M. V. RUDOMETKINA, YU. D. SEROPEGIN, A. V. GRIBANOV and L. S. GUSEI Department of Chemistry, Moscow Lomonosov State University, Moscow (U.S.S.R.) (Received January 13, 1988; in revised form August 2, 1988)

Summary

Physico-chemical analysis techniques, including studies of microstructure, X-ray phase analysis, electron microprobe, high-temperature differential thermal analysis and measurements of hardness, microhardness and specific electrical resistance, are applied to study the interaction between the components in the Ti-Nb-Ge system. The phase diagram for the Ti-Ge system has been refined. The compound Ti_5Ge_3 melts congruently at 2250 K. The germanides Ti_6Ge_5 and $TiGe_2$ are formed by peritectic reactions at 1920 and 1345 K, respectively. An isothermal section of the Ti-Nb-Ge phase diagram corresponding to 1170 K is constructed and homogeneity regions for ternary niobium and titanium germanide solid solutions are reported. No ternary compounds occur in the system. A polythermal phase diagram section along the quasi-binary $Ti_5Ge_3nNb_5Ge_3$ section is given. The mechanical and electrical properties of a number of alloys are described.

1. Introduction

The purpose of this work was to study phase equilibria in the Ti-Nb-Ge system at 1170 K and some physical and chemical properties of a number of alloys involved.

The interactions between the components in the Ti–Nb and Nb–Ge binary systems have been studied in detail in refs. 1 - 5. The Ti–Ge system has mainly been studied on the titanium side [6 - 8]. The Ti–Nb–Ge phase diagram in the region 0 - 50 mass% Ge at 970 and 1270 K has been studied by Heller [7].

2. Experimental details

Samples studied were alloys prepared using polycrystalline germanium of semiconductor purity (99.99%), vacuum-fusion niobium (99.9%) and titanium from titanium iodide (99.9%). Sample compositions are given in Fig. 1. The alloys were melted in an arc furnace with a non-consumable

Fig. 1. Compositions of alloys studied and isothermal section of the Ti–Nb–Ge phase diagram at 1170 K.

tungsten electrode in an argon atmosphere. Fused samples were homogenized by annealing and then quenched from 1170 K in ice-cold water.

The isothermal section of the Ti-Nb-Ge phase diagram was determined using the following physico-chemical analysis techniques: microstructural studies, X-ray phase analysis, electron microprobe, high-temperature differential thermal analysis, hardness and microhardness tests and specific resistance measurements at room temperature. The microstructures of the alloys were revealed by etching the specimens with nitric and hydrofluoric acids. X-ray phase analyses were obtained on an FR-552 focusing monochromator using Cu K α_1 and Cu K α_{av} lines and germanium as the internal reference. The observed reflections were identified by comparing the patterns with the ASTM catalogue. A "Camebax" micro-analyser was employed to perform local X-ray spectral analyses of samples using titanium K α , germanium K α and niobium L α lines. The accuracy of the measurement was 2.5 to 3 relative per cent. High-temperature differential thermal analysis involved repeated heating of samples at a constant heating rate of 80° min⁻¹. Tungsten-tungsten/rhenium (20 at.%) thermocouples were used to register the temperature and were calibrated against aluminium, copper, platinum, palladium and iron as reference substances. Microhardness and hardness were tested by the indentation technique using a diamond square pyramid under loads of 0.98 and 49 N, respectively. Six or more indentation marks were made for each sample. Specific resistance measurements were taken with the help of a four-probe microhead [9].

3. Results and discussion

The phase diagram for the Ti-Ge binary system shown in Fig. 2 was determined using the differential thermal analysis technique. Germanium

Fig. 2. Phase diagram of the Ti-Ge system.

was found to decrease the titanium polymorphic transformation temperature from 1145 to 1133 K. In the region of 0 to 5 at.% Ge the diagram was drawn using earlier data [6, 7]. A peritectoid reaction β -Ti + Ti₅Ge₃ \rightleftharpoons -Ti occurs at 1133 K. The germanide Ti₅Ge₃ and a solid solution of β -Ti form a eutectic at 1598 K and 15 at.% Ge. The compound Ti₅Ge₃ melts congruently, with an open maximum at 2253 K. The system involves two peritectic equilibria: L + Ti₅Ge₃ \rightleftharpoons Ti₆Ge₅ (1923 K) and L + Ti₆Ge₅ \rightleftharpoons TiGe₂ (1348 K). A eutectic reaction L \rightleftharpoons TiGe₂ + Ge occurs at 1173 K and 88 - 90 at.% Ge. The solubility of titanium in germanium is only small. Thus compounds formed in the Ti-Ge system include Ti₅Ge₃, Ti₆Ge₅ and TiGe₂; the compounds Ti₃Ge and TiGe were not detected. The X-ray phase and electron microprobe analyses data (Table 1) are also in agreement with the occurrence of the compound Ti₆Ge₅ mentioned in ref. 8. The 1170 K isothermal section of the Ti-Nb-Ge phase diagram is shown in Fig. 1.

Homogeneity regions of ternary solid solutions based on binary compounds occurring in the Ti-Nb-Ge system were found to extend over 10 at.% Ti for Nb₃Ge, 15 - 18 at.% Ti for Nb₅Ge₃, 20 at.% Ti for NbGe₂, 37.5 at.% Nb for Ti₅Ge₃, 30 at.% Nb for Ti₆Ge₅ and 2 - 3 at.% Nb for TiGe₂.

The data obtained by electron probe analysis have enabled us to refine the lines of phase equilibria for the isothermal section. Precision measurements of lattice parameters have been performed for samples corresponding to the homogeneity regions of ternary solid solutions of binary compounds. The calculation results on the ternary solid solution based on Nb₃Ge are listed in Table 2, those for alloys in the TiGe₂-NbGe₂ section in Table 3 and those for Ti₅Ge₃-Nb₅Ge₃ alloys in Table 4 and Fig. 3.

TABLE 1

Results of electron microprobe analysis of Ti-Nb-Ge alloys

Alloy c	ompositic	on (at.%)	Number of phases	Phase composition (at.%)		Phase	
Ti	Nb	Ge		Ti	Nb	Ge	
25.0	45.0	30.0	2	25.3	37.9	36.8	Ti ₅ Ge ₃
				25.2	72.6	2.2	$(\beta$ -Ti + Nb)
20.0	60.0	20.0	2	13.4	67.5	19.1	Nb ₃ Ge
				22.1	76.2	1.7	$(\beta$ -Ti + Nb)
10.0	71.0	19.0	1	12.2	67.9	19.9	Nb ₃ Ge
10.0	30.0	60.0	2	11.0	22.0	67.0	NbGe ₂
				6.2	55.5	38.3	Nb ₅ Ge ₃
30.0	20.0	50.0	2	33.1	22.1	44.8	Ti ₆ Ge ₅
				16.9	16.6	66.5	NbGe ₂
20.0	30.0	50.0	2	21.3	34.9	43.8	Ti ₆ Ge ₅
				16.2	16.7	67.1	NbGe ₂
18.3	15.0	66.7	2	3.9	28.7	67.4	TiGe ₂
				18.6	13.2	68.2	$NbGe_2$
42.0		58.0	2	53.7		46.3	Ti ₆ Ge5
				34.0		66.0	TiGe ₂
50.0		50.0	2	33.7		66.3	TiGe ₂
				54.0		46.0	Ti ₆ Ge ₅
55.5		44.5	1	55.0		45.0	Ti ₆ Ge ₅

TABLE 2

Physico-chemical analyses data on alloys in the region of ternary Nb_3Ge solid solutions (19 at.% Ge)

Composition (at.%)		Lattice parameters	Specific electrical	Microhardness	Hardness	
Ti	Nb	(nm)	resistance (Ω m)	(MPa)	(MPa)	
	81.0	0.5172(1)	64 ± 5	9100 ± 100	8500 ± 100	
2.5	78.5	0.5166(1)	82 ± 5	9800 ± 100	8900 ± 100	
5.0	76.0	0.5265(1)	79±5	9500 ± 100	8200 ± 100	
7.5	73.5	0.5163(1)	69 ± 5	8800 ± 100	7000 ± 200	
10.0	71.0	0.5161(2)	120 ± 5	8800 ± 200	5600 ± 300	

Alloys of the Ti_5Ge_3 -Nb₅Ge₃ section were also studied by differential thermal analysis. The polythermal section shown in Fig. 4 indicates a eutectic nature of interactions between Ti_5Ge_3 ($T_m = 2253 \pm 5$ K) and Nb₅Ge₃ ($T_m = 2433$ K). The non-variant equilibrium is observed at 2083 K. The Ti_5Ge_3 -Nb₅Ge₃ polythermal section of the Ti-Nb-Ge phase diagram is quasi-binary.

The mechanical properties (hardness and microhardness) and specific resistance have been studied for a number of Ti-Nb-Ge alloys at room temperature. The microhardness and specific resistance values are listed in Tables 2, 3 and 4. The compound Nb_5Ge_3 and its ternary solid solutions are

TABLE 3

Physico-chemical analyses data on TiGe₂-NbGe₂ alloys (66.6 at.% Ge)

Composi	tion (at.%)	Lattice parameters	t (nm)	Specific electrical	Microhardness	Hardness
Ti	Nb	a	c	resistance (52 m)	(MPa)	(MPa)
33.3		b = 0.5032(3)	0.8862(6)	210 ± 20	3000 ± 100	2700 ± 100
28.3	5.0	-	1	150 ± 20	3300 ± 100	2000 ± 200
23.3	10.0	0.4939(2)	0.6781(2)	145 ± 20	5400 ± 200	3800 ± 300
18,3	15.0	0.4938(3)	0.6782(5)	110 ± 20	5300 ± 200	4500 ± 200
13.3	20.0	0.4949(1)	0.6785(4)	95 ± 20	5600 ± 100	4900 ± 200
8.3	25.0	0.4957(1)	0.6791(4)	80 ± 10	6300 ± 200	5300 ± 300
3.3	30.0	0.4963(1)	0.6791(2)	110 ± 10	7200 ± 100	6600 ± 200
1	33.3	0.4977(2)	0.6809(3)	80 ± 10	8400 ± 100	7800 ± 100

Nb Ti a c resistance (M m) (MPa) 62.5 - 1.0163(1) 0.5140(1) 190 ± 30 10400 ± 200 57.5 5.0 1.0160(2) 0.5126(2) 260 ± 50 11600 ± 100 57.5 10.0 1.0150(4) 0.5117(3) 190 ± 40 10700 ± 100 47.5 15.0 1.0144(2) 0.5117(3) 190 ± 40 10700 ± 100 47.5 15.0 1.0144(2) 0.5117(3) 190 ± 40 10700 ± 100 47.5 15.0 1.0144(2) 0.5117(3) 190 ± 40 10700 ± 100 47.5 15.0 1.0144(2) 0.5117(3) 190 ± 30 8400 ± 100 37.5 25.0 0.7642(5) 0.5265(5) 380 ± 30 8400 ± 100 37.5 35.0 0.7642(2) 0.5265(5) 380 ± 30 7800 ± 100 27.5 35.0 0.7624(2) 0.5255(3) 330 ± 30 1100 27.5 40.0 0.7628(2) 0.5255(3) 350 ± 20 111000	Composi	ition (at.%)	Lattice paramet	ters (nm)	Specific electrical	Microhardness	Hardness
62.5 - $1.0163(1)$ $0.5140(1)$ 190 ± 30 10400 ± 200 57.5 5.0 $1.0160(2)$ $0.5117(3)$ 190 ± 40 10700 ± 100 52.5 110.0 $1.0150(4)$ $0.5117(3)$ 190 ± 40 10700 ± 100 57.5 15.0 $1.0144(2)$ $0.5117(3)$ 190 ± 40 10700 ± 100 47.5 15.0 $1.0144(2)$ $0.5117(3)$ 190 ± 40 10700 ± 100 47.5 15.0 $1.0144(2)$ $0.5111(2)$ 190 ± 30 8900 ± 100 47.5 20.0 $1.0143(2)$ $0.5109(2)$ 190 ± 30 8400 ± 100 47.5 20.0 $1.0143(2)$ $0.5109(2)$ 190 ± 30 8400 ± 100 47.5 25.0 $0.7642(5)$ $0.5265(5)$ 380 ± 30 7800 ± 100 37.5 25.0 $0.7633(3)$ $0.5256(5)$ 380 ± 30 7800 ± 100 27.5 37.5 $0.7632(2)$ $0.5256(3)$ 360 ± 20 11100 ± 100 27.5 37.5 $0.7668(2)$ $0.5256(3)$ 330 ± 30 100 27.5 410.0 $0.7668(2)$ $0.5256(3)$ 330 ± 20 11100 ± 100 27.5 45.0 $0.7668(2)$ $0.5256(3)$ 330 ± 20 11100 ± 100 27.5 45.0 $0.7688(2)$ $0.5234(2)$ 300 ± 20 11100 ± 100 27.5 50.0 $0.7568(2)$ $0.5234(3)$ 270 ± 40 11000 ± 100 27.5 $0.7568(2)$ $0.5234(3)$ 0.520 ± 40 10100 ± 100 27.5 $0.7768(2)$ $0.5234(2)$ <	Nb	Ti	ø	v	resistance (sl m)	(MPa)	(MPa)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	62.5		1.0163(1)	0.5140(1)	190 ± 30	10400 ± 200	9500 ± 100
52.5 10.0 $1.0150(4)$ $0.5117(3)$ 190 ± 40 10700 ± 100 47.5 15.0 $1.0144(2)$ $0.5111(2)$ 160 ± 30 8900 ± 100 42.5 20.0 $1.0144(2)$ $0.5111(2)$ 160 ± 30 8400 ± 100 42.5 20.0 $1.0144(2)$ $0.5110(2)$ 8400 ± 100 37.5 25.0 $0.7642(5)$ $0.5265(5)$ 380 ± 30 8400 ± 100 37.5 25.0 $ 380 \pm 30$ 8300 ± 100 37.5 35.0 $0.7648(2)$ $0.5264(5)$ 360 ± 30 7800 ± 100 37.5 37.5 $0.7633(3)$ $0.5256(5)$ 360 ± 30 7800 ± 100 27.5 37.5 $0.7663(2)$ $0.5255(3)$ 330 ± 30 9800 ± 100 27.5 37.5 $0.7663(2)$ $0.5255(3)$ 330 ± 30 1100 ± 100 27.5 40.0 $0.7668(2)$ $0.5225(3)$ 350 ± 20 11100 ± 100 27.5 40.0 $0.7668(2)$ $0.52344(2)$ 350 ± 20 11100 ± 100 27.5 60.0 $0.7588(2)$ $0.5234(3)$ 300 ± 20 111000 ± 100 27.5 60.0 $0.7568(1)$ $0.5228(2)$ 210 ± 40 1000 ± 100 27.5 $0.7568(1)$ $0.5228(2)$ 210 ± 40 10100 ± 100 27.5 $0.7568(1)$ $0.5228(2)$ 210 ± 40 10100 ± 100 27.5 $0.7568(2)$ $0.5228(2)$ 210 ± 40 10100 ± 100 27.5 $0.7768(2)$ $0.7568(2)$ $0.5228(2)$ 0	57.5	5.0	1.0160(2)	0.5126(2)	260 ± 50	11600 ± 100	9900 ± 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52.5	10.0	1.0150(4)	0.5117(3)	190 ± 40	10700 ± 100	9200 ± 100
42.5 20.0 $1.0143(2)$ $0.5109(2)$ 190 ± 30 8400 ± 100 37.5 25.0 $ 0.7642(5)$ $0.5265(5)$ 380 ± 30 5900 ± 100 37.5 25.0 $ 380 \pm 30$ 5900 ± 100 32.5 30.0 $0.7646(2)$ $0.5264(5)$ 360 ± 30 5900 ± 100 32.5 30.0 $0.7633(3)$ $0.5264(5)$ 360 ± 30 7800 ± 100 37.5 $0.7633(3)$ $0.5258(5)$ 360 ± 30 7800 ± 100 27.5 37.5 $0.7624(2)$ $0.5255(3)$ 330 ± 30 9800 ± 100 27.5 37.5 $0.7626(2)$ $0.5255(3)$ 330 ± 30 11100 ± 100 27.5 40.0 $0.7668(2)$ $0.52246(2)$ 350 ± 20 11100 ± 100 27.5 40.0 $0.7668(2)$ $0.5244(2)$ 330 ± 30 11100 ± 100 27.5 60.0 $0.7668(1)$ $0.5234(3)$ 300 ± 20 11100 ± 100 27.5 60.0 $0.7585(2)$ $0.5234(3)$ 300 ± 20 111000 ± 100 2.5 60.0 $0.7568(1)$ $0.5228(2)$ 210 ± 40 10100 ± 100 $ 62.5$ $0.7563(2)$ $0.5228(2)$ 210 ± 40 9500 ± 100	47.5	15.0	1.0144(2)	0.5111(2)	160 ± 30	8900 ± 100	7300 ± 200
37.5 25.0 $0.7642(5)$ $0.5265(5)$ 380 ± 30 5900 ± 100 37.5 25.0 $ 380 \pm 30$ 5900 ± 100 32.5 30.0 $0.7646(2)$ $0.5264(5)$ 360 ± 30 7800 ± 100 32.5 30.0 $0.7633(3)$ $0.5256(5)$ 360 ± 30 7800 ± 100 27.5 35.0 $0.7633(3)$ $0.5256(3)$ 330 ± 30 9800 ± 100 27.5 37.5 $0.7624(2)$ $0.5255(3)$ 330 ± 30 9800 ± 100 27.5 37.5 $0.7626(2)$ $0.5255(3)$ 330 ± 30 11100 ± 100 27.5 40.0 $0.7608(2)$ $0.5246(2)$ 350 ± 20 111900 ± 100 27.5 40.0 $0.7608(2)$ $0.5244(2)$ 330 ± 30 11100 ± 100 27.5 50.0 $0.77689(2)$ $0.5234(3)$ 300 ± 20 111900 ± 100 7.5 55.0 $0.7768(1)$ $0.5234(3)$ 270 ± 40 111000 ± 100 2.5 60.0 $0.7768(1)$ $0.5228(2)$ 210 ± 30 10100 ± 100 $ 62.5$ $0.7768(2)$ $0.5228(2)$ 240 ± 40 9500 ± 100	42.5	20.0	1.0143(2)	0.5109(2)	190 ± 30	8400 ± 100	6400 ± 200
37.5 25.0 - 380 ± 30 8300 ± 100 32.5 30.0 $0.7646(2)$ $0.5264(5)$ 360 ± 30 8300 ± 100 32.5 30.0 $0.7633(3)$ $0.5256(5)$ 360 ± 30 7800 ± 100 27.5 35.0 $0.7633(3)$ $0.5255(3)$ 330 ± 30 9800 ± 100 27.5 37.5 $0.7624(2)$ $0.5255(3)$ 330 ± 30 9800 ± 100 27.5 37.5 $0.7625(2)$ $0.5252(3)$ 350 ± 20 111100 ± 100 27.5 40.0 $0.7608(2)$ $0.5246(2)$ 350 ± 20 111900 ± 100 27.5 45.0 $0.7608(2)$ $0.5244(2)$ 330 ± 30 11100 ± 100 17.5 55.0 $0.7668(1)$ $0.5234(3)$ 300 ± 20 111900 ± 100 7.5 55.0 $0.7768(2)$ $0.5234(3)$ 270 ± 40 111000 ± 100 2.5 60.0 $0.7568(1)$ $0.5228(2)$ 210 ± 30 11000 ± 100 2.6 $0.77663(2)$ $0.5228(2)$ 210 ± 30 10100 ± 100 2.6 $0.7768(1)$ $0.5228(2)$ 240 ± 40 9500 ± 100			0.7642(5)	0.5265(5)		5900 ± 100	
32.5 $0.7646(2)$ $0.5264(5)$ 6000 ± 100 32.5 30.0 $0.7633(3)$ $0.5258(5)$ 360 ± 30 7800 ± 100 27.5 35.0 $0.7633(3)$ $0.5255(3)$ 330 ± 30 7800 ± 100 25.0 37.5 $0.7624(2)$ $0.5255(3)$ 330 ± 30 9800 ± 100 25.0 37.5 $0.7625(2)$ $0.5255(3)$ 350 ± 20 11100 ± 100 22.5 40.0 $0.7608(2)$ $0.5246(2)$ 350 ± 20 111900 ± 100 17.5 45.0 $0.7608(2)$ $0.5244(2)$ 330 ± 30 11900 ± 100 12.5 50.0 $0.77689(2)$ $0.5234(3)$ 300 ± 20 111000 ± 100 7.5 55.0 $0.7585(2)$ $0.5234(3)$ 270 ± 40 111000 ± 100 2.5 60.0 $0.7568(1)$ $0.5223(2)$ 210 ± 30 10100 ± 100 $ 62.5$ $0.7563(2)$ $0.5228(2)$ 210 ± 40 9500 ± 100	37.5	25.0	1	l	380 ± 30	8300 ± 100	6100 ± 200
32.5 30.0 $0.7633(3)$ $0.5258(5)$ 360 ± 30 7800 ± 100 27.5 35.0 $0.7624(2)$ $0.5255(3)$ 330 ± 30 9800 ± 100 25.0 37.5 $0.7625(2)$ $0.5255(3)$ 330 ± 20 11100 ± 100 22.5 40.0 $0.7608(2)$ $0.5252(3)$ 350 ± 20 11100 ± 100 27.5 45.0 $0.7608(2)$ $0.5246(2)$ 350 ± 20 111900 ± 100 17.5 45.0 $0.7605(1)$ $0.5244(2)$ 330 ± 30 11900 ± 100 12.5 50.0 $0.77689(2)$ $0.5237(3)$ 300 ± 20 111900 ± 100 7.5 55.0 $0.7585(2)$ $0.5234(3)$ 270 ± 40 111000 ± 100 2.5 60.0 $0.7568(1)$ $0.5223(2)$ 210 ± 30 10100 ± 100 $ 62.5$ $0.7763(2)$ $0.5228(2)$ 240 ± 40 9500 ± 100			0.7646(2)	0.5264(5)		6000 ± 100	
27.5 35.0 $0.7624(2)$ $0.5255(3)$ 330 ± 30 300 ± 100 25.0 37.5 $0.7625(2)$ $0.5252(3)$ 360 ± 20 11100 ± 100 22.5 40.0 $0.7608(2)$ $0.5246(2)$ 350 ± 20 111500 ± 100 17.5 45.0 $0.7605(1)$ $0.5244(2)$ 330 ± 30 11900 ± 100 12.5 50.0 $0.7665(1)$ $0.5244(2)$ 330 ± 20 111900 ± 100 12.5 50.0 $0.7589(2)$ $0.5237(3)$ 300 ± 20 111300 ± 100 7.5 55.0 $0.7585(2)$ $0.5234(3)$ 270 ± 40 111000 ± 100 2.5 60.0 $0.7568(1)$ $0.5223(2)$ 210 ± 30 10100 ± 100 $ 62.5$ $0.7763(2)$ $0.5228(2)$ 240 ± 40 10100 ± 100	32.5	30.0	0.7633(3)	0.5258(5)	360 ± 30	7800 ± 100	7000 ± 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27.5	35.0	0.7624(2)	0.5255(3)	330 ± 30	9800 ± 100	7600 ± 200
22.5 40.0 $0.7608(2)$ $0.5246(2)$ 350 ± 20 11500 ± 100 17.5 45.0 $0.7605(1)$ $0.5244(2)$ 330 ± 30 11900 ± 100 12.5 50.0 $0.7589(2)$ $0.5237(3)$ 300 ± 20 11300 ± 100 7.5 55.0 $0.7585(2)$ $0.5234(3)$ 270 ± 40 11000 ± 100 2.5 60.0 $0.7568(1)$ $0.5223(2)$ 210 ± 30 10100 ± 100 $ 62.5$ $0.7763(2)$ $0.5228(2)$ 240 ± 40 10100 ± 100	25.0	37.5	0.7625(2)	0.5252(3)	360 ± 20	11100 ± 100	8300 ± 200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22.5	40.0	0.7608(2)	0.5246(2)	350 ± 20	11500 ± 100	8600 ± 200
12.5 50.0 $0.7589(2)$ $0.5237(3)$ 300 ± 20 11300 ± 100 7.5 55.0 $0.7585(2)$ $0.5234(3)$ 270 ± 40 11000 ± 100 2.5 60.0 $0.7568(1)$ $0.52230(2)$ 210 ± 30 10100 ± 100 - 62.5 $0.7563(2)$ $0.5228(2)$ 240 ± 40 10100 ± 100	17.5	45.0	0.7605(1)	0.5244(2)	330 ± 30	11900 ± 100	8900 ± 100
7.555.0 $0.7585(2)$ $0.5234(3)$ 270 ± 40 11000 ± 100 2.5 60.0 $0.7568(1)$ $0.5230(2)$ 210 ± 30 10100 ± 100 - 62.5 $0.7563(2)$ $0.5228(2)$ 240 ± 40 9500 ± 100	12.5	50.0	0.7589(2)	0.5237(3)	300 ± 20	11300 ± 100	8800 ± 100
2.5 60.0 $0.7568(1)$ $0.5230(2)$ 210 ± 30 10100 ± 100 - 62.5 $0.7563(2)$ $0.5228(2)$ 240 ± 40 9500 ± 100	7.5	55.0	0.7585(2)	0.5234(3)	270 ± 40	11000 ± 100	8300 ± 200
$- 62.5 0.7563(2) 0.5228(2) 240 \pm 40 9500 \pm 100$	2.5	60.0	0.7568(1)	0.5230(2)	210 ± 30	10100 ± 100	7300 ± 100
	1	62.5	0.7563(2)	0.5228(2)	240 ± 40	9500 ± 100	6600 ± 100

	-INDEACES ALLONS (01.0 AL. /0 AC)
BLE 4 airs abominal analysis data on Ti Co M	SICU-CITEILICAL ALLAISES UALA ULI LISUE3-IN

Fig. 3. The dependence of crystal lattice parameters on alloy compositions for the Ti_5Ge_3 -Nb₅Ge₃ section.

Fig. 4. Polythermal $\rm Ti_5Ge_3-Nb_5Ge_3$ section of the phase diagram.

Fig. 5. Microhardness as a function of composition for Ti₅Ge₃-Nb₅Ge₃ alloys.

Fig. 6. Specific resistance as a function of composition for Ti_5Ge_3 -Nb₅Ge₃ alloys.

characterized by high microhardness values. Niobium admixtures increase the microhardness of the Ti_5Ge_3 -based alloys. The concentration dependence of microhardness for Ti_5Ge_3 -Nb₅Ge₃ alloys is given in Fig. 5. Inflection points occur at phase region boundaries; in the two-phase region each phase is characterized by a constant microhardness value, while doping Nb₃Ge with titanium causes an increase in microhardness. Ti-Nb binary alloys show reduced microhardness values which increase with the addition of germanium.

Shown in Fig. 6 is the specific resistance vs. composition dependence for $Ti_5Ge_3-Nb_5Ge_3$ alloys. When the third component concentration is increased, the specific resistance of Ti_5Ge_3 -based alloys increases and that of Nb_5Ge_3 solid solutions decreases. Within the homogeneity regions of compounds $NbGe_2$ and Nb_3Ge , the values of specific resistance vary insignificantly. Addition of niobium, however, enhances the resistance of the alloys in the composition region of the $Ti_{6-x}Nb_xGe_5$ solid solutions.

246

References

- 1 V. N. Eremenko, Titan i ego splavy, (Titanium and its alloys), Kiev, Izd. Akad. Nauk U.S.S. R., 1960.
- 2 I. I. Kornilov, Titan (Titanium), Nauka, Moscow, 1975.
- 3 J. L. Murray, Bull. Alloy Phase Diagrams, 2 (1981) 55.
- 4 J. L. Jorda, R. Flûkinger and A. Muller, J. Less-Common Met., 62 (1978) 25.
- 5 Yu. D. Seropegin, Dissertation, Moscow, 1980.
- 6 R. McQuillan, Inst. Met., 83 (1955) 485.
- 7 W. Z. Heller, Metallkunde, 64 (1973) 124.
- 8 P. Spinat, R. Fruchart and P. Herpin, Bull. Soc. Fr. Miner. Cristallogr., 93 (1970) 23.
- 9 K. K. Polnak and N. D. Chaplin, Pribory dlya nauchnyh Issledovanii, 33 (1962) 75.