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Abstract

Small oscillations of the cargo system located in the nodes of the upper straight
belt of a statically identifiable truss are considered. The mass of the truss itself is
not taken into account. The induction method using the Maple computer
mathematics system derives formulas for the elements of the compliance matrix,
whose eigenvalues determine the oscillation frequencies. The required matrix is
composed of the sum of three bisymmetric matrices, one of which is the unit
matrix, sparse with zeros. Formulas for matrix elements are obtained by triple
induction.
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Introduction to the formulation of the problem. Analysis of truss natural
frequencies is one of the most important engineering tasks, especially in relation to
the structures used in transport construction and mechanical engineering. Truss
oscillations arise both during the movement of goods, for example, the movement
of transport, and during the dynamic excitation of oscillations from the action of
moving parts of instruments and equipment fixed on the truss. At the heart of the
analysis of any type of oscillations is information about the natural frequencies.
Usually, eigenfrequencies are determined numerically [1-5], based on any
specialized packages. An alternative to this approach is analytical research. For
regular systems, we apply the induction method, worked out using the Maple
computer mathematics system on deflection problems of flat [6-8] and spatial [9-
11] trusses, in which the analytical dependencies of the solution were determined
not only on the size of the truss and the load, but also on the number of panels. As
a rule, a regular truss scheme contains one or two parameters defining the
complexity of the structure, for example, the number of panels in a span or in
supporting elements. The task of finding the natural frequencies of a system with
many degrees of freedom contains at least three parameters. This is due to the fact
that the frequencies are associated with the eigenvalues of the matrix, therefore,
when obtaining formulas for the elements of the matrix, it is necessary to perform
induction three times: by column number, row number and number of panels.
Previously, a similar problem was solved for a truss with a triangular lattice
[12,13]. In [14], the concentrated mass method was used to solve the problem of
natural oscillations of a regular truss. An overview of analytical solutions in
problems of deflection of flat regular trusses is given in [15].

Truss. Equations and calculation of forces. Consider a symmetrical truss
with a triangular lattice and pillars containing 2n panels in the span (Fig. 1).

Figure 1 — Truss withn=4 |
We write the different_ial equation of oscillations
[M,IY +[D,IV =0, (1)

Here Y is a vector composed of vertical movements of loads. Its length is
equal to the number of degrees of freedom 4n — 1. The dots denote the time

derivative, Y — the acceleration vector, [D,] — the stiffness matrix of the
system, [M_] — the inertia matrix. In the assumption that the masses of cargo are

the same this diagonal. We reduce the problem to the problem of the eigenvalues
of the compliance matrix [B ] inverse to the stiffness matrix. Its elements are

calculated using the Maxwell-Mohr formula:
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n-3 )
b, =Y S"SI 1 (EF). (2)
v=l
Denotes: s — force from the action of unit force in node i in the bar with
a number v, |, — bar length, EF — bar stiffness, n, =12n+2— number of rods,

including three support rods. Rod sections are the same. The sum is made for all
truss rods, except for three supporting ones.
Multiply (1) by [B,]:

[B.]Y =AY,
where
A=1/(mw?) (3)
— own number , @ — natural frequency of oscillation.
The calculation using the Maple program used and described in [6-11]
begins with solving the problem of forces in the rods included in (2). To do this,

you must enter the data on the coordinates of the nodes (hinges). The origin of
coordinates is located in the left support of the truss:

1 1 2 2 3 3 4 4 5 5 5 ] 7 7 8 3 9 26 18
5
is
2 2e [ 13 21 7 4 22 8 5 23 9
10 9 1 10 12 11 13

Figure 2 — The numbering of nodes and rods with n =2

Here is a fragment of the coordinate input program:

>for i to 4*n+l do # upper belt

> x[i]:=a*(i-1):y[i]:=h:

> end:

>for i to 2*n do # lower belt

> x[i+4*n+l]:=2*a*(i-1)+a:y[i+4*n+1l]:=0:
> end:

The lattice structure is defined by special conditional vectors corresponding
to the rods and containing the number of nodes at the ends as coordinates. The
beginning and end of the rod are chosen arbitrarily and do not affect the force and
sign of the force. We have the following vectors:

>for i to 4*n do

N[i]:=[i,i+1]; # upper belt
>end:

>for i to 2*n-1 do

>N[i+4*n] :=[i+4*n+1,i+4*n+2];# lower belt
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>end:

>for i to 2*n do # lattice
> N[i+6*n-1]:=[2*i-1,i+4*n+1];

> N[i48*n-1]:=[2*i+1,i+4*n+1];

> N[i+10*n-1]:=[2*i,i+4*n+l1];

> end:

The cosines of the forces and loads are introduced into the matrix of the
system of equilibrium equations. Here it is a single vertical force applied to the
nodes of the upper belt
>for i to 4*n-1 do P[i][2*i+2]:=1: od:

The vector P[i], where i = 1, ... , 4n — 1 is the number of the mass, in even
elements it contains the values of the vertical forces applied to the node, and in odd
elements they are horizontal. Here is the node with the number i + 1. The solution
of the system of equations is obtained by the method of the inverse matrix G1: = 1
| G, where G is the matrix of the system

Induction. The calculation of the trusses for different n shows that the
desired matrix consists of the sum of three matrices

[B,1=([AJe* +n[C,Ic° +4n’[H, ]h°) | (4n*h°EF), (4)

where ¢ =+/a® + h?. The main task is to derive formulas for the elements of these
matrices. For n = 1, we have matrices

7 8 5 3 2 1 1.0 0
[Al=]8 12 8|,[C]=|2 4 2|,[H]=|0 0 0.
b2 s 1 2tielo 0 0
Atn=2
T 70 112 130 128 110 80 427
112 200 240 240 208 152 80
130 240 310 320 282 208 110
[A]= |128 240 320 352 320 240 128/,
110 208 282 320 310 240 130
80 152 208 240 240 200 112
| 42 80 110 128 130 112 70|
7 6 5 4 3 2 1 10 0 0 0 0 0
6 12 10 8 6 4 2 0000O0GO0O
5 10 15 12 9 6 3 0010000
[C,]= |4 8 12 16 12 8 4|, [H,J=10 0 0 0 0 0 Of.
3 6 9 12 15 10 5 0000100
2 4 6 8 10 12 6 0000O0UO0O O
1 2 3 4 5 6 7 00000 0 1]

Matrix is bisymmetric [16, 17]. This means that to obtain all the elements of
a matrix, it is sufficient to derive formulas for the base triangle — the elements of
the upper half of the matrix between its main and secondary diagonals, including
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the diagonals. For example, for a matrix [C, ] with n = 2, these are nonzero
elements.

7 6 5 4 3 2 1
0 12 10 6 4 0
0 0 15 12 9 0 0
0 0 0 16 0 0 O
0 0 0 0000
0 0 0 0000
0 0 0 00 0 0

Further, a reflection on the diagonals can be obtained and the entire matrix:
>for j to 4*n-1 do
> for i from j+1 to 4*n-1 do
C[i,j]:=C[3,i]:
od:
od:
>for j to 4*n-1 do
> for i from j+1 to 4*n-1 do
C[i,4*n-j]:=C[4*n-i,3]:
od:
od:

The most time consuming process was the derivation of the elements of the
matrix. At the first stage, for a fixed number of panels n, it is necessary to derive
its common term in each row of the matrix within the base triangle. For small
values of n, the result cannot be obtained. The rgf_findrecur operator to obtain a
recurrent equation, which is satisfied by the elements, lacks the length of the
sequence. In this problem, this length is equal to eight. When n = 5, we have
recurrent equations of the form

Z,=4Z,,-6Z, ,+4Z, ,—Z, ,,
where Z, —is a string element. The following expressions are common terms of
strings derived from solving a recurrent equation using the rsolve operator

a, = (5j°—300j%+4000j)/3,

a, . =2(5]° —285]2 +3430 +3420) /3,
8, ., = (5j° —270j% + 2900 j + 6120),

8, ., =4(5]° — 2557 + 2410 +8160) /3,

At the second stage, a summary is made in rows (j)
A= (5j°—(315-151) j* —a, j + )i 1 3,
a, = 20i* —630i + 4610, (5)
a, =10i°® — 420i° + 4610i — 4200.
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For example, to obtain the coefficient «,, it was necessary to generalize the
sequence 4000, 3430, 2900, 2410, 1960, 1550 according to an equation
a,; =30, —30;_, + oy;_, Which gives the operator rgf_findrecur.

Similarly, when n = 6, we have the following lines

a,, = (6]°—432j2 +6912j)/3

8, ., =2(6]°—414]2 +6084 ) +6072) /3,
a,,.,=(6]° —396j° +5304 ] +11088),

8, ., =4(6]° —378j% + 4572 +15120) /3,

We summarize these expressions in rows (j)
II+]1 (6J _(450 18')] _051]+a0)|/3

= 24i% —900i + 7788, (6)

o, =12i° — 600i* + 7788i — 7200.

Omitting the intermediate actions, we give the first rows of the compliance
matrix with n =

II+]1 (7J _(609 21')] _0(1]+0(O)|/3
_ 28i2 ~1218i +12166, 0

a, =14i° —812i* +12166i —11368.

At the final stage, formulas (5) - (7) are summarized by the number of panels
n. For example, the sequence 4200, 7200, 11368, 16896, 23976, 32800, 43560,
56448 with n = 5, 6, ... , 12 free members in the coefficient has a common term

=8n°(L+4n), which is a solution of the equation of the eighth order

Yon =%on1—6Y0n2 4003~ Yona-
As a result, we have expressions for the elements of the basis triangle of the
matrix[A ] for any value of n:

Il+j—1 (n.l ( 2—3ni)j2+alj+a0)i/3,
=3n(1+4n), a, =4ni* - Bi+ B,
B, =6n(1+4n), B, =2n(16n* +12n +1),
= 2ni3 —]/Zi2 + yli —Yor
=4n(L+4n), 7, = By, ¥, =8n*(L+4n).

Much simpler, but also in three stages of generalization, the elements of the
matrix are obtained [C_]

Ciivja =@n—-i—j+Di,i=1..,2n, j=1,..4n-2i-1.
To obtain a diagonal unit sparse matrix [H_], the induction method is not
required. Its elements do not depend on n:
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h,=1-(-1")/2,i=1..4n-1.
Frequencies. Knowing the eigenvalues of the (3) compliance matrix, we
find the oscillation frequencies. Using the Eigenvalues operator of the Maple

system, we calculate the matrix eigenvalues for a truss with n = 1. The problem
has an exact solution:

4 = (% +¢* + 2h°) | (2EFh?), (8)
Joa= (687 +2C°+ 17+ +322° +162°C" + 2¢° | (2EFN"),

The same eigenvalues have matrices for other values of n. Hence, the
spectrum of the natural frequencies of the truss with two panels in the span (n = 1)
is included as a subset in the frequency spectra of the trusses with an arbitrary
number n. If we write out rather cumbersome formulas for the eigenvalues of the
truss matrix with n = 2, then it turns out that this spectrum is included in all the
spectra of trusses with even n. A more extensive analysis with trusses for various,
sufficiently large n, suggests that in general there is a property of embedding the
spectra of trusses with the number of panels n=k, and n=Kk, into the spectrum of

a truss with n=kxK,.

This assumption requires proof in the general case, but it can be to some
extent verified numerically. Consider an example of a truss with height h =4 m, a
panel length a = 3 m and stiffness of rods EF =2,0-10" kN. In the nodes of the
upper belt are mass m = 200 kg. Computing with the help of the Eigenvalues
operator of the Maple system, the eigenvalues of the matrix for a truss with a
different number of panels n, we get 4n — 1 frequencies of the vibration spectrum.
We note the oscillation frequencies of each truss (n =1, 3, 4, ..., 9) with dots on the
curve corresponding to this truss (Fig. 3).

The abscissa axis of the graph shows the numbers of k frequencies in the
spectrum, ordered in ascending order. Analyzing the graphs, we note the similarity
of curves constructed for trusses of the same height and with the same length a and
different numbers of panels. In addition, it is clear that the frequency spectra are
always divided into two parts with a sharp jump in the middle of the spectrum. The
average frequency corresponds to the eigenvalue (8). At lower altitudes (h = 4m),
the noted frequency jump in the middle of the spectrum almost disappears (Fig. 4).
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Figure 3 — Frequency spectra (rad/c) for trusses with different number of panels,

h=4m
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Figure 4 — Frequency spectra (rad/c) for trusses with different number of panels,

h=2m



[Toctymar. 2019. Ne3 ISSN 2414-4487

The frequency @, :1/1fmﬂ1 dependence graph, where the eigenvalue A, is

calculated by formula (8), constructed for the same values as the graphs in Figure
3, indicates the presence of a maximum of the average frequency depending on the
height h (Fig. 5).

@
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Figure 5 — The dependence of the average frequency of the height

The value of the height at which the frequency @, is maximum has a simple
dependence on the panel length a

h*=a((1/ 3)(36 + 21/3)?® 1) / (36 + 21/3)*® ~1,149a.

The maximum frequency (Fig. 3, 4) is almost independent of the number of
panels.
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