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Abstract—This paper discusses approaches to constructing bulk convective boundary layer (CBL) models
based on the concept of complete mixing. Large-eddy simulation (LES) results are used to test the basic sim-
ilarity hypotheses. The empirical constants of the bulk CBL model that are obtained from LES data for the
case of free convection agree well with previously published data from laboratory experiments. It is also shown
that the f lux of kinetic energy from the upper CBL boundary transported by gravity waves is small compared
with other components of the balance of turbulence kinetic energy (TKE) in the convective layer. The param-
etrization of TKE generation for the case of a sheared CBL in terms of the friction velocity and the average
wind velocity in the CBL is derived; all dimensionless constants of the theoretical model are obtained from
LES data. The results allow us to formulate an integral model of the sheared CBL suitable for practical use.
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1. NOTATION

 the entrainment coefficient, 

 the constant of mechanical to buoyancy TKE generation ratio, 

 the constant of the integral of dissipation of mechanical generation of sheared convection, 

 buoyancy
 buoyancy jump in the CBL entrainment layer
 buoyancy flux

 constant of free-convection dissipation integral, 

 constant of proportionality between average TKE in the CBL and the generation scale for free convection, 
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2. INTRODUCTION
State-of-the-art general circulation models of the

atmosphere and ocean, suitable for weather forecasting
as well as for climate modeling, still have an insufficient
space resolution to resolve turbulent convection explic-
itly. Convection parameterizations are therefore used
[1–5]. For this parameterizations, the height of the con-
vective boundary layer is often used as a diagnostic vari-
able. The correctness of convection modeling signifi-
cantly influences the model-derived cloudiness and,
consequently, radiative transport. On coarse-resolution

grids used in climate models, large gradients of meteo-
rological quantities in the entrainment zone of the con-
vective boundary layer (CBL) are strongly smoothed,
leading to errors in calculating the fluxes of these quan-
tities and the dynamics of the CBL on the whole.

Observations and laboratory experiments show that
the evolution of the CBL height as a whole is well
described by integral (bulk) relationships [6–8], so
refining the existing parametrizations of convection on
their basis is reasonable. The integral CBL models are
based on a set of equations whose unknown variables

 
 proportionality constants of the turbulent TKE flux from the entrainment layer to the free atmosphere for free con-
vection and sheared convection, respectively

 constant of proportionality between average TKE in the CBL and the mechanical generation scale 

 drag coefficient

 turbulence kinetic energy (TKE)
 LES model filter width
 Coriolis parameter

 turbulent TKE flux, 

 CBL height
 half-depth of the entrainment layer in zero-order bulk CBL models
 Brunt–Väisälä frequency

 mechanical TKE generation, 

 friction velocity, 

 modulus of wind speed in the CBL mixed sublayer

 modulus of geostrophic wind velocity

 wind velocity jump in the entrainment layer

 velocity scale determined by mechanical TKE generation, 

 Deardorff convective velocity scale, 

 combined velocity scale, 

 combined velocity scale, 

 combined velocity scale, 

 entrainment-layer thickness
 TKE dissipation rate

 dimensionless CBL height, 

 vertical momentum flux vector
 universal dimensionless function of dimensionless CBL height
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BULK MODELS OF SHEARED BOUNDARY LAYER CONVECTION 141

Fig. 1. Profiles of (a) buoyancy, (b) buoyancy f lux, (c) horizontal wind velocity, and vertical momentum flux in the CBL devel-
oping in a stably stratified free atmosphere with a background wind. The thick solid line indicates schematic profiles used in the
bulk CBL models, and the dashed line represents time-averaged profiles from the LES data of this paper (see Sections 4 and 5).
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are the CBL height , jumps of meteorolgical quantities
in the entrainment layer, and the entrainment coeffi-
cient. The entrainment coefficient is defined as the ratio
of the minimum buoyancy flux in the entrainment layer

to the surface buoyancy flux: .

Two types of bulk CBL models—zero-order mod-
els [9] and first-order models [10]—have received wide
recognition over the last decades. They differ in how
the buoyancy and the velocity jump is represented at
the CBL boundary in the corresponding idealized
profiles. These profiles for buoyancy and horizontal
velocity in zero-order models are shown in Fig. 1. In
these models the gradients of buoyancy and velocity in
the entrainment layer are approximated by jumps of
these quantities at a height .
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The first-order models assume that the buoyancy
and velocity vary linearly within the entrainment layer,
with the entrainment-layer thickness  becoming a
new independent variable and requiring an additional
relationship needed for closure of the set of model
equations. However, finding physically justified rela-
tions of  to other entrainment parameters is a compli-
cated problem involving parametrizations of turbu-
lent, wave, and thermodynamic processes in the
entrainment layer. The physics of these processes rea-
mains poorly understood (see, e.g., [11]).

Overall, the accuracy of the zero-order models is
nearly the same as the accuracy of the first-order
models for free and sheared convection under strong
stable stratification of the free atmosphere [12, 13],
worsening only when the free atmosphere is weakly

δ

δ
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Table 1. Values of constants  from LES data and estimates
from the literature

Constants

CBL1

CBL2

CBL3

 [16]

 [14]

1C TZC 3C

0.24 0.65 0.02

0.23 0.66 0.01

0.22 0.68 0.005

0.2 0.8 0.1

0.2 0.7 0.02
stratified or when the geostrophic velocity gradient is
large [14]. Models of both types also produce large

errors in defining the CBL height  and the entrain-

ment-layer velocity jump  over a very rough sur-
face [15].

In the zero-order models proposed so far, there is

no connection between the surface friction velocity 

and the entrainment-layer velocity jump , which,
in particular, leads to a low accuracy of simulations
over a rough surface. The first-order models account
for this dependence, but parametrization uncertainties

introduced by the new variable  and additional com-
putational difficulties in solving the resulting set of
equations mainly offset this advantage. The approach

suggested in [16, 17] in which the relation of  to 

is implementd in a zero-order model is therefore a
promising one (described in detail in Section 3.3).

In connection with the foregoing, the goal of this
work is to test the integral model of sheared penetra-
tive convection [16, 17] against data from numerical
experiments with a large-eddy simulation (LES)
model developed at the Institute of Numerical Math-
ematics (INM), Russian Academy of Sciences (RAS),
in which the energy-dominant part of turbulent eddies
is reproduced explicitly; this problem implies, among
other things, the definition of the empirical constants
of the integral model.

3. ANALYTICAL BULK CBL MODELS

3.1. Heat Flux Equation
The basis for the bulk CBL models is the heat f lux

equation integrated over the depth of the CBL in the
approximation of horizontal homogeneity and under
the assumption that the buoyancy f lux varies linearly

with height, while the Brunt–Väisälä frequency 
above the CBL is constant with height. The resulting
equation is

(1)

where  is time,  is the CBL height,  is the surface
buoyancy f lux (assumed for simplicity to be constant

with time), and  is the buoyancy f lux at the CBL

h
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boundary. Because buoyancy within the CBL is con-
stant, the buoyancy f lux at the upper boundary is

expressed through a buoyancy jump  by the formula

 [18], where  is the CBL growth rate

or the entrainment rate. The difference  on the
right-hand side of (1) is expressed through the
entrainment coefficient

(2)

If this coefficient is assumed constant and known from
observations and the discussion is resticted to a free-
convection regime, the CBL depth is fully described
by Eq. (1). This approach was used in the early stage of
development of the bulk CBL models (see [19, 18,

20]). With no entrainment , the solution to

Eq. (1) reduces to Zubov’s classical formula 

[19]. When , Eq. (1) becomes

(3)

The values of the entrainment coefficient mea-
sured in the atmosphere and in laboratory experiments

lie in an approximate range of  (see Table 1 in
[21]), i.e., in the nearly whole interval between the

limiting regimes  [18] and  [22]. Natu-
rally, with scatter like this, Eq. (3) involving the con-

stant  is generally unsatisfactory, although the

observed  values in atmospheric CBLs are usually

close to  [6, 8, 21, 23]. It will be shown below that

 results from the analysis of the turbulence
kinetic energy balance for a well-developed CBL in
free convection under the assumption that the CBL
integral buoyancy generation of turbulent kinetic energy
(TKE) is completely compensated by dissipation.
Thus, simple bulk CBL models such as (3) reproduce
the CBL height quite well in many cases.

3.2. Integral TKE Balance Equation: 
Free-Convection Regime

In the general case, the entrainment coefficient is a
time-variable quantity whose definition requires add-
ing one more equation to the system that forms the
bulk CBL model. For its derivation, the TKE balance
equation is written at the interface of the mixed layer

and of the entrainment zone  [24], or the
TKE balance equation is integrated over height for a
horizontally homogenous boundary layer [13, 16, 25]:

(4)
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where  is the dissipation of turbulence kinetic energy,

 is the vertical turbulent transport

of TKE and pressure correlation term,  is the buoy-

ancy f lux,  is the vertical momen-

tum flux, and  is the wind velocity vector.

In free convection, the average shear generation of

TKE is zero. Under this condition, S ,

and, with the use of the Deardorff convective turbu-
lence self-similarity theory [20], the TKE and dissipa-
tion profiles can be represented in terms of the univer-

sal functions of the dimensionless height :

(5)

where  is the Deardorff velocity scale

characterizing a typical value of the vertical and hori-
zontal velocity in the CBL self-organized thermals.
The third term on the right-hand side of (4) is ususally
considered small because the turbulent f luxes

 at the upper and lower

CBL boundary are opposite in sign but close in mag-
nitude. Zilitinkevich [16, 17] took into account a pos-
sible emission into the free atmosphere of gravity
waves excited by thermal overshoots into a stably strat-

ified entrainment layer and defined  as the vertical
energy f lux induced by these waves. Then, from linear
theory [26],

(6)

where  is the wave length and  is the wave amplitude.

Assuming, after [27], that , we obtain

(7)

Given the linearity of the buoyancy f lux profile

(see Fig. 1), , we have the integral

TKE balance equation for free convection

(8)

where  and C1 = 1 – 2α1 =

 are the dimensionless energy con-

stants. If (4) is simplified by assuming that the amount
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, that is, the total TKE generation by buoy-

ancy forces and total dissipation balance each other,

then . From the estimates in the litera-
ture (see Table 1) and from our LES experiments (Sec-

tion 5), , which is matched by values

, which is consistent with the entrain-
ment estimates mentioned above.

3.3. Integral TKE Balance Equation: 
Sheared Convection

In presence of geostrophic forcing and thus non

zero average wind velocity,  is significant and

hypothetical relations (5) become unsatisfactory. Over
the last twenty years, various parametrizations have
been proposed for the terms of the integral TKE bal-
ance equation for sheared convection. Some authors
[9, 28, 29] neglect the left-hand side of (4), arguing
that the amount of TKE in a well-developed CBL
changes little. For the verification of such integral
models, the results of LES experiments of significant
duration are used, with the first 3–4 h of simulated
time being excluded from the analysis. Parametriza-
tions accounting for a TKE tendency [11, 15, 25, 30,

31] usually use, as a velocity scale, the quantity 

defined as , where  is the

friction velocity in the surface layer and

 is the fraction of shear generation

uncompensated by local dissipation. Using an addi-

tional assumption that the time derivative of 

behaves in the same way as the derivative of  in the

case of free convection, we obtain a relation

(9)

that does not provide the self-similar profile

. Zilitinkevich [16, 17] suggested that

the vertical TKE profile for the case of sheared con-
vection can be represented as a sum of the terms
describing the contribution of turbulence of mechani-
cal (sheared) and convective origin

(10)

where  is the sheared velocity scale

and  is the modulus of the average velocity within
the CBL. To calculate the left-hand side of (4), it was

assumed in [16, 17] that , which, however,

disagrees with the LES data.
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The existing bulk models of the sheared CBL can
also be divided into two groups according to the way of
approximating the dissipation integral over the CBL
depth, i.e., the last term on the right-hand side of (4).
In one group, the assumption is made that each com-
ponent of the TKE balance in the CBL—buoyancy,
shear, and turbulent transport—is assigned its own
fraction of dissipation and the integral TKE dissipa-
tion is represented as a linear combination of the cor-
responding integrals. Thus, according to [16, 17],

(11)

where  is the constant known from the free-

convection experiments and  is an additional con-
stant. In the other group of models, it is postulated
that the integral dissipation in the CBL is proportional
to integral production, in combination with a well-
mixed CBL approximation. This postulate reduces the
integral TKE equation to a balance between buoyancy
and wind shear at the entrainment boundary. Using

 and  as alternative velocity scales [32], we can

write the following relation:

(12)

where ,  being the fraction of shear TKE

generation uncompensated by dissipation. Some

authors assume here that . The right-hand side
of (12) can then be written as

(13)

We now proceed to a calculation of the second term
on the right-hand side of (4). Dividing the CBL into
three sublayers—surface, mixed, and entrainment—
we obtain

(14)

The first term on the right-hand side is propor-
tional to the cube of the friction velocity

 [24, 33]. The second term is small or

zero because there is hardly any velocity gradient in
the mixed layer. In zero-order bulk CBL models, the

expression for the momentum flux  is

used to determine shear generation in the entrainment
layer and the velocity gradient is estimated as

, although some models use the
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CBL height as a length scale [24]). When the scale

 is used, the integral of shear generation is

(15)

where, from the LES and laboratory data,

 and . Formula (15) has a sig-

nificant drawback, because it leads to the expression

 (see a detailed derivation in

[34]) and, with the adopted values of  and  and

jumps  typical of well-developed CBLs,
strongly overestimates the entrainment coefficient or
even changes its sign. The first-order bulk CBL mod-
els are less subject to this effect because of the interpo-
lation of the momentum flux profile in the entrain-
ment layer and the appearance in (15) of the term

, where . However, this term can

also be introduced in a zero order model framework;
in [16], for example, the same term results from the

approximation . The validity of this

approximation will also be verified against LES data to
be discussed below.

In [16] the integral TKE balance equation involves

the TKE flux  transported from the entrainment
layer by upward propagating gravity waves. In this

case, the wavelength scale is taken to be  [27], as

opposed to a free-convection regime, where  is
assumed to be proportional to the entrainment-layer

thickness, . Hence,

(16)

As a result for sheared convection, integral equa-
tion (4), according to [16], takes the form

(17)

where the constant  has been introduced.

Optimal CBL Model
In this paper, a bulk CBL model for sheared pene-

trative convection is derived in which minimum com-
plexity is combined with a realistic inclusion of all
important mechanisms.

The integral heat balance (Section 3.1) is given by
the conventional equation
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which is equivalent to (1), (2).

The integral TKE budget (Section 3.3), according
to [16, 17], with a correction for refined formula (32)
in Section 5, has the form

(19)

where  is the Deardorff convective veloc-

ity scale [20] and  is the velocity scale

characterizing the mechanical (shear) generation of
turbulence [16, 17]. The integral momentum budget is
represented by two equations obtained by term-inte-
grating the motion equations

(20)

(21)

where  and  are the mean values of the wind

velocity components in the CBL,  and  are the

velocity jumps at the upper CBL boundary,  is the

Coriolis parameter, and  and  are the geostrophic

wind components. In deriving Eqs. (20) and (21), the

profiles of the vertical momentum flux components 

and  are assumed linear, and surface values of these

components are determined from the aerodynamic
formulas

(22)

(23)

where  is the drag coefficient. This model is verified
and calibrated against the LES data.

4. SETUP OF THE LES MODEL EXPERIMENTS

A detailed description of the LES model developed
at the Institute of Numerical Mathematics, Russian
Academy of Sciences (hereafter LES INM RAS),
which was used in this study, and the results of its com-
parison with other models for different f low types can
be found in [35–37]. The system of hydrodynamic
equations in the Boussinesq approximation is solved
numerically by a finite-difference method; the fourth-
order-accurate momentum- and energy-conservative
scheme [38], on a staggered Aracawa C grid, is used for
spatial approximation; and the second-order explicite
Adams–Bashforth predictor–corrector scheme is used
for time approximation. The model package code was
implemented for distributed-memory multiprocessor
computers using Message Passing Interface (MPI).
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To estimate the applicability of various approxima-
tions of the integral TKE balance terms and other sug-
gestions from [16] resulting in the set of equations of
the bulk CBL model described above, a series of
numerical experiments was performed in which the
CBL was driven by a time- and horizontally constant

positive surface heat f lux , which

corresponds to the buoyancy f lux .
The heat f lux at the top of the domain was set equal
to zero. The lower and upper boundary conditions for
velocity were specified in terms of the momentum
flux calculated from the logarithmic profile between

the boundary with surface roughness  and

the closest model level with . Horizon-
tally periodic boundary conditions were used in all

the experiments. In the layer ,
Rayleigh damping with a relaxation time

, where  is the time step and  is
the vertical model resolution, was applied to the solu-
tion to eliminate the reflection, from the top bound-
ary, of gravity waves propagating upward from the
entrainment layer. The number of grid points was

 in the coordinates

, respectively.

For a correct simulation of the entrainment-layer
processes and independence of the first- and second-
order statistics on the model resolution, the condi-

tion , where  is the Smagorinsky con-

stant and  is a filter width, must be satisfied [39].

For typical  and  and the estimate of

the entrainment-layer depth , this condi-

tion corresponds to . A choice of the

domain’s minimal sizes , where

 is the initial height of the CBL, is considered suf-
ficient to eliminate the inf luence of periodic bound-
ary conditions on the CBL characteristics. The
dynamic closure for subgrid-scale stresses in the LES
INM RAS model, which assumes the isotropy of an
implicit filter, imposed the constraint on the grid step

, where  are the grid steps in

the coordinates . The spatial resolution was

taken to be  The sizes of the

computational domain were 

, and the initial CBL height was

.

For the experimental parameters above, we obtain

. Unlike the LES model used in [39], the

LES INM RAS model calculates the Smagorinsky
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coefficient dynamically, so the constraint imposed on
the vertical resolution can be somewhat relaxed.
Recall that the goal of the LES experiment was to ver-
ify hypothetical relationships (10), (11), (5), (7), and
(16) and to determine appropriate empirical constants

 for the case of free convection and

 for sheared convection:

(24)

(25)

(26)

(27)

(28)

These constants were determined as follows. A
series of experiments was performed for free convec-
tion under free-atmosphere stratification character-
ized by different gradients of potential temperature

above the CBL:  (here-

after referred to as CBL1, CBL2, and CBL3). Two
experiments were conducted for sheared convection,

in which the surface roughness  and geostrophic

velocity were varied:  in CBLu5, and

 in CBLu7. The free-atmosphere stratifica-
tion was taken to be same as in CBL3, and the values

of  obtained earlier from the experiments

with free convection were used to calculate the con-

stants  and  from the CBLu5 and CBLu7 data.

Defining the CBL height plays a key role in the
analysis of the LES results. In our study the CBL
height was defined as the height of the minimum
buoyancy f lux calculated by horizontally averaging
within the LES model domain.

5. RESULTS

The main results of numerical experiments under
windless conditions are illustrated in Figs. 1 and 2.
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Time series of  and  calculated from (24),
(25), and (26) and their values from [16] are shown in
Fig. 2. The variance of the time series relative to the
means is significant, but no distinct trends are
observed, which supports the similarity hypotheses

and gives grounds to take  as constants. The

LES values of  are very different from the

previous estimates: , on average from the three

experiments, is higher and  is lower than the values

proposed in [16, 17]. The estimate of  from CBL1,
CBL2, and CBL3 is an order of magnitude less than
that in [16], but agrees with the results of other LES
experiments [14]. The constants from CBL1, CBL2,
and CBL3 and their values from the previous works
are listed in Table 1.

The results of a calculation of the CBL height from
the LES model and from the integral model of [16] are
shown in Fig. 1. As can be seen, the CBL height grows

with time  proportionally to  in all three experiments,

with fluctuations of  at a period of  s.

Note that the following estimate of the total TKE is
valid for shear-free convection:

(29)

It is therefore logical to expect that the difference

 for sheared convection will be

proportional to . As is shown in Fig. 3, the ratio of

these quantities as a function of time from the CBLu7
data is indeed nearly constant:

(30)

where  is the proportionality constant. Figure 3
presents the time evolution of the average TKE

 in the sheared CBL as the CBL grows; the

Deardorff scale , characterizing the TKE of con-

vective origin, and Zilitinkevich’s scale [16, 17]

, characterizing the shear-generated

TKE, as well as their linear combination

, are used to normalize TKE. As

is evident from the figure, the first and second rela-
tions change significantly, while normalizing by a gen-

1, ,TZC C 3C

1 3, ,TZC C C
1 3, ,TZC C C

1C
TZC

3C

t t
h 2

~ / ~ 10
*

h W

=
2

0

 

*
.

h

k TZE dz C hW

− −0
1 2

*

h

k TZh E dz C W
2

*
V

− −
= ≈


1 2

62

0
*

0.4,

*

k T

h

Zh E dz C W
C

V

6C

−


1

0

h

kh E dz
2

*
W

( )=
1/32

2
* * mV u U

+ = +2 2

6* *TZW C W C V
IC AND OCEANIC PHYSICS  Vol. 55  No. 2  2019



BULK MODELS OF SHEARED BOUNDARY LAYER CONVECTION 147

Fig. 2. Time variations in the CBL height from the LES modeling of free convection (CBL1, CBL2, and CBL3 are shown by
markers). The lines show solutions to the integral model equations [16] with two different sets of the constants :
the subscript old denotes the set of constants from the original study [16], and the subscript new denotes estimates of the constants
from the LES data by formulas (24), (25), and (26) (see Table 1 for more detail).
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eralized scale makes the average TKE in the CBL
almost constant. Hence a useful relationship follows

(31)

According to (31), the left-hand side of the integral
TKE balance equation is written as

(32)

The results above are related to the fact that  and

 vary with time in opposite direction. The Deardorff

scale  grows with , while  drops because friction

in the surface layer and the average velocity in the CBL
decrease (not shown). A significant decrease in the

shear-produced TKE scale  with time violates the
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assumption from [16] of the invariability of this quan-

tity . Thus, the left-hand side of the integral

TKE energy balance equation must take the form

(33)

where on the right is the term  missing in

original equation (17). Expressing TKE in terms of

the scale  and taking the corresponding propor-

tionality constant  out of the sign of the time deriv-
ative, as in (10), do not reflect the universal property
of the integral TKE balance, because the correspond-
ing curve in Fig. 3 falls with time. This is most likely a

consequence of the fact that the term with  is omit-
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Fig. 3. Time variations in  from CBL1, CBL2, and CBL3.
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ted from the estimate of shear generation (15) to sim-

plify the scale  in (13) and the resulting velocity scale

 grows faster than the average TKE in the CBL.

Consider now to what extent the scales above are

suitable for an estimate of the TKE dissipation inte-

gral. For this, we examine Fig. 4, in which the curves

of the ratio of the dissipation integral to the various

scales are drawn in the same way as in Fig. 3, described

above, with . It can be seen that

only the ratio  has a significant trend,

which can also be explained by a lack of the term with

 in the definition of .
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Estimates of the constants , and of  from

CBLu7 were found to be , respec-

tively. Since , Eq. (17) cannot be rewritten in

the form of (8) by substituting  for . As can be

seen from the value of , which denotes the energy

flux of gravity waves from the CBL to the overlying

inversion, this f lux for typical , , and

(the third term on the right-hand side of (17))

is ; i.e., it is far less than the

other components of the TKE balance in the convec-

tive layer (for example, ), so it can be neglected. 
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Fig. 4. Time variations in the ratio of the TKE integral in the CBL to different integral scales from the CBLu7 data.
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6. CONCLUSIONS

Several numerical experiments have been run to
simulate free convection and sheared convection
above a homogeneous surface with the INM RAS LES
model. The calculation data confirm that the TKE
profiles and TKE dissipation profiles are well scaled
by the CBL height and the Deardorff scale; the corre-
sponding dimensionless constants have proved to be
close to the previous estimates from laboratory exper-
iments. The analysis of the experiments with sheared
convection has shown that scaling the TKE integral
and the dissipation integral over the CBL height by the
IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS 
linear combination of and is a justifiable assumption
and makes it possible to develop bulk CBL models in
a zero-order approximation—an instantaneous tem-
perature and velocity jump at the top boundary. It is
also shown that the TKE flux transported from the
entrainment layer by gravity waves is small and can be
neglected in the integral TKE balance equation.
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Fig. 5. Time variations in the ratio of the dissipation integral in the CBL to different integral scales from the CBLu7 data.
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