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Introduction

The origin of irregular satellites of the giant planets has been dis-
cussed for long period. And now there is no doubt that these satel-
lites were capture. We have no time and possibilities to give the
review of all the models of capturing process, but it is possible to
point out the following main approaches:
• Collisional capture scenario developed by F. Marzari and
collegues

• The model of quasi-satellite capture investigated by L. Zelenyi,
A. Neishtadt, V. Sidorenko

• The model of temporary capture based on stickiness
phenomenon opened by G. Contopoulos
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The aim of the talk

The aim of the talk is to demonstrate the presence of stickiness
phenomenon in one of the most simple celestial mechanical model —
Hill problem, and to discuss the application of the problem to outer
satellites of the giant planets.
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Stickiness phenomenon

,150.515

,437.938

,051.856 ,253.608

Standard Map, k = 4,750

Standart Map example
The picture demonstrate many it-
erations of points with different
behavior: regular and chaotic.

Definition
The stickiness is a temporary con-
centration of chaotic orbits in par-
ticular region of the phase space.

The first example of stickiness
phenomenon was proposed by G.
Contopoulos in 1971. It was called
by Karney in 1983 and was investi-
gated in many works till last 30-ty
years.
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Types of stickiness

Two types of stickiness are distinguished now:
• Stickiness around an island of stability or near the last
invariant torus

• Stickiness near the asymptotic curve of unstable periodic
solution which can extend into the region of chaotic motion

The most interesting stickiness effects around an island of stability
appear when the last invariant curve surrounding the island is de-
stroyed, as the perturbation increases. Then a new last invariant
curve is formed closer to the center of the island and the former
last invariant curve becomes a cantorus with infinite holes. Orbits
between this cantorus and the new last invariant curve stay for some
time in this region before they escape into the chaotic sea.
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Cantori
It is a well known fact (C. Efthymiopoulos et al. CM&DA, 73:
221-230, 1999) that stickiness phenomenon occures due to the
presence of so called cantori which are the remain parts of the
invariant tori.
Invariant torus of the map is destroyed by the perturbation and
form the Cantor sets of points on the section surface.

Definition
Cantorus is an invariant set consisting of infinite points but these
points don’t form continuos line and leave small gaps.
The rotation number of cantorus is equal to the rotation number of
the corresponding invariant torus and thus it is possible to approxi-
mate this cantorus with resonances of suitable multiplicity.
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Cantori and temporary capture

Partial barrier
A cantorus forms only a partial barrier to chaotic orbits which can
penetrate into and abandon the vicinity of the last invariant torus
passing through the gaps of the cantorus. Such a behavior of sticky
orbits may be used for the explanation of temporary capture phe-
nomenon. G. Zaslavsky, who worked in IKI, investigated such cases.
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Chaotic flux minimization

Noble numbers
The rotation number ω of an invariant torus is defined by the con-
tinuous fraction:

ω = a0 +
1

a1 +
1

a2 + . . .

= [a0, a1, a2, . . .], where ai ∈ N.

Rotation number whose continued fraction has an infinite tail of 1’s
is called noble number.

The most robust invariant tori
Invariant tori with the noble rotation number are locally the most
robust tori which create rather stiff obstacles to chaotic orbits and
by that minimize chaotic flux (see R.S. MacKay et al. Nonlinearity,
5:867-888,1992)
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Cantorus approximation

Each invariant torus may be approximated with the resonances (peri-
odical orbits) with suitable multiplicity. Cantorus with noble rotation
number ω = [a0, a1, . . . ,1,1,1, . . .] is approximated with resonances
which multiplicity form the sequence of so called Farey fractions.

E.g. for rotation number ω = (
√

5 − 1)/2 = [0,1,1, . . .] one can
obtain the sequence:
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Boundary Islands

Another reason of chaotic flux minimization is boundary islands

Boundary islands surround the sta-
bility area of periodic orbit. Pa-
rameter change leads to appear-
ance of resonant islands chain out
of stability area.

The figure demonstrate the ap-
pearance of boundary islands for
the standard map with control pa-
rameter K = 0.70.
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-,051.546
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,323.454 ,460.052

Standard Map, k = ,70
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From quasi-capture to capture

We considered the basic mechanisms of stickiness phenomenon in
Hamiltonian systems with two degrees of freedom. The presence of
integral of energy makes possible only temporary capture for nondis-
sipative systems. Due to the time-reversal symmetry of equations of
motion one can state that sticky trajectories have penetrated earlier
into the stickiness region and stay there for a long time.
In real planet systems one has to take into account many other factors
that may transform temporary capture to total capture (e. g. tidal
forces, presence of protoatmosphere and so on).
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Hill problem

Planar Hill problem is a celestial mechanics model being a limit case
of the well known restricted three body problem.

Q1

Q2

@C
µµ ´ 1

L

0

Restricted three-body problem

x1

x2

C
L

0 L1L2

@ Ñ p`8, 0q

Hill problem
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Hill problem contibutor

It has a lot of applications and originally was proposed by George Hill
for the Moon motion theory.The significant contribution in studying
periodic solutions of the Hill problem was provided by Prof. Michel
Hénon.

George Hill
Michel Hénon
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Hierarchy of celestial mechanics problems
N -body problem

Kepler problem 3-body problem

Restricted 3-body problem (RTBP)

Circular RTBP

Copenhagen problem Hill problem (HP)

Hénon problem

Elliptic RTBP

Elliptic HP
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Hill problem Hamiltonian

H =
1

2

(
y21 + y22

)
+ x2y1 − x1y2 +

1

2

(
x21 + x22

)
−3

2
x21 +

1

r

• Kinetic energy

• Potential of Coriolis forces

• Potential of centrifugal force

• Gravitational potential of the Sun

• Potential of the central body
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Regions of possible motion

The canonical equations of Hill problem Hamiltonian has first integral
called Jacobi integral

J = 3x21 − 2/|x| − ẋ21 − ẋ22 = C, C = −2H.

Regions of possible motion (Hill regions)

−1 1
x

−2

−1

1

2
y

L1 L2

1) C = 6.5

−1 1
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−2

−1
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y

L1 L2

2) C = 34/3
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−1 1
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−1

1

2
y

3) C = 4.2
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Hill problem properties

Hill problem has two symmetries of extended phase space given by
linear transformations

Σ1 : (t, x1, x2, y1, y2)→ (−t, x1,−x2,−y1, y2)
Σ2 : (t, x1, x2, y1, y2)→ (−t,−x1, x2, y1,−y2) ,

Σ12 ≡ Σ1 ◦ Σ2 : (t, x1, x2, x1, x2)→ (t,−x1,−x2,−y1,−y2)

• Symmetric periodic orbits of Hill problem can be extended into
the periodic orbits of the restricted three-body problem
(L. Perko)

• Periodic orbits with period T 6= 2π can be extended into orbits
of general three-body problem (K. Meyer)
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Sticky region investigation

The region around the fam-
ily of direct satellite orbits
g′ and the family of retro-
grade orbits f . The struc-
ture of the phase space in
the vicinity of this family
is shown on the figure with
Poincare section of phase
flow with plane y = 0.
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Cantorus with ω = [0,4,1,1, . . .]

The robust cantorus with rotation number ω = [0,4,1,1, . . .] ≈
0.2165423 can be approximated with resonances with such multi-
plicities:

1

4
,
1

5
,
2

9
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3

14
,

5

23
, . . .

Each of resonances mentioned above appears in the vicinity of the
periodic solutions family g′ and its islands of stability move away
from g′ and disappear in chaotic sea.
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For the value C = 4.321 the sticky region was found. It is placed
in the outer space of the last invariant curve and consists of chaotic
trajectories with different time of escape. Many of these orbits make
more then 104 revolutions before escaping into the chaotic sea.
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Natural satellites of the giant planets

The contemporary database of natural satellites of Solar system’s
giant planets were used from the Natural Satellite Data Center of
IMCCE, Paris and SAI, Moscow and from database of NASA JPL.
The main parameters of the satellite orbits such as semi-major axis,
eccentricity and orbit inclination were computed into the correspond-
ing Hill unit of length equals to µ1/3a′, where µ is the ratio of the
mass of the planet to the total mass of Sun and the planet, a′ is the
semi-major axis of the planet’s orbit.
We have checked parameters of 59 Jupiter’s outer satellites, 38 outer
Saturn’s outer satellites, 9 Uranus’ outer satellites and 5 Neptune’s
outer satellites.
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Jupiter satellites distribution
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Saturn satellites distribution
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Results

There was found only one Jupiter’s satellite S/2003 J2, which orbital
motion is near the inner boundary of stability island around the family
f of retrograde satellite orbits.
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