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SUBEXPONENTIAL ESTIMATES IN THE HEIGHT THEOREM
AND ESTIMATES ON NUMBERS OF PERIODIC PARTS
OF SMALL PERIODS

A. Ya. Belov and M. I. Kharitonov UDC 512.5+512.64+519.1

Abstract. This paper is devoted to subexponential estimates in Shirshov’s height theorem. A word W
is n-divisible if it can be represented in the form W = W0W1 · · ·Wn, where W1 ≺ W2 ≺ · · · ≺ Wn. If an
affine algebra A satisfies a polynomial identity of degree n, then A is spanned by non-n-divisible words of
generators a1 ≺ · · · ≺ al. A. I. Shirshov proved that the set of non-n-divisible words over an alphabet of
cardinality l has bounded height h over the set Y consisting of all words of degree ≤ n − 1. We show that
h < Φ(n, l), where Φ(n, l) = 287l ·n12 log3 n+48. Let l, n, and d ≥ n be positive integers. Then all words over
an alphabet of cardinality l whose length is greater than Ψ(n, d, l) are either n-divisible or contain the dth

power of a subword, where Ψ(n, d, l) = 218l(nd)3 log3(nd)+13d2. In 1993, E. I. Zelmanov asked the following
question in the Dniester Notebook: Suppose that F2,m is a 2-generated associative ring with the identity
xm = 0. Is it true that the nilpotency degree of F2,m has exponential growth? We give the definitive
answer to E. I. Zelmanov by this result. We show that the nilpotency degree of the l-generated associative
algebra with the identity xd = 0 is smaller than Ψ(d, d, l). This implies subexponential estimates on the
nilpotency index of nil-algebras of arbitrary characteristic. Shirshov’s original estimate was just recursive;
in 1982 a double exponent was obtained, and an exponential estimate was obtained in 1992. Our proof
uses Latyshev’s idea of an application of the Dilworth theorem. We think that Shirshov’s height theorem
is deeply connected to problems of modern combinatorics. In particular, this theorem is related to the
Ramsey theory. We obtain lower and upper estimates of the number of periods of length 2, 3, n − 1 in
some non-n-divisible word. These estimates differ only by a constant.

1. Introduction

1.1. Shirshov’s Theorem on Height. In 1958, A. I. Shirshov proved his famous theorem on height
[36,37].

Definition 1.1. A word W is called n-divisible if W can be represented in the form W = vu1u2 · · ·un

such that u1 � u2 � · · · � un.

In this case, any nonidentical permutation σ of subwords ui produces a wordWσ = vuσ(1)uσ(2) · · ·uσ(n)

that is lexicographically smaller than W . Some authors take this feature as the definition of n-divisibility.

Definition 1.2. A PI-algebra A is called an algebra of bounded height h = HtY (A) over a set of words
Y = {u1, u2, . . .} if h is the minimal integer such that any word x from A can be represented in the form

x =
∑

i

αiu
k(i,1)

j(i,1)
u

k(i,2)

j(i,2)
· · ·uk(i,ri)

j(i,ri)
,

where {ri} do not exceed h. The set Y is called a Shirshov basis for A. If no misunderstanding can occur,
then we use h instead of HtY (A).

Shirshov’s theorem on height ([36,37]). The set of non-n-divisible words in a finitely generated algebra
with an admissible polynomial identity has bounded height H over the set of words of degree not exceeding
n− 1.
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The Burnside-type problems related to the height theorem are considered in [41]. The authors believe
that Shirshov’s theorem on height is a fundamental fact in word combinatorics independently of its
applications to PI-theory. (All our proofs are elementary and fit in the framework of word combinatorics.)
Unfortunately, the experts in combinatorics have not sufficiently appraised this fact yet. As regards the
notion of n-divisibility itself, it seems to be fundamental as well. V. N. Latyshev’s estimates on ξn(k), the
number of non-n-divisible polylinear words in k symbols, have led to fundamental results in PI-theory. At
the same time, this number is nothing but the number of arrangements of integers from 1 to k such that
no n integers (not necessarily consecutive) are placed in decreasing order. Furthermore, it is the number
of permutationally ordered sets of diameter n consisting of k elements. (A set is called permutationally
ordered if its ordering is the intersection of two linear orderings; the diameter of an ordered set is the
length of its maximal antichain.)

The height theorem implies the solution of a set of problems in ring theory. Suppose an associative
algebra over a field satisfies a polynomial identity f(x1, . . . , xn) = 0. It is possible to prove that then it
satisfies an admissible polynomial identity (that is, a polynomial identity with coefficient 1 at some term
of the highest degree)

x1x2 · · ·xn =
∑

σ

ασxσ(1)xσ(2) · · ·xσ(n),

where ασ belongs to the ground field. In this case, if W = vu1u2 · · ·un is n-divisible, then for any
permutation σ the word Wσ = vuσ(1)uσ(2) · · ·uσ(n) is lexicographically smaller than W , and thus an
n-divisible word can be represented as a linear combination of lexicographically smaller words. Hence
a PI-algebra has a basis consisting of non-n-divisible words. By Shirshov’s theorem on height, a PI-algebra
has bounded height. In particular, if a PI-algebra satisfies xn = 0, then it is nilpotent, that is, any of
its words of length exceeding some N is identically zero. Surveys on the height theorem can be found
in [6, 18–20,39].

This theorem implies the positive solution of the Kurosh problem and of other Burnside-type problems
for PI-rings. Indeed, if Y is a Shirshov basis and all its elements are algebraic, then the algebra A is
finite-dimensional. Thus, Shirshov’s theorem explicitly indicates a set of elements whose algebraicity
makes the whole algebra finite-dimensional. This theorem implies the following corollary.

Corollary 1.3 (A. Berele). Let A be a finitely generated PI-algebra. Then

GK(A) <∞.

GK(A) is the Gelfand–Kirillov dimension of the algebra A, that is,

GK(A) = lim
n→∞

lnVA(n)
ln(n)

,

where VA(n) is the growth function of A, the dimension of the vector space generated by words of degree
not greater than n in the generators of A.

Indeed, it suffices to observe that the number of solutions for the inequality

k1|v1| + · · · + kh|vh| ≤ n

with h ≤ H exceeds NH , so that GK(A) ≤ Ht(A).
The number m = deg(A) will mean the degree of the algebra, or the minimal degree of an identity

valid in it. The number n = Pid(A) is the complexity of A, or the maximal k such that Mk, the algebra
of matrices of size k, belongs to the variety Var(A) generated by A.

Instead of the notion of height, it is more suitable to use the close notion of essential height.

Definition 1.4. An algebra A has essential height h = HEss(A) over a finite set Y called an s-basis for A
if there exists a finite set D ⊂ A such that A is linearly representable by elements of the form t1 · . . . · tl,
where l ≤ 2h+ 1, for all i, ti ∈ D or ti = yki

i , yi ∈ Y , and the set of i such that ti /∈ D contains at most h
elements. The essential height of a set of words is defined similarly.
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Informally speaking, any long word is a product of periodic parts and “gaskets” of restricted length.
The essential height is the number of periodic parts, and the ordinary height accounts “gaskets” as well.

The height theorem suggests the following questions.
(1) To which classes of rings can the height theorem be extended?
(2) Over which Y has the algebra A bounded height? In particular, what sets of words can be taken

for {vi}?
(3) What is the structure of the degree vector (k1, . . . , kh)? First of all, what sets of its components

are essential, that is, what sets of ki can be unbounded simultaneously? What is the value of
essential height? Is it true that the set of degree vectors has some regularity properties?

(4) What estimates for the height are possible?
Let us discuss the above questions.

1.2. Nonassociative Generalizations. The height theorem was extended to some classes of near-asso-
ciative rings. S. V Pchelintsev [33] has proved it for the alternative and the (−1, 1) cases, and S. P. Mi-
shchenko [32] has obtained an analogue of the height theorem for Lie algebras with a sparse identity.
In [1], the height theorem was proved for some class of rings asymptotically close to associative rings. In
particular, this class contains alternative and Jordan PI-algebras.

1.3. Shirshov Bases. Suppose that A is a PI-algebra and a subset M ⊆ A is its s-basis. Then if
all elements of M are algebraic over K, A is finite-dimensional (the Kurosh problem). Boundedness of
essential height over Y implies “the positive solution of the Kurosh problem over Y .” The converse is less
trivial.

Theorem 1.5 (A. Ya. Belov).
(1) Suppose that A is a graded PI-algebra and Y is a finite set of homogeneous elements. Then if for

all n the algebra A/Y (n) is nilpotent, then Y is an s-basis for A. If, moreover, Y generates A as
an algebra, then Y is a Shirshov basis for A.

(2) Suppose that A is a PI-algebra and M ⊆ A is a Kurosh subset in A. Then M is an s-basis for A.

Let Y (n) denote the ideal generated by nth powers of elements from Y . A set M ⊂ A is called
a Kurosh set if any projection π : A ⊗ K[X] → A′ such that the image π(M) is entire over π(K[X]) is
finite-dimensional over π(K[X]). The following example motivates this definition. Suppose that A =
Q[x, 1/x]. Any projection π such that π(x) is algebraic has a finite-dimensional image. However, the
set {x} is not an s-basis for Q[x, 1/x]. Thus, boundedness of essential height is a noncommutative
generalization of the property of entireness.

The Shirshov bases consisting of words are described by the following theorem.

Theorem 1.6 ([6,8]). A set Y of words is a Shirshov basis for an algebra A if and only if for any word u
of length not exceeding m = Pid(A), the complexity of A, the set Y contains a word cyclically conjugate
to some power of u.

A similar result was obtained independently by G. P. Chekanu and V. Drensky. Problems related to
local finiteness of algebras and to algebraic sets of words of degree not exceeding the complexity of the
algebra were investigated in [11–13, 15, 38–40]. Questions related to generalization of the independence
theorem were considered in these papers as well.

1.4. Essential Height. Clearly, the Gelfand–Kirillov dimension is estimated by the essential height.
Furthermore, an s-basis is a Shirshov basis if and only if it generates A as an algebra. In the representable
case, the converse is also true.

Theorem 1.7 (A. Ya. Belov [6]). Suppose that A is a finitely generated representable algebra and
HEssY (A) <∞. Then HEssY (A) = GK(A).
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Corollary 1.8 (V. T. Markov). The Gelfand–Kirillov dimension of a finitely generated representable
algebra is an integer.

Corollary 1.9. If HEssY (A) <∞ and A is representable, then HEssY (A) is independent of choice of the
s-basis Y .

In this case, the Gelfand–Kirillov dimension also is equal to the essential height by virtue of local
representability of relatively free algebras.

Although in the representable case the Gelfand–Kirillov dimension and the essential height behave
well, even in this case the set of degree vectors may have a bad structure, namely, it can be the complement
to the set of solutions of a system of exponential-polynomial Diophantine equations [6]. That is why there
exists an instance of a representable algebra with the transcendent Hilbert series. However, for a relatively
free algebra, the Hilbert series is rational [3].

1.5. n-Divisibility and Dilworth Theorem. The significance of the notion of n-divisibility exceeds
the limits of Burnside-type problems. This notion is also actual in investigation of polylinear words and
estimation of their number (a word is polylinear if each letter occurs in it at most one time). V. N. Latyshev
applied the Dilworth theorem for estimation of the number of non-m-divisible polylinear words of degree n
over the alphabet {a1, . . . , an} (see [28]). The estimate is (m− 1)2n and is rather sharp. Let us recall this
theorem.

Dilworth theorem. Let n be the maximal number of elements of an antichain in a given finite partially
ordered set M . Then M can be divided into n disjoint chains.

Consider a polylinear word W consisting of n letters. Put ai � aj if i > j and the letter ai is located
in W to the right from aj . The condition of non-k-divisibility means the absence of an antichain consisting
of n elements. Then by the Dilworth theorem all positions (and the letters ai as well) split into n−1 chains.
Attach a specific color to each chain. Then the coloring of positions and of letters uniquely determines
the word W . Furthermore, the number of these colorings does not exceed (n− 1)k × (n− 1)k = (n− 1)2k.

The above estimate implies the validity of polylinear identities corresponding to an irreducible module
whose Young diagram includes the square of size n4. This, in turn, enables one, firstly, to obtain a trans-
parent proof of the Regev theorem, which asserts that a tensor product of PI-algebras is a PI-algebra as
well; secondly, to establish the existence of a sparse identity in the general case and of a Capelli identity
in the finitely generated case (and, thus, to prove the theorem on nilpotency of the radical); and, thirdly,
to realize A. R. Kemer’s “supertrick” that reduces the study of identities in general algebras to that of
super-identities in finitely generated superalgebras of zero characteristic. Close questions are considered
in [9, 31].

Problems related to the enumeration of polylinear words that are not n-divisible are interesting on
their own. (For example, there exists a bijection between non-3-divisible words and Catalan numbers.)
On the one hand, this is a purely combinatorial problem, but on the other hand, it is related to the
set of codimensions for the general matrix algebra. The study of polylinear words seems to be of great
importance. V. N. Latyshev (see, for instance, [29]) has stated the problem of finite-basedness of the set
of leading polylinear words for a T -ideal with respect to taking overwords and to isotonous substitutions.
This problem implies the Specht problem for polylinear polynomials and is closely related to the problem
of weak Noetherian property for the group algebra of an infinite finitary symmetric group over a field of
positive characteristic (for zero characteristic this was established by A. Zalessky). To solve the Latyshev
problem, it is necessary to translate properties of T -ideals to the language of polylinear words. In [1, 6],
an attempt was made to realize a project of translation of structure properties of algebras to the language
of word combinatorics. Translation to the language of polylinear words is simpler and enables one to get
some information on words of a general form.

In this paper, we transfer V. N. Latyshev’s technique to the nonpolylinear case, and this enables us
to obtain a subexponential estimate in Shirshov’s height theorem. G. R. Chelnokov suggested the idea of
this transfer in 1996.
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1.6. Estimates for height. The original A. I. Shirshov’s proof, being purely combinatorial (it was based
on the technique of elimination developed by him for Lie algebras, in particular, in the proof of the theorem
on freeness), nevertheless implied only primitively recursive estimates. Later A. T. Kolotov [26] obtained
an estimate Ht(A) ≤ ll

n
(n = deg(A), l is the number of generators). A. Ya. Belov in [2] has shown that

Ht(n, l) < 2nln+1. The exponential estimate in Shirshov’s height theorem was also presented in [8,17,23].
The above estimates were sharpened in the papers by A. Klein [24,25]. In 2001, Ye. S. Chibrikov proved
in [14] that Ht(4, l) ≥ (7k2 − 2k). M. I. Kharitonov in [21–23] obtained lower and upper estimates for the
structure of piecewise periodicity. In 2011, A. A. Lopatin [30] obtained the following result.

Theorem 1.10. Let Cn,l be the nilpotency degree of a free l-generated algebra satisfying xn = 0, and let
p be the characteristic of the ground field of the algebra, greater than n/2. Then

Cn,l < 4 · 2n/2l. (1)

By definition, Cn,l ≤ Ψ(n, n, l). Observe that for small n estimate (1) is smaller than the estimate
Ψ(n, n, l) established in this paper, but for growing n the estimate Ψ(n, n, l) is asymptotically better
than (1).

Ye. I. Zelmanov has put the following question in the Dniester Notebook [16] in 1993.

Question 1.11. Let F2,m be the free 2-generated associative ring with identity xm = 0. Is it true that
the nilpotency class of F2,m grows exponentially in m?

Our paper answers Ye. I. Zelmanov’s question as follows: the nilpotency class in question grows
subexponentially.

1.7. The Results Obtained. The main result of the paper is as follows.

Theorem 1.12. The height of the set of non-n-divisible words over an alphabet of cardinality l relative
to the set of words of length less than n does not exceed Φ(n, l), where

Φ(n, l) = E1l · nE2+12 log3 n,

E1 = 421 log3 4+17, E2 = 30 log3 4 + 10.

This theorem after some coarsening and simplification of the estimate implies that for fixed l and
n→ ∞ we have

Φ(n, l) < 287l · n12 log3 n+48 = n12(1+o(1)) log3 n,

and for fixed n and l → ∞ we have
Φ(n, l) < C(n)l.

The reader can also find the proof of Theorem 1.12 in [7].

Corollary 1.13. The height of an l-generated PI-algebra with an admissible polynomial identity of de-
gree n over the set of words of length less than n does not exceed Φ(n, l).

Moreover, we prove a subexponential estimate that is better for small n.

Theorem 1.14. The height of the set of non-n-divisible words over an alphabet of cardinality l relative
to the set of words of length less than n does not exceed Φ(n, l), where

Φ(n, l) = 240l · n38+8 log2 n.

In particular, we obtain subexponential estimates for the nilpotency index of l-generated nil-algebras
of degree n of arbitrary characteristic.

The second main result of our paper is the following.

Theorem 1.15. Let l, n, and d ≥ n be positive integers. Then all l-generated words of length not less
than Ψ(n, d, l) either contain xd or are n-divisible. Here

Ψ(n, d, l) = 45+3 log3 4l(nd)3 log3(nd)+(5+6 log3 4)d2.
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This theorem after some coarsening and simplification of the estimate implies that for fixed l and
nd→ ∞ we have that

Ψ(n, d, l) < 218l(nd)3 log3(nd)+13d2 = (nd)3(1+o(1)) log3(nd),

and for fixed n and l → ∞ we have
Ψ(n, d, l) < C(n, d)l.

Corollary 1.16. Let l and d be positive integers, and let an associative l-generated algebra A satisfy the
identity xd = 0. Then its nilpotency index is less than Ψ(d, d, l).

Moreover, we prove a subexponential estimate that is better for small n and d.

Theorem 1.17. Let l, n, and d ≥ n be positive integers. Then all l-generated words of length not less
than Ψ(n, d, l) either contain xd or are n-divisible. Here

Ψ(n, d, l) = 256l(nd)2 log2(nd)+10d2.

Notation 1.18. For a real number x put �x� := −[−x]. Thus, we replace noninteger numbers by the
closest greater integers.

Proving Theorem 1.12, we also prove the following theorem on estimation of the essential height.

Theorem 1.19. The essential height of an l-generated PI-algebra with an admissible polynomial identity
of degree n over the set of words of length less than n is less than Υ(n, l), where

Υ(n, l) = 2n3�log3 n�+4l.

It is necessary to introduce the following definitions.

Definition 1.20. A word u is acyclic or noncyclic if u cannot be adduced as vk for any word v and k > 1.

Definition 1.21. A word u and all of its cycle shifts is a word-cycle u.

Definition 1.22. A word is strongly n-divisible or n-s-divisible over a set of words Z if it can be adduced
as W = W0W1 · · ·Wn, where the subwords W1, . . . ,Wn are in decreasing lexicographical order and every
word Wi, i = 1, 2, . . . , n, begins from a word zk

i . The words zi are distinct and belong Z.

Then we prove the following lower and upper bounds of particular periodicity.

Theorem 1.23. Let M be the set of non-n-divisible words with finite essential height over words of
degree 2. Then the number of different lexicographically comparable acyclic words with period 2 in any
word from M is less than �(2, l, n), where

�(2, l, n) =
(2l − 1)(n− 1)(n− 2)

2
.

Theorem 1.24. Let M be the set of non-n-s-divisible words over Z, the set of acyclic words of degree 2.
Then the essential height of M over Z is bigger than �

′(2, n, l), where

�
′(2, n, l) =

n2l

2
(
1 − o(l)

)
.

More precisely,

�
′(2, n, l) =

(l − 2n−1)(n− 2)(n− 3)
2

.

Theorem 1.25. Let M be the set of non-n-divisible words with finite essential height over the words of
degree 3. Then the number of different lexicographically comparable acyclic words with period 3 in any
word from M is less than �(3, l, n), where

�(3, l, n) = (2l − 1)(n− 1)(n− 2).
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One can find the proofs of Theorems 1.23–1.25 in [22].

Theorem 1.26. Let M be the set of non-n-divisible words with finite essential height over the words of
degree n − 1. Then the number of different lexicographically comparable acyclic words with period n − 1
in any word from M is less than �(n− 1, l, n), where

�(n− 1, l, n) = (l − 2)(n− 1).

We can get an exponential estimate of the essential height using Theorem 1.23 and the idea of
encoding.

Theorem 1.27. Denote by Υ(n, l) the essential height over the set of words of degree less than n of
a relatively free algebra generated by l elements and satisfying the polynomial identity of degree n. Then

Υ(n, l) = 8(l + 1)nn5(n− 1).

One can find the proofs of Theorems 1.26 and 1.27 in [23].
The condition of difference of the subwords in Theorems 1.23, 1.25, and 1.26 is removed in the

following theorem.

Theorem 1.28. Let M be the set of non-n-divisible words with finite essential height over the words
of degree k. Then the number of lexicographically comparable acyclic words with period k in any word
from M is less than 2(n− 1)�(k, l, n), where

�(n− 1, l, n) = (l − 2)(n− 1),

where �(k, n, l) is the maximal number of different lexicographically comparable acyclic words with period k
in any word from M .

In [10], it is established that the nilpotency index of an l-generated nil-semiring of degree n equals the
nilpotency index of an l-generated nilring of degree n, where addition is not supposed to be commutative.
(The paper also contains examples of nonnilpotent nil-nearrings of index 2.) Thus, our results extend to
the case of semirings as well.

1.8. On Estimates from Below. Let us compare the results obtained with the estimate for height from
below. The height of an algebra A is not less than its Gelfand–Kirillov dimension GK(A). For the algebra
of l-generated general matrices of order n, this dimension equals (l − 1)n2 + 1 (see [4, 34]). At the same
time, the minimal degree of an identity in this algebra is 2n by the Amitsur–Levitsky theorem.

Proposition 1.29. The height of an l-generated PI-algebra of degree n and of the set of non-n-divisible
words over an alphabet of cardinality l is not less than (l − 1)n2/4 + 1.

Estimates from below for the nilpotency index were established by Ye. N. Kuzmin in [27]. He gave an
example of a 2-generated algebra with identity xn = 0 such that its nilpotency index exceeds (n2+n−2)/2.
The problem of finding estimates from below is considered in [22].

At the same time, for zero characteristic and a countable set of generators, Yu. P. Razmyslov (see,
for instance, [35]) obtained an upper estimate for the nilpotency index, namely n2.

First, we will prove Theorem 1.15, and in the following section we will deal with estimates for the
essential height, that is, for the number of distinct periodical pieces in a non-n-divisible word. By the end
we evaluate the ways to upgrade the obtained estimates in the future.

Acknowledgements. The authors are grateful to V. N. Latyshev, A. V. Mikhalev and all participants of
the seminar “Ring theory” for their attention to this work, as well as to the participants of the seminar
under the guidance of A. M. Raigorodsky.
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2. Estimates on Occurrence of Degrees of Subwords

2.1. The Outline of the Proof of Theorem 1.15. Lemmas 2.3, 2.4, and 2.6 describe sufficient
conditions for the presence of a period of length d in a non-n-divisible word W . Lemma 2.7 connects
n-divisibility of a word W with the set of its tails. Further we choose some specific subset in the set of
tails of W such that we can apply the Dilworth theorem. After that we color the tails and their first
letters according to their location in chains obtained by application of the Dilworth theorem.

We must know the position in any chain where neighboring tails begin to differ. It is of interest
what is the “frequency” of this position in a p-tail for some p ≤ n. Further we somewhat generalize
our reasoning dividing tails into segments consisting of several letters each and determining the segment
containing the position where neighboring tails begin to differ. Lemma 3.4 connects the “frequencies” in
question for p-tails and kp-tails for k = 3.

To complete the proof, we construct a hierarchical structure based on Lemma 3.4, that is, we consec-
utively consider segments of n-tails, subsegments of these segments, and so on. Furthermore, we consider
the greatest possible number of tails in the subset to which the Dilworth theorem is applied, and then we
estimate from above the total number of tails and hence of letters in the word W .

2.2. Periodicity and n-Divisibility Properties. Let a1, a2, . . . , al be the alphabet used for construct-
ing words. The ordering a1 ≺ a2 ≺ · · · ≺ al induces lexicographical ordering for words over the alphabet.
For convenience, we introduce the following definitions.

Definition 2.1.
(1) If a word v includes a subword of the form ut, then we say that v includes a period of length t.
(2) If a word u is a prefix of a word v, then these words are called incomparable.
(3) A word v is a tail of a word u if there exists a word w such that u = wv.
(4) A word v is a k-tail of a word u if v consists of k first letters of some tail u.
(4′) A k-beginning is the same as a k-tail.
(5) A word u is to the left from a word v if u begins to the left from the beginning of v.

Notation 2.2.
(1) For a real number x put �x� := −[−x].
(2) Let |u| denote the length of a word u.

The proof uses the following sufficient conditions for the presence of a period.

Lemma 2.3. In a word W of length x, either the first [x/d] tails are pairwise comparable or W includes
a period of length d.

Proof. Suppose that W includes no word of the form ud. Consider the first [x/d] tails. Suppose some two
of them, say v1 and v2, are incomparable and v1 = u · v2. Then v2 = u · v3 for some v3. Furthermore,
v1 = u2 · v3. Arguing in this way, we obtain that v1 = ud · vd+1, since |u| < x/d, |v2| ≥ (d − 1)x/d.
A contradiction.

Lemma 2.4. If a word V of length k · t includes at most k different subwords of length k, then V includes
a period of length t.

Proof. We use induction in k. The base k = 1 is obvious. If there are at most k− 1 different subwords of
length k− 1, then we apply the induction assumption. If there exist k different subwords of length k− 1,
then every subword of length k is uniquely determined by its first k− 1 letters. Thus, V = vt, where v is
a k-tail of V .

Definition 2.5.
(1) A wordW is n-divisible in the ordinary sense if there exist u1, u2, . . . , un such thatW = v·u1 · · ·un

and u1 � · · · � un.
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(2) In our proof, we will call a word W n-divisible in the tail sense if there exist tails u1, . . . , un such
that u1 � u2 � · · · � un and for any i = 1, 2, . . . , n − 1 the beginning of ui is to the left from
the beginning of ui+1. If the contrary is not specified, an n-divisible word means a word that is
n-divisible in the tail sense.

(3) A word W is n-cancellable if either it is n-divisible in the ordinary sense or there exists a word
of the form ud ⊆W .

Now we describe a sufficient condition for n-cancellability and its connection with n-divisibility.

Lemma 2.6. If a word W includes n identical disjoint subwords u of length n ·d, then W is n-cancellable.

Proof. Suppose the contrary. Consider the tails u1, u2, . . . , un of the word u that begin from each of the
first n letters of u. Renumerate the tails to provide the inequalities u1 � · · · � un. By Lemma 2.3, the
tails are incomparable. Consider the subword u1 in the leftmost copy of u, the subword u2 in the second
copy from the left,. . . , un in the nth copy from the left. We get an n-division of W . A contradiction.

Lemma 2.7. If a word W is 4nd-divisible, then it is n-cancellable.

Proof. Suppose the contrary. Consider the numbers of positions of letters ai, a1 < a2 < · · · < a4nd,
that begin the tails ui dividing W . Set a4nd+1 = |W |. If W is not n-cancellable, then there exists i,
1 ≤ i ≤ 4(n− 1)d+ 1, such that for any i ≤ b < c ≤ d < e ≤ i+ 4d the (ac − ab)-tail ub is incomparable
with the (ae − ad)-tail ud. Compare ai+2d − ai and ai+4d − ai+2d. We may assume that ai+4d − ai+2d ≥
ai+2d − ai. Let aj+1 − aj = inf

k
(ak+1 − ak), 0 ≤ j < 2d. We may assume that j < d. By assumption,

the (a2d − aj)-tail uj and the (a2d − aj+1)-tail uj+1 are incomparable with the (a4d − a2d)-tail u2d. Since
a4d − a2d ≥ a2d − aj > a2d − aj+1, the (a2d − aj)-tail uj and the (a2d − aj+1)-tail uj+1 are mutually
incomparable. Since (a2d − aj)/(a2d − aj+1) ≤ (d+ 1)/d, the (aj+1 − aj)-tail uj in degree d is included in
the (a2d− aj)-tail uj . A contradiction.

Corollary 2.8. If a word W is not n-divisible in the ordinary sense, then W is not 4nd-divisible (in the
tail sense).

Notation 2.9. Set pn,d := 4nd− 1.

Let W be a non-n-cancellable word. Consider U , the [|W |/d]-tail of W . Then W is not (pn,d + 1)-di-
visible. Let Ω be the set of tails of W that begin in U . Then by Lemma 2.3 any two elements of Ω are
comparable. There is a natural bijection between Ω, the letters of U , and positive integers from 1 to
|Ω| = |U |.

Let us introduce a word θ that is lexicographically less than any other word.

Remark 2.10. In the proof of Theorem 1.15, all tails are assumed to belong to Ω.

3. Estimates on Occurrence of Periodical Fragments

Consider an application of the Dilworth theorem. For tails u and v put u < v if u ≺ v and u is to
the left from v. Then by the Dilworth theorem, Ω can be divided into pn,d chains such that in each chain
u ≺ v if u is to the left from v. Paint the initial positions of the tails in pn,d colors according to their
occurrence in chains. Fix a positive integer p. To each positive integer i from 1 to |Ω|, attach Bp(i), an
ordered set of pn,d words {f(i, j)} constructed as follows: for each j = 1, 2, . . . , pn,d put

f(i, j) = {max f ≤ i : f is painted in color j}.
If there is no such f , then the word from Bp(i) at position j is assumed to be equal to θ, otherwise to the
p-tail that begins from the f(i, j)th letter.

Informally speaking, we observe the speed of “evolution” of tails in their chains when the sequence
of positions in W is considered as the time axis.
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3.1. The Sets Bp(i) and the Process at Positions.

Lemma 3.1 (on the process). Given a sequence S of length |S| consisting of words of length k− 1. Each
word consists of k− 2 symbols 0 and a single symbol 1. Let S satisfy the following condition: if for some
0 < s ≤ k − 1 there exist pn,d words such that 1 occupies the sth position, then between the first and the
pn,dth of these words there exists a word in which 1 occupies a position with number strictly less than s;
L(k − 1) = sup

S
|S|. Then L(k − 1) ≤ pk−1

n,d − 1.

Proof. We have that L(1) ≤ pn,d−1. Let L(k−1) ≤ pk−1
n,d −1. We will show that L(k) ≤ pk

n,d−1. Consider
the words such that 1 occupies the first position. Their number does not exceed pn,d − 1. Between any
two of them, as well as before the first one and after the last one, the number of words does not exceed
L(k − 1) ≤ pk−1

n,d − 1. Hence

L(k) ≤ pn,d − 1 + pn,d

(
(pn,d)k−1 − 1

)
= pk

n,d − 1.

We need a quantity that estimates the speed of “evolution” of sets Bp(i).

Definition 3.2. Set
ψ(p) := {max k : Bp(i) = Bp(i+ k − 1)}.

In particular, by Lemma 2.4 we have that ψ(pn,d) ≤ pn,dd.
For a given α we divide the sequence of the first |Ω| positions i of W into equivalence classes �α as

follows: i �α j if Bα(i) = Bα(j).

Proposition 3.3. For any positive integers a < b we have that ψ(a) ≤ ψ(b).

Lemma 3.4 (basic). For any positive integers a and k we have that

ψ(a) ≤ pk
n,dψ(k · a) + k · a.

Proof. Consider the least representative in each class of �k·a. We get a sequence of positions {ij}. Now
consider all ij and Bk·a(ij) from the same equivalence class of �a. Suppose it consists of Bk·a(ij) for
ij ∈ [b, c). Let {ij}′ denote the segment of the sequence {ij} such that ij ∈ [b, c− k · a).

Fix a positive integer r, 1 ≤ r ≤ pn,d. All k · a-beginnings of color r that begin from positions of the
word W in {ij}′ will be called representatives of type r. All representatives of type r are pairwise distinct
because they begin from the least positions in equivalence classes of �k·a. Divide each representative of
type r into k segments of length a. Enumerate segments inside each representative of type r from left
to right by integers from zero to k − 1. If there exist pn,d + 1 representatives of type r with the same
first t− 1 segments but with pairwise different tth segments where 1 ≤ t ≤ k − 1, then there are two tth
segments such that their first letters are of the same color. Then the initial positions of these segments
belong to different equivalence classes of �a.

Now apply Lemma 3.1 as follows: in all representatives of type r except the rightmost one we consider
a segment as a unit segment if it contains the least position where this representative of type r differs
from the preceding one. All other segments are considered as zero segments.

Now we apply the process lemma for the values of parameters as given in the condition of the lemma.
We obtain that the sequence {ij}′ contains at most pk−1

n,d representatives of type r. Then the sequence
{ij}′ contains at most pk

n,d terms. Thus, c− b ≤ pk
n,dψ(k · a) + k · a.

3.2. Completion of the Proofs for Theorems 1.15 and 1.17. Let

a0 = 3�log3 pn,d�, a1 = 3�log3 pn,d�−1, . . . , a�log3 pn,d� = 1.

Then |W | ≤ d|Ω| + d by Lemma 2.3.
Since for the set B1(i) at most 1 + pn,dl different values are possible, we have that

|W | ≤ d(1 + pn,dl)ψ(1) + d.
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By Lemma 3.4,

ψ(1) < (p3
n,d + pn,d)ψ(3) < (p3

n,d + pn,d)2ψ(9) < · · · < (p3
n,d + pn,d)�log3 pn,d�ψ(pn,d)

≤ (p3
n,d + pn,d)�log3 pn,d�pn,dd.

Take pn,d = 4nd− 1 to get

|W | < 45+3 log3 4l(nd)3 log3(nd)+(5+6 log3 4)d2.

This implies the assertion of Theorem 1.15.
The proof of Theorem 1.17 is completed similarly but instead of the sequence

a0 = 3�log3 pn,d�, a1 = 3�log3 pn,d�−1, . . . , a�log3 pn,d� = 1

we must consider the sequence

a0 = 2�log2 pn,d�, a1 = 2�log2 pn,d�−1, . . . , a�log2 pn,d� = 1.

4. An Estimate for the Essential Height

In this section, we proceed with the proof of the main theorem 1.12. In passing, we prove Theo-
rem 1.19. We consider positions of letters in the word W as the time axis, that is, a subword u occurs
before a subword v if u is entirely to the left from v in W .

4.1. Isolation of Distinct Periodical Fragments in the Word W . Let s denote the number of
subwords in W such that each of them includes a period of length less than n more than 2n times and
each pair of them is separated by subwords of length greater than n, comparable with the preceding
period. Enumerate these from the beginning to the end of the word: x2n

1 , x2n
2 , . . . , x2n

s . Thus, W =
y0x

2n
1 y1x

2n
2 · · ·x2n

s ys.
If there is i such that the word xi has length not less than n, then the word x2

i includes n pairwise
comparable tails, hence the word x2n

i is n-divisible. Then s is not less than the essential height of W over
the set of words of length less than n.

Definition 4.1. A word u will be called noncyclic if u is not representable in the form vk, where k > 1.

Definition 4.2. A word cycle u is the set consisting of the word u and all its cyclic shifts.

Definition 4.3. A cycle word u is the cycle of the letters of the word u, where we mean that the first
letter of u is after the last letter of u.

Definition 4.4. If any cyclic shifts of words u and v are comparable, then these words are called strongly
comparable or s-comparable. Strong comparability of word cycles and cycle words is defined similarly.

Later we will use a bijection between cycle words and word cycles.

Definition 4.5. A word is strongly n-divisible or n-s-divisible over a set of words Z if it can be adduced
as W = W0W1 · · ·Wn, where the subwords W1, . . . ,Wn are in decreasing lexicographical order and every
word Wi, i = 1, 2, . . . , n, begins from a word zk

i . The words zi are distinct and belong Z.

Lemma 4.6. If there is an integer m, 1 ≤ m < n, such that there exist 2n − 1 pairwise incomparable
words of length m: xi1 , . . . , xi2n−1, then W is n-divisible.

Proof. Put x := xi1 . Then W includes disjoint subwords xp1v′1, . . . , xp2n−1v′2n−1, where p1, . . . , p2n−1 are
positive integers greater than n, and v′1, . . . , v′2n−1 are words of length m comparable with x, v′1 = vi1 .
Hence among the words v′1, . . . , v′2n−1 either there are n words lexicographically greater than x or there are
n words lexicographically smaller than x. We may assume that v′1, . . . , v′n are lexicographically greater
than x. Then W includes subwords v′1, xv′2, . . . , xn−1v′n, which lexicographically decrease from left to
right.
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Consider an integer m, 1 ≤ m < n. Divide all xi of length m into equivalence classes relative to
strong incomparability and choose a single representative from each class. Let these be xi1 , . . . , xi′s , where
s′ is a positive integer. Since the subwords xi are periods, we consider them as word cycles.

Notation 4.7. vk := xik
Let v(k, i), where i is a positive integer, 1 ≤ i ≤ m, be a cyclic shift of a word vk by k−1 positions to

the right, that is, v(k, 1) = vk and the first letter of v(k, 2) is the second letter of vk. Thus, {v(k, i)}m
i=1

is a word cycle of vk. Note that for any 1 ≤ i1, i2 ≤ p, 1 ≤ j1, j2 ≤ m the word v(i1, j1) is strongly
incomparable with v(i2, j2).

Remark 4.8. The cases m = 2, 3, n− 1 were considered in [22,23].

4.2. An Application of Dilworth Theorem. Consider a set Ω′ = {v(i, j)}, where 1 ≤ i ≤ p,
1 ≤ j ≤ m. Order the words v(i, j) as follows: v(i1, j1) � v(i2, j2) if

(1) v(i1, j1) > v(i2, j2);
(2) i1 > i2.

Lemma 4.9. If in the set Ω′ with ordering � there exists an antichain of length n, then W is n-divisible.

Proof. Suppose that there exists an antichain of length n consisting of words v(i1, j1), v(i2, j2), . . . ,
v(in, jn); here i1 ≤ i2 ≤ · · · ≤ in. If all inequalities between ik are strict, then W is n-divisible by
definition.

Suppose that for some r there exist ir+1 = · · · = ir+k such that either r = 0 or ir < ir+1. Moreover,
the positive integer k is such that either k = n− r or ir+k < ir+k+1.

The word sir+1 is periodical, hence it is representable as a product of n copies of v2
ir+1

. The word v2
ir+1

includes a word cycle vir+1 . Hence in sir+1 there exist disjoint subwords placed in lexicographically
decreasing order and equal to v(ir+1, jr+1), . . . , v(ir+k, jr+k), respectively. Similarly we deal with all sets
of equal indices in the sequence {ir}n

r=1. The result is the n-divisibility of W . A contradiction.

Thus, Ω′ can be divided into n− 1 chains.

Notation 4.10. Put qn = (n− 1).

4.3. The Sets Cα(i), the Process at Positions. Paint the first letters of the words from Ω′ in qn colors
according to their occurrence in chains. Paint also the integers from 1 to |Ω′| in the corresponding colors.
Fix a positive integer α ≤ m. To each integer i from 1 to |Ω′|, attach an ordered set Cα(i) of qn words in
the following way. For each j = 1, 2, . . . , qn put

f(i, j) = {max f ≤ i : there exists k such that v(f, k) is painted in color j

and the α-tail beginning from f consists only of letters initial in some tails from Ω′}.
If there is no such f , then a word from Cα(i) is assumed to be equal to θ, otherwise we assume it to be
equal to the α-tail of v(f, k).

Notation 4.11. Set

φ(a) = {max k : for some i we have Ca(i) = Ca(i+ k − 1)}.
For a given a ≤ m define a division of the sequence of word cycles {i} in W into equivalence classes as
follows: i �a j if Ca(i) = Ca(j).

Note that the above construction is rather similar to the construction from the proof of Theorem 1.15.
Observe that Ba(i) and Ca(i) are rather similar as well as ψ(a) and φ(a).

Lemma 4.12. φ(m) ≤ qn/m.
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Proof. In Notation 4.7, we have enumerated word cycles. Consider the word cycles with numbers
i, i+ 1, . . . , i + [qn/m]. We have shown that each word cycle consists of m distinct words. Now con-
sider words in the word cycles i, i+1, . . . , i+[qn/m] as elements of the set Ω′. Then the first letter in each
word cycle gets some position. The total number of the positions in question is not less than n. Hence at
least two of these positions are of the same color. Now strong incomparability of word cycles implies the
assertion of the lemma.

Proposition 4.13. For any positive integers a < b we have φ(a) ≤ φ(b).

Lemma 4.14 (basic). For positive integers a and k such that ak ≤ m, we have

φ(a) ≤ pk
n,dφ(k · a).

Proof. Consider the minimal representative in each class of �k·a. We get a sequence of positions {ij}.
Now consider all ij and Ck·a(ij) from the same equivalence class of �a. Suppose it consists of Ck·a(ij) for
ij ∈ [b, c). Let {ij}′ denote the segment of the sequence {ij} such that ij ∈ [b, c).

Fix a positive integer r, 1 ≤ r ≤ qn. All k · a-beginnings of color r that begin from positions of W
in {ij}′ will be called representatives of type r. All representatives of type r are distinct because they begin
at the least positions in equivalence classes of �k·a. Divide each representative of type r into k segments
of length a. Enumerate the segments of each representative of type r from left to right by integers from 0
to k − 1. If there exist qn + 1 representatives of type r with the same first t − 1 segments but pairwise
different tth segments where 1 ≤ t ≤ k − 1, then there are two tth segments such that their first letters
are of the same color. Then the initial positions of these segments belong to different equivalence classes
of �a.

Now apply Lemma 3.1 in the following way: in all representatives of type r except the rightmost
one, we consider a segment as a unit segment if it contains the least position where this representative of
type r differs from the preceding one. All other segments are considered as zero segments.

Now we can apply the process lemma for the values of parameters as given in the condition of the
lemma. We obtain that the sequence {ij}′ contains not more than qk−1

n representatives of type r. Then
the sequence {ij}′ contains at most qk

n terms. Thus, c− b ≤ qk
nφ(k · a).

4.4. Completion of the Proof of Theorem 1.19. Suppose that

a0 = 3�log3 pn,d�, a1 = 3�log3 pn,d�−1, . . . , a�log3 pn,d� = 1.

Substitute these ai into Lemmas 4.14 and 4.12 to obtain

φ(1) ≤ q3nφ(3) ≤ q9nφ(9) ≤ · · · ≤ q
3�log3 m�
n φ(m) ≤ q

3�log3 m�+1
n .

Since C1
i takes at most 1 + qnl distinct values, we have

|Ω′| < q
3�log3 m�+1
n (1 + qnl) < n3�log3 n�+2l.

By virtue of Lemma 4.6, the number of subwords xi of length m is less than 2n3�log3 n�+3l. Thus, the
total number of subwords xi is less than 2n3�log3 n�+4l. So s < 2n3�log3 n�+4l and Theorem 1.19 is proved.

5. Proof of the Main Theorem 1.12 and of Theorem 1.14

5.1. Outline of the Proof. Now an n-divisible word will mean a word that is n-divisible in the ordinary
sense. To start with, we find the necessary number of fragments in W with length of the period not less
than 2n. For this, it suffices to divide W into subwords of large length and to apply Theorem 1.15 to them.
However, the estimate can be improved. For this, we find a periodical fragment u1 in W with period
length not less than 4n. Removing u1, we obtain a word W1. In W1, we find a fragment u2 with period
length not less than 4n and remove it to get a word W2. Now we again remove a periodical fragment and
proceed in this way, as is described in Algorithm 5.2 in more detail. Then we restore the original word W ,
using the removed fragments. Further we show that a subword ui in W usually is not a product of a big
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number of not neighboring subwords. In Lemma 5.4, we prove that application of Algorithm 5.2 enables
one to find the necessary number of removed subwords of W with period length not less than 2n.

5.2. Summing up of Essential Heights and Nilpotency Degrees.

Notation 5.1. Let Ht(w) denote the height of a word w over the set of words of degree not exceeding n.

Consider a word W of height Ht(W ) > Φ(n, l). Apply the following algorithm to it.

Algorithm 5.2.
Step 1. By Theorem 1.15, the word W includes a subword with period length 4n. Suppose that

W0 = W = u′1x4n
1′ y

′
1, where the word x1′ is not cyclic. Represent y′1 in the form y′1 = xr2

1′ y1, where
r2 is maximal possible. Represent u′1 as u′1 = u1x

r1
1′ , where r1 is maximal possible. Denote by f1

the word
W0 = u1x

4n+r1+r2
1′ y1 = u1f1y1.

In the sequel, the positions contained in f1 are called tedious, the last position of u1 is called
tedious of type 1, the second position from the end in u1 is called tedious of type 2, etc., the nth
position from the end in u1 is called tedious of type n. Put W1 = u1y1.

Step k. Consider the words uk−1, yk−1, Wk−1 = uk−1yk−1 constructed at the preceding step. If
|Wk−1| ≥ Φ(n, l), then we apply Theorem 1.15 to W with the restriction that the process in the
main lemma 3.4 is applied only to nontedious positions and to tedious positions of type greater
than ka, where k and a are the parameters from Lemma 3.4. Thus, Wk−1 includes a noncyclic
subword with period length 4n such that

Wk−1 = u′kx
4n
k′ y′k.

Then put
r1 := sup{r : u′k = ukx

r
k′}, r2 := sup{r : y′k = xr

k′yk}.
(Note that the words involved may be empty.) Define fk by the equation

Wk−1 = ukx
4n+r1+r2
k′ yk = ukfkyk.

In the sequel, the positions contained in fk are called tedious, the last position in uk is tedious of
type 1, the second position from the end in uk is tedious of type 2, etc., the nth position from the
end in uk is tedious of type n. If a position happens to be tedious of two types, then the lesser
type is chosen for it. Put Wk = ukyk.

Notation 5.3. Perform 4t+1 steps of Algorithm 5.2 and consider the original word W . For each integer i
from the segment [1, 4t] we have

W = w0f
(1)
i w1f

(2)
i · · · f (ni)

i wni

for some subwords wj . Here fi = f
(1)
i · · · f (ni)

i . Moreover, we assume that for 1 ≤ j ≤ ni − 1 the
subword wj is not empty. Let s(k) be the number of indices i ∈ [1, 4t] such that ni = k.

To prove Theorem 1.15, we must find as many long periodic fragments as possible. For this, we can
use the following lemma.

Lemma 5.4. s = s(1) + s(2) ≥ 2t.

Proof. A subword U of the word W will be called monolithic if

(1) U is a product of words of the form f
(j)
i ;

(2) U is not a proper subword of a word that satisfies the above condition.
Suppose that after the (i−1)th step of Algorithm 5.2 the word W includes ki−1 monolithic subwords.

Note that ki ≤ ki−1 − ni + 2. Thus, if ni ≥ 3, then ki ≤ ki−1 − 1. If ni ≤ 2, then ki ≤ ki−1 + 1.
Furthermore, k1 = 1 and kt ≥ 1 = k1. The lemma is proved.
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Corollary 5.5.
∞∑

k=1

k · s(k) ≤ 10t ≤ 5s.

Proof. From the proof of Lemma 5.4 we obtain that
∑

ni≥3
(ni − 2) ≤ 2t. By definition,

∞∑
k=1

s(k) = 4t,

i.e.,
∞∑

k=1

2s(k) = 8t. Summing up these two inequalities and applying Lemma 5.4, we obtain the required

inequality.

Proposition 5.6. The height of W does not exceed

Ψ(n, 4n, l) +
∞∑

k=1

k · s(k) ≤ Ψ(n, 4n, l) + 5s.

In the sequel, we consider only fi with ni ≤ 2.

Notation 5.7. If ni = 1, then put f ′i := fi.
If ni = 2, then put f ′i := f

(j)
i , where f (j)

i is the word of maximal length between f (1)
i and f (2)

i .
Order the words f ′i according to their distance from the beginning of W . We get a sequence

f ′m1
, . . . , f ′ms

, where s′ = s(1) + s(2). Put f ′′i := f ′mi
. Suppose that f ′′i = w′

ix
pi′′
i′′ w

′′
i , where at least

one of the words w′
i, w

′′
i is empty.

Remark 5.8. We may assume that at starting steps of Algorithm 5.2 we have chosen all fi such that
ni = 1.

Now consider z′j , the subwords in W of the following form:

z′j = x
p(2j−1)′′+ג

(2j−1)′′ vj , ג ≥ 0, |vj | = |x(2j−1)′′ |.
Here vj is not equal to x(2j−1)′′ and the beginning of z′j coincides with the beginning of a periodic subword
in f ′′2j−1. We will show that z′j are disjoint.

Indeed, if f ′′2j−1 = fm2j−1 , then z′j = fm2j−1vj . If f ′′2j−1 = f
(k)
m2j−1 , k = 1, 2, and z′j intersects z′j+1, then

f ′′2j ⊂ z′i. Since x(2j)′′ and x(2j−1)′′ are not cyclic, we have |x(2j)′′ | = |x(2j−1)′′ |. But then the period length
in z′j is not less than 4n, a contradiction with Remark 5.8.

Thus, we have proved the following lemma.

Lemma 5.9. In a word W with height not greater than Ψ(n, 4n, l) + 5s′, there exist at least s′ disjoint
periodic subwords such that the period occurs in each of them at least 2n times. Furthermore, between
any two elements of this set of periodic subwords there is a subword with the same period length as the
leftmost of these two elements.

5.3. Completion of the Proof of the Main Theorem 1.12 and for Theorem 1.14. Replace s′ in
Lemma 5.9 by s from the proof of Theorem 1.19 to obtain that the height of W does not exceed

Ψ(n, 4n, l) + 5s < E1l · nE2+12 log3 n,

where E1 = 421 log3 4+17, E2 = 30 log3 4 + 10.
Thus, we have obtained the assertion of the main theorem 1.12.
Proof of Theorem 1.14 is completed similarly but we must replace in part 4.4 the sequence

a0 = 3�log3 pn,d�, a1 = 3�log3 pn,d�−1, . . . , a�log3 pn,d� = 1

by the sequence
a0 = 2�log2 pn,d�, a1 = 2�log2 pn,d�−1, . . . , a�log2 pn,d� = 1,

and to take the value of Ψ(n, 4n, l) from Theorem 1.17.
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6. Partial Periodicity Estimates

The represented technique suggests that the given estimate on the height is a little rough and probably
could be improved by a bit more sophisticated combinatorial arguments. Anyway it remains subexpo-
nential. We need to use new ideas and methods to get or refute a polynomial estimate.

At the beginning of the main theorem’s proof we deal with subwords as we deal with independent
objects. After that we assume that positions in subwords are colored. If we only use the colors of the first
positions of the subwords, then we obtain only an exponential estimate. But on the other hand, if we
keep in mind the colors of all positions in the word, then we obtain only an exponential estimate again.
This fact is a consequence of the hierarchic structure of the subwords’ system. Perhaps detailed studying
of relations between subwords lets us upgrade our estimate to polynomial.

It is also of interest to obtain estimates for height of an algebra over a set of words whose degrees
do not exceed the complexity of the algebra (PI-degree in literature in English). The paper [6] presents
exponential estimates, and for words that are not a linear combination of lexicographically smaller words,
overexponential estimates were obtained in [5].

Next we obtain estimates of the number of subwords with period of length 2, 3, n− 1 of an arbitrary
non-n-divisible word W . The case of words of length 2 and 3 is generalized to the proof of the essential
height’s limitation. Moreover, we get the lower estimate of the number of 2-periodical words. This
estimate is less than the upper estimate in four times for l → ∞.

As previously, hereinafter words are constructed over an alphabet A& = {a1, a2, . . . , al}.
6.1. The Proof of Theorem 1.23. Suppose that a word W is not strongly n-divisible. Let an arbitrary
positive integer m be bigger than 2n. Let the set Ω′′ be the set of nonoverlapping cyclic comparable
subwords of the form zm, where z is an acyclic two-letter word and we deal with subwords of the word W .
Elements of the set Ω′′ are called exemplars. We mean that the elements of Ω′′ are the exemplars of
different equivalence classes of strong n-divisibility. Let t be the cardinality of the set Ω′′. Let us number
all exemplars from left to right so the leftmost exemplar has number 1 and the rightmost one has number t.
There are exactly two different two-letter subwords in any exemplar. Order these words as follows: u ≺ v
if

(1) u is lexicographically less than v;
(2) the exemplar that comprises u is to the left from the one that comprises v.
The number of pairwise incomparable cyclic subwords of W is less than n − 1 because W is not

strongly n-divisible. By the Dilworth theorem, there exists a partition of the considered two-letter words
into n− 1 chains. Let us paint the words in the color of the chains these words belong to.

We have a bijection between the following four objects:
(1) positive integers from 1 to t;
(2) equivalence classes of strong comparability;
(3) two-letter word cycles from the equivalence classes of strong comparability;
(4) pairs of colors such that the words of this word cycles are colored in them.
Let us color the first positions of the words of word cycles in the colors of the corresponding words.
Consider a graph Γ with vertices of the form (k, i), where 0 < k < n and 0 < i ≤ l. The first

coordinate complies with a color and the second one complies with a letter. Two vertices (k1, i1), (k2, i2)
are connected by an edge of weight j if

(1) there are letters i1 and i2 in the jth exemplar;
(2) these letters are colored in the colors k1 and k2, respectively.
Let us deal with the set Ek1,k2 of edges between the vertices of the forms (k1, i1) and (k2, i2), where

the numbers k1 and k2 are fixed and the numbers i1 and i2 are arbitrary. Consider two edges l1 and l2
of weight j1 < j2, respectively, which connect vertices A = (k1, i11), B = (k2, i21) and C = (k1, i12),
D = (k2, i22), respectively. Then it is true that i11 ≤ i12 and i21 ≤ i22 . Since we deal with exemplars
of different equivalence classes of the strong n-divisibility, one of these inequalities is strict. That is why
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i11 + i21 < i12 + i22 . Since the second coordinates of vertices are less than l+ 1, the cardinality of the set
Ek1,k2 is less than 2l.

Since the first coordinate of the vertices is less than n, the number of edges in the graph is no more
than (2l − 1)(n− 1)(n− 2)/2. Thus, we have obtained Theorem 1.23.

6.2. The Proof of Theorem 1.25. Suppose that a word W is not strongly n-divisible. Let an arbitrary
positive integerm be bigger than 2n. Let the set Ω′′ be a set of nonoverlapping cyclic comparable subwords
of the form zm, where z is an acyclic three-letter word. Elements of the set Ω′′ are called exemplars. We
mean that elements of Ω′′ are exemplars of different equivalence classes of strong n-divisibility. Let t be
the cardinality of the set Ω′′. Let us number all exemplars from left to right so that the leftmost exemplar
has number 1 and the rightmost one has number t. There are exactly three different three-letter subwords
in any exemplar.

Order these words as follows: u ≺ v if
(1) u is lexicographically less than v;
(2) the exemplar that comprises u is to the left from the one that comprises v.
The number of pairwise incomparable cyclic subwords of W is less than n − 1 because the word W

is not strongly n-divisible. By the Dilworth theorem, there exists a partition into n − 1 chains of the
considered three-letter words. Let us paint the words in the color of the chains these words belong to.

One can see that the proof of Theorem 1.25 almost coincides with the proof of Theorem 1.23. But it
is necessary to introduce an oriented analog of the graph Γ.

Consider an oriented graph G with vertices of the form (k, i), where 0 < k < n and 0 < i ≤ l. The
first coordinate complies with a color and the second one complies with a letter. The edge of weight j
goes from vertex (k1, i1) to the vertex (k2, i2) if for some i3 and k3

(1) there is a cycle word i1i2i3 in the jth exemplar;
(2) the letters i1, i2, and i3 are colored in the colors k1, k2, and k3, respectively.
So the graph G consists of oriented triangles with edges of the same weight. In contradistinction to

the graph Γ, there may be multiple edges in the graph G. For the further exposition we need the following
lemma.

Lemma 6.1 (basic). Let j be some positive integer. Suppose that A, B, and C are vertices of the graph G,
and A → B → C → A is an oriented triangle with edges of the same weight j. Moreover, suppose that
there exist other edges A → B, B → C, and C → A of weight a, b, and c, respectively. Then one of the
numbers a, b, c is bigger than j.

Proof. Suppose the contrary. Suppose that a = b = c. Then there exist two triangles A → B → C → A
such that the edges are of the same weight in any one of them. Then there are two non-s-comparable
words in Ω′′. A contradiction. If two numbers from the set {a, b, c} are equal to each other, then a = b = c.
That is why a, b, and c are different numbers. Let a be the biggest one of them. Consider the triangle
with edges of weight a. This triangle contains vertices A and B and some third vertex C ′. If the second
coordinates of the vertices C and C ′ are equal, then ABC and ABC ′ correspond to non-s-comparable
words from the set Ω′′. A contradiction. a < j by assumption. Words that are colored in kA (the first
coordinate of vertex A) are monotonous. So the word iAiBiC′ , which is built from the second coordinates
of the vertices A, B, C ′, is lexicographically less than iAiBiC . That is why iC′ < iC . Then the word iBiC′

is lexicographically less than the word iBiC . As words that are colored in kB are monotonous, then b > a.
A contradiction.

Let us finish the proof of Theorem 1.25. Consider a graph G1, which is built from the graph G by
replacing any multiple edge by the edge of least weight. By Lemma 6.1, there exist edges of all weights
from 1 to t in the graph G1.

Let us deal with the set Ek1,k2 of edges between the vertices of the forms (k1, i1) and (k2, i2), where
the numbers k1 and k2 are fixed and the numbers i1 and i2 are arbitrary. Consider two edges from the set
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Ek1,k2 of weight j1 < j2 with ends in some vertices (k1, i11), (k2, i21) and (k1, i12), (k2, i22), respectively.
Then i11 ≤ i12 and i21 ≤ i22 . Since we deal with the exemplars of different equivalence classes of the
strong n-divisibility, one of these inequalities is strict. Since the second coordinates are less than l + 1,
the cardinality of the set Ek1,k2 is less than 2l.

As the first coordinate of the vertices is less than n, we see that the number of edges in the graph is
no more than (2l − 1)(n− 1)(n− 2). Thus, we have obtained Theorem 1.25.

6.3. The Proof of Theorem 1.26. Suppose that a word W is not strongly n-divisible. As before,
let an arbitrary positive integer m be bigger than 2n. Let a set Ω′′ be a set of nonoverlapping cyclic
comparable subwords of the form zm, where z is an acyclic (n−1)-letter word. Elements of the set Ω′′ are
called exemplars. We mean that elements of Ω′′ are exemplars of different equivalence classes of strong
n-divisibility. Let t be the cardinality of the set Ω′′. Let us number all exemplars from left to right so the
leftmost exemplar has number 1 and the rightmost one has number t. There are exactly n − 1 different
(n− 1)-letter subwords in any exemplar.

Order these words as follows: u ≺ v if

(1) u is lexicographically less than v;
(2) the exemplar that comprises u is to the left from the one that comprises v.

The number of pairwise incomparable cyclic subwords of W is less than n − 1 because the word W
is not strongly n-divisible. By the Dilworth theorem, there exists a partition into n − 1 chains of the
considered (n− 1)-letter words. Let us paint the words in the color of the chains these words belong to.
Let us paint the first positions of words in the same colors as the respective words.

Consider an oriented graph G with vertices of the form (k, i), where 0 < k < n and 0 < i ≤ l. The
first coordinate means a color and the second coordinate means a letter.

An edge of some weight j goes from (k1, i1) to (k2, i2) if

(1) there is a word cycle i1i2 · · · in−1 for some i3, i4, . . . , in−1 in the jth exemplar;
(2) the colors of positions of letters i1 and i2 are k1 and k2, respectively.

So the graph G consists of oriented cycles of length n−1. The edges of any such cycle are of the same
weight. Now we need an indicator that grows monotonically with the apparition of the new exemplars
when we move from the beginning to the end of the word. Such an indicator is the number of pairs of
connected vertices of graph G in the proof of Theorem 1.25. This indicator is the sum of the second
coordinates of the nonisolated vertices of graph G in the current proof.

We need the following lemma.

Lemma 6.2 (basic). Let j be some positive integer. Suppose that A1, A2, . . . , An−1 are vertices of the
graph G and A1 → A2 → · · · → An−1 → A1 is an oriented cycle of length n − 1 with edges of weight j.
Then there is no any other cycle of the same weight between vertices A1, A2, . . . , An−1.

Proof. Suppose the contrary. Consider the least positive integer j for which we can find another mono-
chrome cycle between the vertices of the cycle of color j. Since j is the least, it can be considered
that the color of this cycle is k > j. Let the cycle of color k have the form Aj1 , Aj2 , . . . , Ajn−1 ,
where {jp}n−1

p=1 = {1, 2, . . . , n − 1}. Let (kj , ij) be the coordinate of the vertex Aj . Consider the
smallest number q ∈ N such that for some integer r the word ijr ijr+1 · · · ijr+q−1 is lexicographically
bigger than the word ijr ijr+1 · · · ijr+q−1 (now and later we mean addition modulo n − 1). Such q ex-
ists because the words i1i2 · · · in−1 and ij1ij2 · · · ijn−1 are strongly comparable. The sets {jp}n−1

p=1 and
{1, 2, . . . , n − 1} are equal so q ≥ 2. Since q is the smallest, for any s < q and for any r it is true that
ijr ijr+1 · · · ijr+s−1 = ijr ijr+1 · · · ijr+s−1. So for any s < q and for any r the equality ijr+s−1 = ijr+s−1 is
true. The sequence of words of any color is monotonous, so for any r the word ijr ijr+1 · · · ijr+q−1 is no more
than the word ijr ijr+1 · · · ijr+q−1. So the inequality ijr+q−1 ≥ ijr+q−1 is true for any r. By assumption,
there exists r such that ijr+q−1 > ijr+q−1. Since both sequences {jr+q−1}n−1

r=1 and {jr + q − 1}n−1
r=1 run
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through the set {1, 2, . . . , n − 1} for one time,
n−1∑
r=1

jr+q−1 =
n−1∑
r=1

(jr + q − 1). But we got the equality
n−1∑
r=1

jr+q−1 >
n−1∑
r=1

(jr + q − 1). A contradiction.

Let us finish the proof of Theorem 1.26. Consider cycles of length n − 1 of weight k and j + 1 for
some j. By the basic lemma 6.2, there exist numbers k and i such that the vertex (k, i) belongs to the
cycle of weight j + 1 but does not belong to the cycle of weight j. Let the cycle of weight j consist of

vertices of the form (k, i(j,k)), where k = 1, 2, . . . , n − 1. Let us introduce an indicator π(j) =
n−1∑
k=1

i(j,k).

Then by the main lemma 6.2 and by the monotony of sequences of the same colored words the inequality
π(j+1) ≥ π(j)+1 is true. Since we deal with noncyclic words, there exists an integer k such that i(1,k) > 1.
So π(1) > n− 1. π(j) ≤ (l − 1)(n− 1) because for all j i(j,k) ≤ l − 1. That is why j ≤ (l − 2)(n− 1). So
t ≤ (l − 2)(n− 1). Thus, we obtain Theorem 1.26.

6.4. The Proof of Theorem 1.24. Let us present an example. We can assume that l is arbitrarily
large. We assume that l > 2n−1. We use constructions from the proof of Theorem 1.23. So the process
of building an example is the same as building edges in a graph with l vertices. We divide this process
into a few big steps. Let i be a positive integer from 1 to l − 2n−1. Let the following pairs of vertices be
connected in the following order during the ith big step:

(i, 2n−2 + i), (i, 2n−2 + 2n−3 + i), (2n−2 + i, 2n−2 + 2n−3 + i),

(i, 2n−2 + 2n−3 + 2n−4 + i), (2n−2 + i, 2n−2 + 2n−3 + 2n−4 + i),

(2n−2 + 2n−3 + i, 2n−2 + 2n−3 + 2n−4 + i), . . . ,

(i, 2n−2 + · · · + 2 + 1 + i), . . . , (2n−2 + · · · + 2 + i, 2n−2 + · · · + 2 + 1 + i).

Herewith no edge is counted twice. That is why any vertex is connected only with vertices that differ
from the selected vertex by a nonrecurring sum of powers of 2.

A vertex A is called a vertex of the form (k, i) if it is connected with k vertices of less value during
the ith big step. For all i there exist vertices of the forms (0, i), (1, i), . . . , (n− 2, i).

Consider words that begin from the letter corresponding to the vertex of the form (k, i). If such words
end with the letter that connects with (k, i) during the ith big step, then we color them in i. We have
correct coloring in n− 1 color so the word is n-divisible.

We build (n− 2)(n− 3)/2 edges during the ith big step. So, q = (l− 2n−1)(n− 2)(n− 3)/2, where q
is the number of edges in Γ. Thus, we obtained Theorem 1.24.

6.5. Estimating the Essential Height Using Theorem 1.24. We can obtain an exponential estimate
of the essential height dealing with the case of words of degree 2. This estimate has polynomial growth
when the degree of PI-identity is fixed and exponential growth when the number of generators is fixed.
For this purpose we generalize some definitions that were introduced before. Hereinafter we use a bijection
between word cycles and cycle words.

Construction 6.3. Consider an alphabet A& from letters {a1, a2, . . . , al}. Let us introduce a lexicograph-
ical order on them: ai > aj if i > j. Consider any set of noncyclic pairwise strongly comparable word
cycles of the same degree t. Let us enumerate the elements of this set by positive integers from 1. Order
the words in word cycles as follows: u ≺ v if

(1) the word u is lexicographically less than the word v;
(2) the word cycle that contains the word u has smaller number than the word cycle that contains v.
Let us enumerate positions of letters in cycle words in numbers from 1 to t from the beginning to the

end of some word from the respective word cycle.
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Notation 6.4.
(1) Let w(i, j) be a word degree t that begins from the jth position in the ith word cycle.
(2) Let a class X(t, l) be the considered set of word cycles with order ≺.

Definition 6.5. We say that a class X is called n-light if it does not contain any antichain of length n.
A class X is called n-dark if it contains an antichain of length n.

By the Dilworth theorem, the words in n-light classes can be colored in n − 1 colors so that the
sequence of monochrome colors is a chain. Then we need to estimate the number of elements in n-light
classes X.

Definition 6.6. The maximal possible number of elements in n-light class X(t, l) is denoted by �(t, l, n).

Remark 6.7. Hereinafter the first argument of the function �(·, ·, ·) is less than the third one.

The following lemma lets us estimate �(t, l, n) using the cases of small periods.

Lemma 6.8. �(t, l2, n) ≥ �(2t, l, n).

Proof. Consider an n-light class X(2t, l). Let us divide positions in all word cycles of X(2t, l) into pairs
of neighbors so that any position is exactly in one pair. Consider an alphabet B& = {bi,j}l

i,j=1, where
bi1,j1 > bi2,j2 if i1 · l+ j1 > i2 · l+ j2. The alphabet B& consists of l2 letters. Every pair from the partition
consists of some letters ai, aj . Let us replace such a pair of letters ai, aj by the letter bi,j . If we make this
replacement for all pairs from the partition, then we get a new class X(t, l2). Suppose that there exists
an antichain of length n from words w(i1, j1), w(i2, j2), . . . , w(in, jn) in the class X(t, l2). Let us consider
preimages of the words w(i1, j1), w(i2, j2), . . . , w(in, jn) in the original class X(2t, l). Let these preimages
be w(i1, j′1), w(i2, j′2), . . . , w(in, j′n), respectively. Then the sequence w(i1, j′1), w(i2, j′2), . . . , w(in, j′n) is an
antichain of length n in the class X(2t, l). A contradiction. So the class X(t, l2) is n-light. Thus, we have
proved the lemma.

Let us estimate �(t, l, n) using the cases of the small periods.

Lemma 6.9. �(t, l2, n) ≤ �(2t, l, 2n− 1).

Proof. Consider a (2n− 1)-dark class X(2t, l). We may assume that n words in the antichain begin from
the odd positions of word cycles. Let these n words be w(i1, j1), w(i2, j2), . . . , w(in, jn). Let us divide
positions in the word cycles of X(2t, l) into pairs of neighbors so that every position is exactly in one pair
and the first position in every pair is odd. Then consider an alphabet B& = {bi,j}l

i,j=1. Order the letters
of this alphabet as follows: bi1,j1 > bi2,j2 if i1 · l+ j1 > i2 · l+ j2. B& consists of l2 letters. Every pair from
the partition consists of some letters ai, aj . Let us replace such a pair of letters ai, aj by the letter bi,j .
If we make this replacement for all pairs from the partition, then we get a new class X(t, l2). Let the
words w(i1, j1), w(i2, j2), . . . , w(in, jn) map into words w(i1, j′1), w(i2, j′2), . . . , w(in, j′n). The sequence of
these words is an antichain of length n in the class X(t, l2). So we get the n-dark class X(t, l2) with the
same cardinality as the (2n− 1)-dark class X(2t, l). Thus, we have proved the lemma.

Now we need to connect �(t, l, n) for any first argument and for the first argument that is equal to
a power of 2.

Lemma 6.10. �(t, l, n) ≤ �(2s, l + 1, 2s(n− 1) + 1), where s = �log2(t)�.
Proof. Consider an n-light class X(t, l). Let us add a new letter a0 to the alphabet A& . Let a0 be less than
any other letter from A& . So we have the new alphabet A&

′. Let us add the (t + 1)th, (t + 2)th, . . . , 2sth
position to any word cycle from the class X(t, l) and put the letter a0 on these positions. So we get a new
class X(2s, l + 1). Suppose that it is not (2s(n− 1) + 1)-light. Then for some j there exist a sequence of
words w(i1, j), w(i2, j), . . . , w(in, j), which is an antichain in the class X(2s, l + 1). So

(1) if j > t, then the sequence w(i1, 1), w(i2, 1), . . . , w(in, 1) is an antichain in the class X(t, l);
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(2) if j ≤ t, then the sequence w(i1, j), w(i2, j), . . . , w(in, j) is an antichain in the class X(t, l).
So we obtained a contradiction with the assumption that the class X(t, l) is n-light. Thus, the lemma is
proved.

Proposition 6.11. �(t, l, n) ≤ �(t, l, n+ 1).

By Lemma 6.10, we get that �(t, l, n) ≤ �(2s, l+1, 2s(n−1)+1), where s = �log2(t)�. By Notation 6.7,
we get that t < n. So 2s < 2n. Therefore,

�(2s, l + 1, 2s(n− 1) + 1) ≤ �(2s, l + 1, 2n2).

By Lemma 6.8, the inequalities

�(2s, l + 1, 2n2) ≤ �(2s−1, (l + 1)2, 2n2) ≤ �(2s−2, (l + 1)2
2
, 2n2)

≤ �(2s−3, (l + 1)2
3
, 2n2) ≤ · · · ≤ �(2, (l + 1)2

s−1
, 2n2)

are true. By Theorem 1.23, we get that

�(2, (l + 1)2
s−1
, 2n2) < (l + 1)2

s−1 · 4n4 < 4(l + 1)nn4.

So we proved the following lemma.

Lemma 6.12. �(t, l, n) < 4(l + 1)nn4.

We need to estimate the number of subwords with the same periods of non-n-divisible words to use
Lemma 6.12 in the proof of Theorem 1.27.

Lemma 6.13. If in any word W there exist 2n−1 subwords such that a period repeats more than n times in
every this subword, then their periods are pairwise non-s-comparable words and the word W is n-divisible.

Proof. Suppose that there exist 2n−1 subwords such that a period repeats more than n times in every such
subword in some word W . Let x be one of the periods of these words. Then there exist nonoverlapping
subwords xp1v′1, . . . , xp2n−1v′2n−1 that are comparable with the word x, where p1, . . . , p2n−1 are some
positive integers that are bigger than n and the words v′1, . . . , v′2n−1 are of length |x|. Then there exist
n words from the set {v′1, . . . , v′2n−1} such that they are either n lexicographically greater than or n
lexicographically less than x. We may assume that the words v′1, . . . , v′n are lexicographically greater
than x. Then there exist subwords v′1, xv′2, . . . , xn−1v′n, which are placed in lexicographically decreasing
order. Thus, the lemma is obtained.

From this lemma, we obtain Corollary 1.28.
Consider a non-n-divisible word W . Suppose that it contains such a subword that this subword

contains some acyclic period x of length no less than n that repeats for more than 2n times. Then tails
of x2 that begin from the first, second,. . . , nth positions are pairwise comparable. So the word x2n is
n-divisible. We obtained a contradiction with non-n-divisibility of the word W . By Lemmas 6.13 and 6.12,
we obtain that the essential height of the word W is less than

(2n− 1)
n−1∑

t=1

�(t, l, n) < 8(l + 1)nn5(n− 1).

So Υ(n, l) < 8(l + 1)nn5(n− 1). Thus, we obtain Theorem 1.27.
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