superconducting correlations 0 < 1
to linearise the denominator of the left-hand side of (15), which leads us to the equation

05 i( ﬁ)
sin 5 =X exp[igF xF i (16)

The rewritten integration constants y*are given by the boundary conditions at the right and left ferromagnetic
interfaces as
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X" = sin w, X~ = sin

r(~de/2) )

By inserting the ansatz (13) with the solutions (16) into the current density (12), and by using the
approximation €) /= ih, which holds for the condition 71; < H and the assumption &, < dg, we obtain the
critical current density

T
Jo=16"— 5" Re(y e x y ), 7= (18)
€PE >0 13

The constants y* will be determined in the next section.

2.3. SFinterface without or including an N layer
In the following we determine a constant yq; to replace X" or x~ in (18) in the case of no N layer at an SF
interface, as shown for example in figure 1(c). The index TI stands for transparent or insulating.

We insert the integrated sine-Gordon equation (14) at the position xgg into the boundary condition (7) and

obtain the relation
5 ~ ,0rs . Ops .
~BsE4[§2 + 1) cos - sin - = sm(@s - 9F,s)- (19)

By defining x;; = sin(fg,s/2) analogous to (17), we rewrite (19) in the form

X4T1 + ZVBSF\,?Z + 77(1 - X”ZH)Sin 95 X?H

+ {WésF[le +n(1-x3)] - 1} Xt

— YBSE /ﬁ + 77(1 - X%l)sin 0s X1y

+ i sin® s = 0. (20)

In the case n — 0, which means neglecting the effect of spin-flip scattering, this equation is a quartic equation in
Xpp and therefore exactly solvable. To find the solutions in this case we use the function solve of the MATLAB
software. Afterwards we make use of (19) to select one of the four solutions. In the case 77 = 0 we solve (20)
numerically by using the function fsolve of the MATLAB software together with the solution of the limit  — 0
as the starting value.

In this way we find x, for the determination of the critical current density (18) in the case of no N layer at the
SFboundary. The case of a small parameter ;¢ corresponds to a transparent SF interface, while alarge one
corresponds to an insulating interface [28, 52].

Next, we determine a constant x for the case of a thin Nlayer dy < & between the superconductor and
ferromagnet, as shown in figure 1(d).

By inserting the integrated sine-Gordon equation (14) for x = xyr into the boundary condition (9), we

obtain the equation
& 20N . BN
Z’YBNF Q) + 7 COS T Sin T = sm(@N,F — QF,N)- (21)

When we rewrite this equation using the definition x = sin(fgn/2), the result

X4N + ZWBNFJQ + 77(1 — Xlz\l)sin OnF Xf\]

+ {’YZBNF[ﬁ + 7](1 - XIZ\I)] - 1} XZN

- VBNFﬂﬁ + 77(1 - X;)Sin ONF XN

+ i Sin2 QN,F =0 (22)

looks similar to (20). The main difference is that it reduces in the case  — 0 not to an equation of fourth order
in . This is because we take an effect similar to the inverse proximity effect at the NF boundary into account;
that s, the reduction of the superconducting correlations in the N layer due to the proximity of the F layer.
Therefore, the value Oy p = Oy (xnr) also depends on yy, which itselfis related to Op x = 05 (xxr ), even in the
case dy < &, as we show in the appendix.

However, we also show in the appendix that (22) reduces in the limit  — 0 together with ;. — 0, which
means assuming the conductivity of the N layer to be much larger than that of the ferromagnet, to an equation of

5
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fourth order in xy. Therefore, we make three steps in order to solve (22). First we determine its solution in the
case 1), g — 0 similar to the fourth-order case of (20). We then use this result as a starting value to solve (22)
for only thelimit  — 0 with the help of the function fsolve of the MATLAB software. This in turn leads to
another starting value which we use to solve (22) with fsolve, but without any limiting case.

The solution X, of (22) can finally be used as x* or x~ for the determination of the critical current density
(18) in the case of an N layer at the SF interfaces. Small parameters ;g and y,y correspond to transparent SN
and NF interfaces, while large ones correspond to insulating interfaces [28, 52].

3. Discussion

In this section we first select FJJ configurations, where the N layer has the largest influence. We then analyse their
critical current densities with the help of the formalism we derived in the previous section. Finally, we discuss the
results with the help of solutions of the linearised differential equation.

We do not analyse configurations where a thin N layer (dy < &) islocated between S and I layers, which
gives only a negligible reduction of J. compared to the case without an N layer. This is because the
superconducting condensate simply penetrates into the whole N layer. The same effect occurs when the thin N
spacer separates the S and F layers and both (SN and NF) interfaces are transparent.

However, when the SN boundary has a very weak transparency or gets even insulating, that is, when the N
layer is located between an I and an F layer, then the N layer(s) play(s) a more notable role depending on the
relation of resistances ~y (11), as we will see in the following.

Examples for the critical current density J. (dg) in these situations are presented in figure 2 with different
numbers of insulating barriers. To in- and exclude these barriers we use the boundary parameters shown in
table 1. Since we only want to change N-layer properties, like dy, py or & of the same junction, we keep the
product

RpsnApsn 23)

YBSNYNF =
Pr&E

constant.

Each section of figures 2(a)—(d) shows several dependences J. (dg) for FJJs containing N layers of different
thicknesses and the corresponding reference FJJ without any N layer (solid black lines [28, 53]). The I layers in all
panels of figures 2(b)—(d), (f)—(h) are chosen to be exactly identical. Here we observe that the additional N layer at
the IF boundary decreases the amplitude of J. by 1-2 orders of magnitude and, while the insulating barrier at the
SE boundary shifts the 0-7 transitions towards smaller values of di (solid black lines), the additional N layer in
the SINF part shifts it back to larger dp.

This effect depends strongly on the value ~,;, as can be seen from figures 2(f)—(h), where we show critical
current densities J. (dr) in the same FJ] configurations as in figures 2(b)—(d), but with fixed dy = 0.4 and
variable v = 1, 0.1, 0.01. With decreasing 7y, the 0-7 transitions are shifted back to their positions without
anIlayer. One may conclude that the thin N layer with small resistance (py < pp) effectively ‘smooths’ the
order parameter in the SIF region.

For a physical explanation of this behaviour, one can imagine that a decrease of the amplitude of the
superconducting pair wave-function in the F layer is connected to a decrease of the function 6. In particular, the
positions along the F layer where 0 becomes zero correspond to sign reversals of the critical current density and
are therefore directly linked to the thicknesses dp where a 0-7 transition occurs.

This picture already helps us to understand why an insulating layer at the SF interface shifts the 0-7
transitions towards smaller values of dg [28, 29]. This is because the I layer induces a decreasing shift to 0 at the
SFinterface, as can be seen from (7) for ¢ > 1. Since 0 decreases monotonically from the interfaces into the
Flayer, this shift results in a shift of its zeros towards the interface. This in turn leads to a shift of the 0-7
transitions to smaller df, as can be seen by comparing, for example, the black lines in figures 2(a) and (b).

By inserting an N layer at the IF interface, we can mitigate this effect. In fact, the function 6 is still decreased
by the Ilayer, but the decrease of its derivative ' may be smaller than in the case of a superconducting pair wave-
function that directly penetrates the F layer. This in turn leads to a shift of the 0-7 transition back to larger dp.

To explain this effect, we replace the derivative 6, in (A.7) with the help of (10), which leads us to the
derivative

sin(0s — 0
[20] — 9 gy, sin(0s — Os) o8
Ox X NE EnERINE YBsNYNESE
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Je/Jo

Je/Jo

~r = 0.01

dy = 0.4&x
- — — 9NF = 0.1

SIFIS

0.9 1.3 0.1 0.5
dp [&p

0:9
dp [&p

Figure 2. The critical current density J. (dg) calculated using (18) for different FJJs in units of Jy = 71./(pp&ze). Coloured lines
correspond to SFS junctions including N layers. The solid black lines are solutions without N layers and in agreement with [28, 51].
The coloured lines in figures (a)—(d) are dotted for dy = 0.1&, dashed-dotted for dy = 0.2, dashed for dy = 0.3& and solid for
dn = 0.4&. Here we used the suppression parameter -y, = 0.01. In figures (e)—(h) the dashed-dotted lines correspond to y = 1,
the solid lines to -y, = 0.1and the dashed lines to ~,. = 0.01 at the fixed thickness dy = 0.4&y. We used the suppression parameters
given by table 1. Additionally we chose h = 30, Tt = 9.2 K, T = 0.5T¢ and n = 0. From figures (b)—(d) we conclude that inserting an
N layer can mitigate the effect of the insertion of an I layer, and figures (f)-(h) show that this behaviour depends strongly on ..

Table 1. Parameters for the calculation of the critical current
densities (18) shown in figure 2. The parameters ~y; are
responsible for the presence of an I layer, while the equation
for the calculation of * determines whether we consider an
N layer or not. We keep the product ¢\ Yy cOnstant
because its outcome (23) does not change during our analysis.

Interface YBsE VBNE VBSN INF for x*
SF 0.001 — — (20)
SIF 100 — — (20)
SNF — 0.001 0.001 (22)
SINF — 0.001 100 (22)
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10°°
SINFNIS7 d]: :0.5&:, INF =0.01
107}
N
< 10°}
10°}
0.1 0.2 0.3 0.4
dx/én
Figure 3. The critical current density J. (dx) (18) in units of Jy = wT./(pp&ze) for FJJs in SINENIS configuration. The Flayer
thickness dp = 0.5& is constant, while the thickness dy of both N layers changes. In this way, we control the 0- transition only by
adjusting dy. Analogous to figure 2(d), where the same FJJ configuration is analysed for varying d, we use the suppression parameters
of table 1 and the parameters h = 30, I, = 9.2 K, T = 0.5T;, n = 0.

atthe Finterface. For dy = 0, (24) resembles (7). Therefore, we obtain, by using the values defined in table 1, the
correct limiting results. Note that 6 is negative in this case because the amplitude of the superconducting pair
wave-function decreases when entering the F layer.

Anincrease of dy increases 1 and therefore shifts the 0- transitions towards larger dg, as shown by
figures 2(b)—(d). Furthermore, from (24) it can be understood why a smaller value of ~y; induces a larger
increase of 0% This again shifts the 0-r transitions towards larger dg, as shown by figures 2(f)—(h).

The same effect occurs in figure 2(e), but it has a different interpretation because the 0-7 transitions are
already shifted to large dr without an N layer, due to the absence of the I layer (black line). A small value of vy
does not change this situation significantly. However, if 4, increases and therefore 61, decreases, the 0-
transitions get shifted to smaller dg.

These effects are related partially to dy that may be small (dy < &) but mainly to the conducting properties
of the N layer represented by . (11).

Note that we neglected the effect of spin-flip scattering in figure 2; that is, we chose 7 = 0. An increase of
shifts all shown 0-7 transitions towards larger d, including the ones of junctions without an N layer [28, 52]. It is
not necessary to consider this effect in order to understand the role of N layers in FJJs. However, the described
effect is important for the fitting of experimental results in section 4.

The influence of N layers on FJJs can be seen most clearly when they are inserted at IF interfaces and dy is
kept constant, not far from a 0- transition, while dy changes. In this way, the - transition can be controlled by
dy;, as shown in figure 3. Here we consider an SIFIS junction which is in the 0 state for dp = 0.5;.. By addingN
layers at the IF interfaces and increasing their thicknesses simultaneously, we tune the FJJ into the 7 regime.
Figure 3 considers the same FJJ configuration as figure 2(d), where dy is fixed and dy changes.

To understand the role of the boundary parameters in the 0- transition patterns in more detail, it is useful to
analyse it in a simple linear approximation. This approximation can be used if both S electrodes have non-
transparent interfaces, or if T — T;. Then we may assumethat 0 < 1, G = cos § ~ land F ~ sin 6 = 0. The
general solution of the Usadel equations (1) in the non-superconducting layers has the form exp (pmk, px),

where ky = /2w/Dy, kg = \J20/Dr = p + iq, where p and q are real. The critical current density is given by
the expression (12). For FJJs without an N layer, the critical current density has already been calculated in
[28,45,52,53].

3.1. Transparent-interface structures: SFS, SNFS, SNENS

We start with the analysis of figures 2(a) and (e). For this purpose we assume that all interfaces are transparent,
thatis Ve Yasro Yang K 1and T — T If g < 1, the critical current density of the SFS junction (cf solid
black lines) reads [3]

2
JCNZARe kF

| w? sinh(kpdp) 2
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and the positions of the 0-7 transitions are defined by the solutions of the equation

tan(qu) = 75 tanh(de). (26)

This gives qd ~ 7 — arctan(p/q) and the first 0-7 transition occursat /2 < gd < m.Foralarge
exchange energy H > T, weobtain p = (1 + w/2 H)/{yand q =~ (1 — w/2 H)/&;. When we assume
p ~ g, the first 0-7 transition occurs at dr/ &, ~ 37/4, thatis dp/& ~ 31/\8 h ~ 0.6, whichisin good
agreement with figures 2(a) and (e).

By adding normal layers in the case of 7y, Yy << 1, we see that even for two extra layers in the SNFNS
configuration, the critical current density

N 1 ke

Jer ; Fcoshz(kNdN) Re sinh(k;dp)

(27)

does not differ much from (25). We only obtain an additional real factor cosh™2(ky dy ), but the position of the
0-7 transitions is still defined by the term marked as the real part. Therefore, the positions of the 0-7 transitions
will be the same as in the SFS case (see figure 2(a)) for one extra N layer. The small boundary parameter gy is
needed in order to neglect the proximity effect in the S electrodes.

However, if v = 1in the SNFS junction (dashed-dotted line in figure 2(e)), the electrons may easily change
between the N and Flayers, since vy ~ /Dr/Dx . Therefore, the Josephson phase drops partially along the N
layer and the first 0- transition shifts towards smaller values of d.

3.2. Double-barrier structures SIFIS versus SINFNIS
In order to discuss the interplay of the N and I layers we jump to the description of the configurations shown by
figure 2(d) and (h). Here the resistance of the insulating barriers is large Vyqp Yy > 1, but the NF boundaries
are still transparent -y, < 1, and we do not need any assumption about the temperature to use the linear
approximation.

The critical current density of the SIFIS junction (cfsolid black lines) at v > 1is

A% 1
]c ~ Re .
zw: VZBSFEIZ:VWZ + A ke sinh(deF)

The points of the 0-7 transitions are now defined by the solutions of the equation

tan(qd; ) = gtanh(de). (29)

(28)

Here the assumption p =~ g yields only dp = 0. Atalarge exchange energy H >> T, the first 0-7 transition
occursat dr/&, < m/2,thatis, dp/& < 7/ J8h ~ 0.2, whichisin agreement with figures 2(d) and (h). Its
exact position is defined by the factor T/H as well as ;g [53].

In the case of intermediate resistances ¢ ~ 1ofthe SF interfaces of an SESJJ [3], the critical current
density reads

2
]CNZ%XRC kF

~| w sinh (kedy ) (1 + KZET?) + 2ke &1 cosh (kedy) |

(30)

which transforms into the two previous cases (25) and (28) for I' = gp+/w? + A? / |w|< and >>1, respectively.
The points of the 0-7 transitions are defined by

p(l + 2F2)tanh(de) + 4pT
q(1 - 2r?) '

If 2I" > 1, thatis, Y > |7 T| / 2(w2T? + ), the first -7 transition is located in the range

/2 < dp/& < 3m/4.If g < |7rT|/ 2(m?T? + A?),itoccursat 0 < dg/&y < /2.
In contrast, the critical current density of the SINFNIS junction at -y, > 1, at transparent NF interfaces
Vg K 1and v < 1, has the form

tan(qu) = (31)

2
A 1 X Re ke

]c ~ .
ZE Vo + A ydap&hkd sinh?(kydx ) sinh ( ke

(32)
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The 0-7 transitions are defined by the zeros of the real part, which has the same form as in the case of SES JJs with
transparent interfaces (25). That is, the N layers have mitigated the effect of the I layers, which can be seen by
comparing figures 2(d) with (a).

3.3. SIFIS versus SINFIS structures

The effect of a single N layer on a double-barrier SIFIS junction, shown in figure 2(c) and (g), is discussed in the
following. The critical current density of the SINFIS junction with the same boundary parameters as in the
section before is given by

~y & ! x Re ke .
o | Vo + A yieénky sinh(kNdN) cosh(kl:dl:)

In this case, the 0- transitions are defined by the zeros of the function cos(qd;;) and located at the positions
where dg/&y = 7/2 + wm, m = 0, 1, 2...; thatis, they are also shifted towards larger dr in comparison with
the ones of the SIFIS junction; see figures 2(c) and (g).

In our previous article [42] we obtained in fact the same expressions (28) and (33). There we assumed that the
interface transparencies of both S electrodes are small, one of them due to the presence of an insulating barrier.
In this way we analysed SI; FL,S and SI; NFLS structures with rather different transparencies of the I; and I,
barriers. We found in the linear approximation that the critical current density for an SI;NFI,S FJJ is the same as
the one for an SI; FNI,S structure.

e

(33)

3.4. SIFS versus SINFS structures
If the structure contains only one insulating barrier, as in figure 2(b) and (f), we may use the tunnel Hamiltonian
method, which, for the critical current density, yields the expression

AZ
Jo e S —
;\/wz + A2

To use the linear approximation we shall assume that T'is close to T, and in order to neglect the proximity
effectin the right S electrode we use the rigid boundary conditions vgqp, g < 1. Wealso assume the N layer to
be thin, dy < &. Then we obtain

Re sin Oy s. (34)

k
1+ ynp Seke (

sinh kF dF

kap cosh kpdg dn
1+ yNe e + ¥Bsn

? cosh deF + 'YBSN)
N

Ons = (35)

To find the position of the first 0-7 transition we assume dp ~ &; and neglect dy /& < Ygqn> Decause the
last value is determined by the large resistance of the I barrier. The solution weakly depends on dy because the
suppression of the superconducting correlation along the thin N layer is negligible in comparison with that of
the I barrier. However, the ratio of the N and F resistance, which defines via ~ (the derivative jump (10) at the
NF interface), still plays a role. Then the 0-7 transition takes place at dg, for which the equation

1—|—7—|—272cosﬁ+7(cosﬁ—|—sinﬁ)=0 (36)
€u €u H
is satisfied.

If v = v Yarée/E => 1, the main term gives cos(dr/&y) = 0and dp/ &y = /2, which corresponds to
the solution for the SIFS FJJ [28].If v 2 1, the position of the 0-7 transition shifts towards larger dr depending
on y ~ yyp see figure 2(f). If v < 1 we cannot use this approach, assuming large o\

4. Comparison with experiment

To check our theory, we use data from SINFES JJs [26], based on Nb|Al,O 3|Cu|Ni 6Cu o 4]Nb heterostructures.
These samples include a 2 nm Cu interlayer between the I and F layers. Using the same technology, new series of
samples were produced, but the process was changed in order to delete the Cu layer. That is, we can compare
SIES and SINEFS FJJs with the same layer properties, including the concentration of the NiCu alloy. In figure 4 we
show a fit of experimental data of critical current densities for different F layer thicknesses dr of both types of
junctions. Dots correspond to SIFS junctions and triangles correspond to SINES junctions.

We calculated the critical current densities with the help of (18). In the case of the SIFS configuration we
made use of (20) to calculate the parameter x~ and in the case of the SINFS configuration we used (22). For our

10
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dy=0 nm

Je/ (kA /cm?)

dp /nm

Figure 4. The critical current density (18) fitted to the experimental data of SIFS junctions and SINFS junctions. For the calculation of
X~ inthe SIES case we used (20), and in the SINES case we used (22). Fitting parameters are e\ = 90000, Y = 0.01, v =0.1and

Yy = 0.016.

fit we used the coherence lengths &, = 10 nm, & =7.60 nm and &, = 1.72 nm. Our exchange energy H/ kg
=880 K issituated between the value 850 K corresponding to the alloy Nio.53Cu .47 [27] and the value 930 K
of clean Ni[36]. The product 7,, H = 1/1.7 is similar to the one used by Weides et al [26]. Further values taken
from this publication are the temperature T = 4.2 K, junction area A = (100 ;¢ m)* and resistivity p; = 54 u2cm.
Additionally, we used the damped critical temperature 7. = 7.2 K of Nb and the resistivity py = 0.66 p{2cm.
Together with the fit parameters ;o = 0.1, Yo = 90000, Y5, = 0.01 and ~, . = 0.016 of figure 4 we obtain the
boundary resistances Rgsp =4.10 n€2, Ryony =584 pf2and Rgng = 0.41 n§2, which are realistic values.

As we have shown in figure 2(f), a small suppression parameter ,; < 1resultsin a shift of the 0-r transition
to larger dp for the sample with N layer. This effect explains the shift of the 0-7 transition observed in the
experiments on SIES and SINFES FJJs. The difference in the amplitude of the curves is attributed to the different
thicknesses of the I barrier in these two sample series.

This conclusion is also supported by experimental observations on SIsFS junctions [54—56]. These
observations indicate that the introduction of a thin s interlayer, which should make a transition to the normal
state if its thickness is of the order of the coherence length, shifts the 0-7 transitions towards larger dp.

5. Conclusion

Using the Usadel equations, we have calculated the critical current densities of ferromagnetic Josephson
junctions (FJJs) of different types, containing I and N layers at the SF interfaces, and compared them to critical
current densities of structures without N layers. Such layers were technologically required in many FJJ
experiments, but were not taken into account in previous models.

It was shown earlier [28, 52, 53] that insulating barriers decrease the critical current density and shift the 0-7
transitions to smaller values of the ferromagnet thickness dg. A thin N layer inserted between S and I layers does
not significantly influence the Josephson effect. However, if the N layer is inserted between I and F layers, it can
have alarge effect on the J. (dg) curve. Additionally, if the transport properties of the F and N layers differ
significantly (v < 1), the presence of the N layer shifts the first 0-7 transition to larger dg; see figures 2(b)—-(d).
At certain values of dp, the 0- transition can even be achieved by changing only dy; see figure 3. Finally, our
theory allows the explanation of experimental data for SINFS and SIFS junctions, shown in figure 4.

In comparison with simple SES JJs, the oscillation period of J. (dg) in the dirty limit is still determined by the
magnetic exchange energy H and the diffusion coefficient Dy. However, the positions of J. (dr) minima are
shifted because of different boundary conditions. When the dirty limit does not apply, the oscillation period of
J. (dg) may depend on many other parameters and does not have to be constant, but can change with the F layer
thickness [57]. A multi-domain structured ferromagnet may also change J. (d); for instance, the oscillation
period decreases when the domain width increases [58].

Ifthe transport properties of the N layer between the I and F layer are the same as those of the ferromagnet,
not only the period of the J. (dp) dependence stays the same as in SFS, but also its position (dg of the 1st
minimum). Thus, the dead layer [24, 26, 30-34] changes the position of J. (dr) minima only if its transport
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properties differ from those of the F layer. The smaller the value of v, the larger is the change of the J.
amplitude and the shift of the 0-7 transitions; see figures 2(f)—(h).

The situation is completely different in the case of transparent SF interfaces, that is, without an I layer in
between. In this case, the additional thin normal layer with conductivity much larger than that of the
ferromagnet (v, < 1) does not play any role. In the same setup, an N layer with transport properties similar to
those of the ferromagnet (v, ~ 1) provides a shift of the 0- transitions to smaller dg; see figure 2(e). This
process is explained in more detail after (24).

In summary, even a thin additional N layer may change the boundary conditions at the IF boundary
depending on the value of ;. We conclude that it can effectively mitigate the effect of the insulating barrier on
the decaying oscillations of the critical current density J. (dg). Even technological thin N layers, which do not
quite suppress the superconducting correlations, have to be considered carefully when including them into
novel superconducting—magnetic hybrid devices.
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Appendix. N layer Green’s function

In this appendix we first show how to find the dependence of Oy r on x = sin(fg n/2) in order be able to solve
(22) numerically for xy. Thereafter, we reduce (22) in the limiting case 1), v — 0 to an equation of fourth
order in yy.

We start by solving the Usadel equation (4) in the case j = N, thatis

2
& %GN(x) = Qsin Ox (%), (A.1)

where ) = w/(7T.) because the exchange energy h is zero in the N layer.
When we assume & > dy;, the function 6y (x) changes only slowly. Therefore, in the right-hand side of
(A.1) we make the approximation

sin Ox(x) =2 sin On,5 = const, (A.2)

where 6y s = Oy (xsn). Note that we cannot neglect this term because 0y (x) may be of the order of 6s,
depending on the boundary parameters. The solution of (A.1) using the approximation (A.2) reads

On(x) = iz sin QN)s(x - xSN)Z + a(x - xSN) + GN,S- (A.3)
285

Inserting the constant

a =

sin QN,S — 05 5 (A4)

VBsNEN ( )

determined from the the boundary condition (8) at the SN interface, into the Green’s function (A.3) at the

position xyr connects the NF boundary value

Qdg .

9N,F = 2N sin aN,S +
284 VesnEN

sin(@N,s - 95) + 0N,S (A.5)

to the SN boundary value 6y s, which we determine in the next step.
For this purpose we use the integrated sine-Gordon equation (14) at the position xyr and insert it into the
differentiability condition (10) to obtain

—29NE A2 + 1) cos? ZEN in ZBN §N[£9N] . (A.6)
2 2 ox Ly
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Here we replace the right-hand side with the derivative

sin(Ons — 0
[%] = Q‘jN sin Oys + M (A7)
X XNF

N vesnEn
of the function Ay (x) from (A.3).
These steps lead us with the definition y = sin(fgx/2) to

~ 7 3 d . .
— ZFYNFF)/BSN Q + 77(1 — X]Z\I) XN = Qé,—NFYBSN Nitst HN,S + SIH(QN,S - 95) (AS)
N

This equation can be written as an equation of second order in ¢ = sin fy,s and can therefore be solved
exactly for 0y s. Inserting the result into (A.5) gives us fy 5 as a function of y,, which itself, when inserted into
(22), allows us to finally determine ), by solving the transcendental equation (22) numerically.

In the following we consider the limit 1, vz — 0 to reduce (22) to an equation of fourth order in . This
limit allows us to neglect the term containing yx in (A.8). Together with the definition (A.4), we obtain the
equation

sin On,s = — 512\] a, (A.9)
Qdy
which we use to replace 0y s in (A.4).
Solving the resulting equation for a and re-inserting it into (A.9) leads us to the expression
sin s = A sin 6, (A.10)
where we used the definition
~1/2
Qd 02}
A=]1+ 2cos Hs'yBsN—N + ’yZBSN—N . (A.11)

&N &

With the help of (A.10) we replace fy,s in (A.5), which in turn is used in (22) to reduce it finally together with
1 — 0 toan equation of fourth order in xy.
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