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Abstract
Aims—This paper describes a novel approach to the analysis of electrocardiographic data based
on the consideration of the repetitive P, Q, R, S, T sequences as cyclic codes. In Part I we
introduce a principle similar to the syndrome decoding using the control numbers, which allows
correcting the noise combinations.

Materials and methods—We propose to apply the burst-error-correcting algorithms for
automatic detection of the ECG artifacts and the functional abnormalities, including those
compared to the reference model. Our approach is compared to the symbolic dynamics methods.
During the automated search of the code components (i.e. point values and spectral ranges one-to-
one corresponding to P, Q, R, S, T) considered in Part II, the authors apply the Lomb-Scargle
periodogram method with the phase control which allows to determine the code components not
only from the main harmonics, but also using the sidebands, avoiding the phase errors.

Results—The results of the method testing on rats with the heart failure using a simplified
telemetric recording from the implantable chips are given in Part III. A complete independence of
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the results of the determination of the code points (fingerprints) from the variables for which the
calculation is performed is shown. We also prove the robustness of the above approach with
respect to the most types of the non-adaptive filtration.

Conclusion—The above method can be useful not only for experimental medicine, but also for
veterinary and clinical diagnostic practice. This method is adequately reproduced both on animals
and human ECG, except for some constant values.

Keywords
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Is it rational to use the cyclic codes in ECG interpretation?
It is well known that a normal sinus rhythm is characterized by the periodicity and regularity
of the P, Q, R, S, T components, while any deviations from the cycle (beat-to-beat interval)
belong to HRV (Heart Rate Variability) and are usually considered as the cycle length
variability, RR variability, heart period variability, etc. Thus, any method based on the
detection of the cyclicity, iteration interval or the period of the signal (including a single
component shifted one) can be successfully applied for the periodicity analysis and
diagnostics of the functional abnormalities (especially for arrhythmias) using ECG, as well
as for the detection and correction of the artifacts of the electrocardiographic data computer
identification associated with the improper fixation of the electrodes on the patient's body
leading to the changes in the waveform or periodicity of the cardiac cycle components. In
particular, this recognition process with the parallel correction is very useful both for
telemetric electrocardigraphic analysis in experimental veterinary medicine and for Holter
monitoring on the active patient, since the dynamics of the monitored organism inevitably
affects the ECG waveform and periodicity [1,2].

The automatic decomposition of the ECG signal into the principal P, Q, R, S, T components
makes it possible to establish one-to-one correspondence between them and the computer
font symbols which allow to perform fingerprinting of the functional states and organic
disorders changing the heart rhythm. A similar approach can be implemented within
symbolic dynamics where the electrophysiological activity of the heart is considered as a
dynamic system with the points of the phase space represented by the sequential set (a so-
called alphabet, e.g. P-Q-R-S-T), and the certain disruptions in the heart rhythm can be
considered as the sequential shift [3]. In this context we deliberately define the PQRST-
alphabet in terms of the digital sequential logic, since it considers the operation background
of the systems modeled in a discrete form, which is important for diagnostics and researches
with the check experiments. From the mathematical standpoint it would be more accurate to
define it using the Bernoulli automorphism, invariant closed subsets and invariant measures,
but it is almost useless for the purposes of this methodical paper, while the application of the
classical analytical tools – the asymptotic methods and the perturbation theory series, does
not satisfy this task from the metrological positions.
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The first application of symbolic logic to the cardiographic data analysis dates back to the
late 1970s – early 1980s [4,5] and becomes methodologically complete during the period
from 1982 to 1986 which resulted in the development of the symbolic logic notation
(language and “alphabet”) describing the sinoatrial node activity and its rhythm as a
regulator of the contractile frequency [6], symbolic systems of analysis and visualization for
electrical mapping of the heart with the predicate elements being the symbols of the
spatiotemporal mapping [7] and for automatic interpretation of the myocardial scintigrams
[8] based on the mathematical logic predicates of the Horn clause in the logic programming
language PROLOG.

This laid a physico-technical basis for the spatio-temporal, and hence, morphophysiological
interpretation of the cardiological data within symbolic logic and at the same time resulted
in the publication of several papers combining morphological measurements with the
computer-assisted symbolic logic analysis (e.g., see a well known paper on the myocardial
vascular microangiopathy [9]). However, being directly related to the progress and spread of
the computer technology, a full introduction of symbolic diagnostics to the routine medical
practice became possible only in the 1990-th, particularly due to the required transition from
symbolic logic to symbolic dynamics necessary for identification of the transient cardiac
syndromes associated with the nonlinear phenomena determined from the ECG.

The very first complex application of symbolic dynamics in cardiology for the above
purpose dates back to the middle 1990-th [10], while nonlinear, chaotic and noise
phenomena in HRV have been quantitatively studied earlier [11]. To date the application of
symbolic dynamics in HRV analysis has already become a routine procedure [12]. A
significant advantage of symbolic dynamics is the simplicity of its mathematical algorithms
involved in detection of the correlations between the cardiac and respiratory syndromes and
factors [13], as well as in the determination of the cardio-neurological correlations and
cause-and-effect relationships (in the framework of the predicate logic) including
significantly nonlinear HRV measurements [14,15]. To date it does not make any
difficulties, since the parameters causing nonlinearity of the HRV curves are well studied
[16] and the regimes corresponding to the transient phenomena and rhythmic (amplitude-
frequency) distorsions can be easily expressed in terms of symbolic dynamics [17]. It is also
essential that application of symbolic dynamics allows to detect and analyze the natural
modulations of the cardiac activity independently of their source and origin [18,19]. One of
the most clinically relevant applications of the above approach is a long-term monitoring of
the cardiac rhythm change in the age physiology and pathology [20,21], starting from the
fetal stage of development [22,23].

The possibility of the multi-scale analysis of the cardiac activity and HRV using symbolic
dynamic techniques [24,25] provides broad prospects for diagnostics. Thus, the application
of symbolic dynamics to the classification of electrocardiographic signals [26] allows to
diagnose various diseases, including those difficult to be identified at the early stages due to
the lack of a clear clinical picture, such as dilated cardiomyopathy [27]. As for the
mathematical foundations of the above classification, one should consider different existing
approaches to HRV analysis in symbolic dynamics [28]. This diversity results from the
difference of variables, boundary conditions and confidence intervals of the accurate
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parameter detection and quantization determining the so-called “pathological” values. Of
special interest is the correlation adjustment of the data typical for cardiorespiratory
comparative (i.e. comparison of the syndromes) and correlation studies. For example, the
known relationship between the cardiac and respiratory cycles expressed in terms of
symbolic dynamics [29] provides an automatic detection (without any external models [30])
of the deviations from the above function indicating the presence of either functional
disorders or organic pathologies. This method (with the known cardiorespiratory interactions
expressed in the symbolic dynamics notation [31]) allows to detect a number of diseases,
such as hypoxia / ischemia effects [32], obstructive sleep apnea [33], interactions between
the cardiac and respiratory oscillators associated with the stages of sleep in healthy children
[34], etc. It is noteworthy that in such cases a similar respiration pattern variability analysis
is also performed and the corresponding optimized symbolic dynamics approaches for the
pattern analysis and calibration are also developed [35,36].

All the above methods are based on the monitoring of the deviations from the beat-to-beat
interval and HRV – cycle length variability, RR interval variability and heart period
variability, e.g. symbolic dynamic analysis of beat-to-beat interactions of heart rate and
systolic blood pressure [37], assessment of the RR versus QT relation by the symbolic
dynamics method [38], and the classical concepts about the heart rhythm are quite sufficient
for analysis at this level [39]. Another positive aspect of the electrocardiographic PQRST-
sequence analysis using symbolic dynamics methods is the possibility of the casuality
analysis within the cycle and in its relevant repeats [40] despite the fact that in the
framework of symbolic dynamics hidden Markov models are also developed without any
dependence of the current parameter value from the previous state of the system [41], which
seem to be regarded as the Bayesian belief networks. In this regard one can conclude that
symbolic dynamics in cardiology operates both at the state-space of a periodic PQRST-
oscillator / pacemaker [42] with a high determinism inherent to the healthy heart [43] and at
a noisy case [44] with an indeterminism caused by a number of states with a various degree
of proximity of the real PQRST to the model one according to the Hamming theory [45].
However, it is important to find out which symbolic dynamics can operate in presence of the
intermediate or “parasitic” (considered as artifacts) states?

Many authors and users try to minimize the bit depth of the data under processing reducing
the point phase space of symbolic dynamics to the binary trigger simulation: methods for
analysis of the binary sequences are adapted to the cardiac activity analysis [46], the
information entropy of such sequences is also calculated and fitted [47] and the special
systems based on the above binary approach for HRV pattern biomedical classification at
the autonomic modulation are also developed [48]. However, this approach reduces both the
diagnostic accuracy at the registration stage and the robustness of the signal processing.

At the same time for dynamical systems which can be attributed to symbolic dynamics
mapping is defined as a sequence shift by a single symbol which is described by either
Markov or Bernoulli shift conditions, so the shift in a reduced phase space (with a reduced
symbol alphabet) decreases the quality of the mapping compared to those of the standard
full alphabet (P, Q, R, S, T). Thus, we do not claim that the above cited works are not
correct, but we postulate the need for an alternative method / approach which, on the one
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hand, will take into account the cyclic nature, regularity and periodicity of the ECG, and, at
the other hand, will be able to detect the arrhythmia and the recording artifacts (i.e. the delay
and “outrunning” in a readback mode).

A biomathematical approach proposed
We propose to solve the above problems by using a mathematical apparatus of the cyclic
codes’ decoding [49]. A regular iteration of the PQRST-sequence (P–wave, QRS–complex,
T–wave) in the Einthoven's triangle suggests that the above cyclic dynamics can be
described by cyclic codes. In general, a cyclic code at the ECG is a linear block (n,k) – code
which being shifted by a single step to the left produces a code word which belongs to the
same code, and the manifold of the code words is a set of polynomials degree n–1 and less,
dividing by the generator polynomial g(x) degree r=n–k, which is a factor of the binomial xn

+ 1, and the code words in this code are represented as polynomials:
v(x)=vn–1xn–1+vn–2xn–2+...+v1x1+v0x0, where n – is the code length; vi – coefficients from
the field GF(q). If we interpret the heart rhythm as a stable code (due to the automatism of
the heart muscle and autonomous regulation) with the errors indicating physiological
abnormalities, one can represent a PQRST sequence as a “code over a field GF(PQRST)”
analogous to the binary code being a code over a field GF(2). From the technical positions,
the code shift either to the left or to the right will determine the cyclic window, but this will
not be included in a statistical analysis. This is consistent with the symbolic dynamics theory
in a shift context [50].

An error detection with respect to the reference code range with the normal rhythm, pulse
interval, force and tension, and the absence of the rhythm failures can be achieved using an
error polynomial e(x)=v•(x)+v(x), where v•(x) and v(x) are polynomials representing an accepted
(with an error) and transmitted code words, respectively, with non-zero coefficient positions
in e(x) corresponding to the errors. An essential feature of some cyclic codes is the ability to
correct burst errors. In the case of the cardiac activity this function is performed due to the
bioelectric heart automatism and compensatory homeostatic effects.

A syndrome polynomial used in cyclic code decoding is given by a remainder of the division
of the code word by the generator polynomial: Sj(x)=Rg(x)|v•(x)| or Sj(x)=Rg(x)[v•(x)
+ej(x)]=Rg(x)[ej(x)], i.e. directly depends on the error polynomial e(x), and hence, can be
applied to the generation of a syndrome table which is used in the decoding process and
contains a list of the error polynomials as well as the list of syndromes determined from the
expression Sj(x)=Rg(x)[ej(x)]. Automatic correction of the recording artifacts can be
performed by means of a table search of the polynomial e(x), which after summation with

the code word gives a new corrected code word: 

From the standpoint of the algebraic block code theory, the code cyclicity imposes serious
restrictions on the code word set, which simplifies the decoding procedure in
electrocardiography, since both Bose-Chaudhuri-Hocquenghem (BCH) codes capable of
correcting several independent errors and Golay codes which correct single, double and
triple errors are sufficient enough in this case, as nothing more is required. The length of a
primitive cyclic code, when n=qm–1 over GF(PQRST) may be quite sufficient for

Adamovic et al. Page 5

Cardiometry. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interference-free data interpretation. The proximity of interpretation and pointedness of the
mathematical apparatus (formalism) allows to use the cyclic code decoding methods in the
same manner as the symbolic dynamics methods with the ECG sequences recognition as
algebraic curves [51]. This is facilitated by the presence of several systolic architectures for
cyclic code decoding [52] which allows to perform the coding even in the extremely
simplified case – within the classical binary sequences’ analysis discussed above [46].

Moreover, there is a number of quasi-cyclic codes [53,54] which include in the framework
of this approach the ECG codes over the field GF(PQRST). This is promoted by the
existence of the quaternary quasi-cyclic codes [55]: if we consider one of the wave
components as a “punctuation mark” in the structural numeration of the ECG components
[56] (which corresponds to the consideration of the heart automatism as the analog
“sequential machine” [57] but is not applicable to any other non-systematic irregular
electrophysiological sequences [58]), so codes over the field GF(PQRST) will appear to be
ternary ones with a fixed point. This requires an automatic determination of the heart rate as
a cyclic code rate [59] and beating [60] with automatic positioning (fingerprinting) of the
“punctuation point”. For this purpose computer analysis of cyclic codes applies the weight
spectra [61] which may be successfully used in cardiography where symbolic dynamics
analysis is often combined with the spectral analysis [62], especially for the search of
distortions [63].

The feasibility of introduction of the above approach to the clinical practice at the current
stage can be proved by the already accomplished (within the US and the EU)
implementation of the combined spectral frequency, pulse-time and symbolic dynamic
methods of the heart rhythm variability in hepatology [64], gender fingerprinting using
combined spectral and symbolic dynamic techniques both in the prevention and clinical
examination [65], combination of the morphometric, ultrastructural, optical microscopic and
symbolic-logical analysis in cardioendocrinology at myocardial microangiopathy and
experimental diabetes [66]. In the areas where spectral analysis is traditionally used, such as
the analysis and detection of ventricular tachycardia [67], symbolic dynamics approaches
are implemented to perform the same functions [68]. One of the current trends is combined
multiparameter analysis using wavelet-based symbolic representations [69] which does not
allow to make a clear distinction between the spectral and symbolic approaches. In this
regard, we propose a novel approach where the elements of symbolic dynamics are
determined by the computer rather than by a physician / operator, automatically performing
“fingerprinting” of the ECG signal with the subsequent comparison to the statistically
relevant recognizable spectral components (and the related harmonics) in the indicator
dynamics (e.g. in the form of cumulative spectral decay), indicating their belonging to the
certain components of the cyclic code over a field GF(PQRST). The statistical deviation
values [70] in this case will indicate the heart rate variability in symbolic dynamics [71], and
the presence of nonlinear phenomena after detection and detrending of the fluctuations will
indicate certain biophysical mechanisms rather than the recording artifacts [72]. From the
standpoint of the cyclic code mathematics substituting symbolic dynamics, detection of the
ectopic pulses in nonlinear dynamics of the heart rhythm [73], will be an essential part of the
code error detection procedure [74].
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Thus, the main aim of this paper was to demonstrate the possibilities and the prospects of the
concept proposed (i.e. spectrally-mediated determination and fluctuating code range
specification during ECG interpretation). For this purpose it is also necessary to demonstrate
the stability of the frequency components’ determination (fingerprinting) and the
independence of their values from the discrimination and filtration types, as well as from the
variables used. These problems will be considered in the next part of this work.
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