IX. TRILATERAL GERMAN-RUSSIAN-UKRAINIAN SEMINAR ON
HIGH TEMPERATURE SUPERCONDUCTIVITY
GABELBACH, GERMANY
SEPTEMBER 22-25, 1996

PROGRAM AND ABSTRACTS

Organized by

Friedrich-Schiller-Universität Jena
Institut für Festkörperphysik
AG Tieftemperaturphysik

and

supported by

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

within contract No. 13N6808
HTS SNS JOSEPHSON JUNCTIONS WITH NOUBLE METAL INTERLAYER

A.A. Golubov*, V.M. Krasnov* and M.Yu. Kupriyanov**

* Institute of Solid State Physics RAS, Chernogolovka, Moscow district, 142432 Russia.
** Institute of Nuclear Physics, Moscow State University, Moscow 119899 GSP, Russia

Work supported by Russian Ministry of Science and Technical Policy in the frame of the Program Actual Problems of Condensed Matter Physics Grant Н93018 and German BMFT Grant 13N6329

The experimental investigations of the properties of SNS HTS Josephson junctions[1] have shown that the excess current is comparable with the critical one I_c is often observed on their current-voltage characteristics (CVC) even if the width of the junction is smaller than the Josephson penetration depth. According to the modern theoretical models the excess current in SNS junctions is a direct consequence of the Andreev reflection of the quasiparticles from the SN interfaces. Since the Andreev reflection is a two particle process, this probability vanished proportionally to D^2, where D is the transparency of the SN boundaries. In the most favorable case, when the normal metal directly contacts to CuO ab-planes, this transparency $D_x < 0.1$. However in step edge SNS devices [2] one of the interfaces is perpendicular to the C axis of the HTS electrode and therefore has small transparency $D_x < 10^{-3}$. In this case $I_c = D_x D_y$, while $I_{ex} = D_x^2$ resulting in $I_{ex}/I_c = D_x/D_y < 1$.

The situation changes if one assumes that there are microshorts in the small-transparent interface and considers the boundary as a series of constrictions [3]. Each constriction provides a direct contact between normal metal and CuO planes in S-electrode and as a result has larger transparency. In this case SNS junction both I_c and I_{ex} are proportional to D_{ex}^2 and $I_{ex}/I_c = 1$. Thus small ballistic SNS junctions are suitable starting point to discuss more complicated models for HTS SNS junctions.

In the present paper the properties of ballistic constriction N-O-S-N and S-S-N types with disordered electrodes are analysed theoretically.

References
INELASTIC RESONANT TUNNELING IN S-Sm-S HIGH-Tc JUNCTIONS

I.A. Devyatov, M. Yu. Kupriyanov

Institute of Nuclear Physics, Moscow State University, Moscow 119899 GSP, Russia

Work supported by Russian Ministry of Science and Technical Policy in the frame of the Program Actual Problems of Condensed Matter Physics Grant 993018 and German BMBF Grant 13N6329

Inelastic resonant tunneling via a small number (n=2) of localized states (LS) provide quasiparticle current transport in variety of types high Tc Josephson junctions [1-3]. In frame of this point of view it is possible to explain a nonlinearity and an excess current usual in high-Tc Josephson junctions. The voltage and the temperature dependencies of junction conductance are in good quantitative agreement with the theory [2,3].

Nevertheless, the existing theory [4] describes inelastic resonant tunneling between normal electrodes across amorphous barrier. These effect result in sequential electron hopping through LS. The role of diverging superconducting density of states in superconducting electrodes did not taking into account [4].

In this paper the voltage dependent conductivity in S-Sm-S structure is calculated taking into account BCS density of states of superconducting electrodes. The difference with the existing theory in low voltage limit is demonstrated. At high voltage limit our results coincide with calculations for N-Sm-N structure [4].

References
Josephson junctions on the base of Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ thin films

FSU Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, D-07743 Jena, Germany
1 present address: IPHT Jena, Fröbelstieg 3, D-07743 Jena, Germany
2FSU Jena, Institut für Angewandte Physik, Max-Wien-Platz 1, D-07743 Jena, Germany
S.N. Polyakov, E.K. Kov'yev, M.Yu. Kupriyanov
Institute for Nuclear Research, Moscow State University, 119899 GSP, Moscow, Russia

Several kinds of Josephson junctions (JJ) based on thin films of the highly anisotropic BSCCO-2212 material will be presented. Additionally, to the fabricated a-grain boundary JJs including biepitaxial and bicrystalline we succeeded in the preparation of intrinsically stacked JJs basing on the intrinsic coupling between the CuO$_2$ planes in BSCCO material [1]. Bicrystalline JJs were prepared by PLD of BSCCO [2] onto commercially available SrTiO$_3$ bicrystal substrates followed by standard photolithographic procedures and ion milling of microbridges. Biepitaxial BSCCO films were prepared by covering a half of the single crystal SrTiO$_3$ substrate with a MgO seed layer and depositing the superconducting film onto this surface. The MgO seed layer causes a 45° rotation of the a-b plane relative to the pure substrate area [3]. The fabricated JJs worked up to temperatures of about 75 K. They showed microwave response in the current voltage characteristics (IVCs) and modulation of the critical current with applied magnetic flux. dc-SQUIDs were prepared to investigate the temperature dependence of the BSCCO magnetic penetration depth [4,5].

Using an advanced technology we succeeded in fabrication of intrinsically stacked JJs [6,7]. We will present the IVCs of such junctions for the BSCCO material and their response in external magnetic field. The IVCs can be described as a sum IVC of many resistively shunted JJs [8].

This work was financially supported by the German BMBF under contract 13N5924A, 13N6132, and 13N6808, by the Graduiertenförderung des Freistaates Thüringen, and by the Russian Scientific Technical Program “Actual Problems of Condensed Matter Physics” under grant N93018.

References: