МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

На правах рукописи

ШУР МАРИЯ ЮРЬЕВНА

ЭКСПЕРИМЕНТАЛЬНОЕ МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ МЕТАБАЗИТОВ С УЛЬТРАМАФИТАМИ В ЗОНАХ СУБДУКЦИИ

25.00.04 – Петрология, вулканология

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата геолого-минералогических наук

Москва – 2019

Работа выполнена в Федеральном государственном образовательном учреждении высшего Московском государственном университете имени М.В. образования Ломоносова (геологический факультет, кафедра петрологии).

ор геолого-минералогических наук, ующий кафедрой петрологии геологического льтета МГУ имени М.В. Ломоносова.	
ующий кафедрой петрологии геологического пьтета МГУ имени М.В. Ломоносова.	
льтета МГУ имени М.В. Ломоносова.	
ович Леонио Яковлевич,	
доктор геолого-минералогических наук,	
корреспондент РАН, Институт геологии	
рудных месторождений, петрографии,	
ралогии и геохимии РАН, главный научный удник	
ков Андрей Юрьевич.	
10р геолого-минералогических начк.	
рессор РАН. кафедра геохимии геологического	
ильтета <i>МГУ</i> имени М.В. Ломоносова,	
кии Антон Фарисович,	
пор геолого-минералогических наук, бессор РАН, лаборатория фазовых	
и при силостих даалашиях Института гоологии	
и при высоких оавлениях института геологии чералогии им. В.С. Соболева СО РАН, ведущий ный сотрудник.	

Защита диссертации состоится 23 мая 2019 года в 14-30 на заседании диссертационного совета МГУ.04.02 Московского государственного университета имени М.В. Ломоносова по адресу: 119991, г. Москва, Ленинские горы д. 1, МГУ имени М.В. Ломоносова, Геологический факультет, ауд. 415.

E-mail: msu.04.02@mail.ru

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на сайте ИАС «ИСТИНА»: https://istina.msu.ru/dissertations/189650871/

Автореферат разослан «19» апреля 2019 г.

Ученый секретарь диссертационного совета МГУ.04.02 доктор химических наук, профессор

Бен Е.Л. Белоконева

Введение

Актуальность работы

Флюиды и расплавы, выделяющиеся из субдуцирующих океанических плит, во многом определяют и контролируют магматизм островных дуг и активных континентальных окраин (Добрецов, 2010; Добрецов и др., 2017; Hermann et al., 2006; Manning, 2004; Scambelluri and Philippot, 2001; Spandler, Pirard, 2013; Schmidt, Poli, 2014; Zheng et al., 2016; Schmidt, Jagoutz, 2017). При этом о характере, степени и масштабах преобразования мантии под воздействием весьма внушительных объемов восходящих расплавов и флюидов (годовые бюджеты H₂O и CO₂ исчисляются миллиардами и сотнями миллионов тонн, соответственно (Schmidt, Poli, 1998; Jerrard, 2003; Kelemen, Manning, 2015) известно пока крайне мало (Zheng et al., 2016). Сведения о преобразовании самих жидкостей вследствие миграции через породы мантии также весьма ограничены (Spandler, Pirard, 2013).

Масштаб переноса элементов из пород субдуцирующей плиты и степень метасоматоза пород мантийного клина в значительной степени зависят от характера флюидного потока. Предлагаются разные модели способов миграции жидкостей в мантийном клине – (а) пропитывающие потоки с минеральными реакциями (Iwamori, 1998; Arcay et al., 2005; Cagnioncle et al., 2007; Hebert et al., 2009; Iwamori & Nakakuki, 2013); (б) пропитывающие потоки без взаимодействия с вмещающими породами (Rüpke et al., 2004; van Keken et al., 2011); (в) фокусированные потоки (Hack & Thompson, 2011); (г) миграции жидкостей в виде диапира без взаимодействия с вмещающими породами (Tatsumi et al., 1983; Furukawa, 1993; Gerya and Yuen, 2003; Behn et al., 2011).

В качестве основных режимов миграции флюида (расплава) в мантийном клине предполагаются пропитывающий (*pervasive*) и фокусированный (*channelized*) потоки (Manning, 2004; Konrad-Schmolke et al., 2011; Mibe et al., 2011). В пропитывающем потоке эффективное соотношение флюида и породы относительно низкое, и флюид активно взаимодействует с минералами перидотита, изменяя их и постепенно теряя компоненты, необходимые для роста метасоматических минералов. Фокусированный поток характеризуется высоким отношением флюида и породы и достаточно высокой скоростью перемещения, что препятствует взаимодействию флюида с породами, через которые он проходит, благодаря чему первоначальный состав флюида в значительной

степени сохраняется. На данный момент не существует консенсуса и убедительных аргументов в пользу того, какой именно способ миграции флюида – пропитывающий или фокусированный преобладает в породах мантийного клина (например, Chen et al., 2012; Pirard and Hermann, 2015; Spandler and Pirard, 2013).

Важнейшими источниками информации о процессах в зонах субдукции являются экспериментальное и численное моделирование. Соответствующие исследования, как правило, затрагивают процессы, происходящие лишь в одном из сегментов субдукционной системы – в коре (Schmidt and Poli, 1998; Kerrick, Connolly, 2001; Gorman et al., 2006; Poli et al., 2009; Hermann, Spandler, 2008) или в мантийном клине (Ulmer, 2001; Wuender, Meltzer, 2003; Grove et al., 2006; Fumagalli et al., 2009), и потому не дают полного представления о масштабе и характере процессов взаимодействия между породами коры и мантии.

Экспериментальное изучение мантийного метасоматоза, связанного с выносом компонентов субдуцирующей части океанической плиты, началось в 80-е и 90-е годы прошлого века (Sekine, Wyllie, 1982; Ходоревская, Жариков, 1997; Rapp et al., 1999) и заметно активизировалось в последнее время (например, Перчук, Корепанова, 2011; Перчук, Япаскурт, 2013; Pirard, Hermann, 2015a, 2015b; Bulatov et al., 2014; Grant et al., 2016; Gervasoni et al., 2017; Woodland et al., 2018). Эксперименты, как правило, выполняются при *P-T* условиях, отвечающих границе кора–мантия в поддуговых (*subarc*) и задуговых (*back-arc*) участках зон субдукции. Большинство вышеуказанных экспериментов выполнено с единственным мантийным субстратом и единственным метасоматическим агентом, поэтому влияние состава мантийных пород на характер метасоматических преобразований и на состав остаточного флюида остается невыясненным.

Цель и задачи работы

Целью данной работы является выявление особенностей метасоматического и метаморфического преобразования перидотитов и пироксенитов мантийного клина под воздействием флюидов и расплавов, выделяющихся из метабазитов погружающейся плиты, а также влияния этих преобразований на состав мигрирующих жидкостей.

Для достижения поставленной цели были решены следующие задачи:

 Подготовка и проведение экспериментов по частичному плавлению аналогов субдуцирующей коры при *P*-*T* условиях зон субдукции;

- Подготовка и проведение экспериментов по взаимодействию между разными типами пород субдуцирующей плиты и мантийного клина при *P-T* условиях зон субдукции;
- Изучение продуктов опытов с помощью сканирующей электронной микроскопии, электронно-зондового микроанализа и рамановской спектроскопии;
- Построение профилей распределения петрогенных компонентов в продуктах опытов;
- Изучение содержания редких элементов в продуктах опытов с помощью массспектрометрии с индуктивно связанной плазмой (LA-ICP-MS);
- Сопоставление экспериментальных результатов с данными по природным объектам.

Научная новизна

Выполнено первое систематическое экспериментальное моделирование преобразования и взаимодействия разных пород погружающейся плиты (карбонатсодержащие амфиболит и глаукофановый сланец) и вышележащей мантии (дунит, гарцбургит, лерцолит, вебстерит) при *P-T* условиях зоны субдукции.

Предложен новый механизм образования гарцбургитов – из лерцолитов при миграции через них кислых расплавов (или флюидов, содержащих SiO₂), и предложен геохимический критерий диагностики гарцбургитов такого происхождения.

Впервые экспериментально продемонстрировано, что петрогенные и редкоземельные элементы в зонах субдукции могут переноситься не только в направлении восходящего флюидного потока из метабазитов в вышележащие мантийные перидотиты, но и в обратном направлении.

Впервые показано, что мантийный субстрат влияет на то, какие петрогенные и флюидные компоненты будут выноситься из метабазитов субдуцирующей коры.

Впервые экспериментально продемонстрировано, что распределение редкоземельных элементов в перидотитах при их метасоматозе может определяться механизмом хроматографического фракционирования.

Для мантийных эклогитов (группа A, Coleman et al., 1965), которые встречаются во включениях в кимберлитах, экспериментально смоделирован механизм образования на фронте реакционного взаимодействия кислого расплава, выплавленного из корового матабазита, с перидотитом мантийного клина.

Предложена новая экспериментальная методика моделирования субдукционных процессов в ампулах без верхней крышки, обеспечивающая одноактное прохождение флюидов и расплавов через слои.

Практическая значимость

Результаты работы раскрывают фундаментальные закономерности преобразования пород мантийного клина в зависимости от их минерального состава и типа потока проходящих через них флюидов и расплавов, выделяющихся из субдуцирующих плит. Они могут применяться при исследованиях островодужного магматизма, магматизма на активных окраинах, а также мантийных пород из метаморфических комплексов высокого давления.

Фактический материал

В основе работы лежат результаты экспериментов, произведенных автором в составе научного коллектива на установке "цилиндр-поршень" в Институте экспериментальной минералогии им. Д.С. Коржинского РАН в г. Черноголовка. По теме работы проведено 45 опытов продолжительностью от 68 до 283 часов, получено более 1500 микрозондовых анализов минералов и стекол, более 400 фотографий в отраженных электронах, 60 анализов LA-ICP-MS, 5 спектров комбинационного рассеяния света в минералах SiO₂, 4 определения валового химического состава пород методом рентгено-флуоресцентного анализа.

Защищаемые положения

1. Экспериментальное моделирование взаимодействия амфиболита (аналог коры) и перидотитов (аналоги пород мантийного клина) в зоне субдукции показало, что перенос компонентов из эклогитизированного амфиболита в перидотиты может осуществляться в едином процессе в режимах пропитывающего, фокусированного и диффузионного потоков при участии водосодержащего флюида или расплава. Продуктами метасоматического преобразования дунитов при пропитывающем потоке являются гарцбургиты, фокусированном – эклогиты, диффузионном – ортопироксениты.

2. Экспериментально установлено, что лерцолиты мантийного клина под действием водосодержащего кремнекислого расплава (флюида), выделившегося при эклогитизации

6

амфиболита, могут превращаться в гарцбургиты. При этом кальций накапливается в метабазитовом слое – в направлении противоположном градиенту концентрации кальция и восходящим флюидным потокам.

3. В экспериментах с участием карбонатсодержащего глаукофанового сланца (аналог субдуцирующей коры) и модельных ультрамафитов мантийного клина (вебстерит и гарцбургит) установлено, что состав вышележащего мантийного субстрата оказывает существенное влияние на то, какие компоненты будут выноситься из корового вещества. Минеральные парагенезисы указывают на привнос в вебстерит Na₂O, тогда как гарцбургит обогащается K₂O, H₂O и CO₂.

Апробация работы

По теме диссертационной работы были опубликованы 4 статьи в журналах из списков «Scopus» или «Web of Science» и тезисы 12 докладов. Основные результаты работы докладывались на конференциях: «Проблемы магматической и метаморфической петрологии, геодинамики и происхождения алмазов», Новосибирск, Россия (2018); «12th International Eclogite Conference High- and ultrahigh-pressure rocks – keys to lithosphere dynamics through geologic time» Åre, Швеция (2017); «26th Annual V.M. Goldschmidt Conference» Yokohama, Япония (2016); XII Всероссийское петрографическое совещание «Петрография магматических и метаморфических горных пород», Петрозаводск (2015); Х Международная научная Школа по наукам о Земле имени профессора Л.Л. Перчука (I.S.E.S.-2015) Миасс (2015); «21st International Mineralogical Association Meeting (IMA-2014)», Johannesburg, South Africa, ЮАР (2014); «Всероссийский ежегодный семинар по экспериментальной минералогии, петрологии и геохимии (ВЕСЭМПГ-2014)», Москва, ГЕОХИ РАН (2014); Четырнадцатая международная конференция «Физико-химические и петрофизические исследования в науках о Земле» (2013); «Всероссийский ежегодный семинар по экспериментальной минералогии, петрологии и геохимии (ВЕСЭМПГ-2013)», ГЕОХИ РАН, Москва(2013); «IX Международная школа по наукам о Земле имени профессора Л.Л. Перчука», Одесса (2013); Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов – 2014».

Структура и объем диссертации

Диссертационная работа, общим объемом 160 машинописных страниц, состоит из введения, 6 глав, заключения и списка литературы, содержит 60 рисунков и 17 таблиц. Список литературы включает 222 наименования.

Благодарности

Автор выражает большую благодарность научному руководителю д.г.-м.н. А.Л. Перчуку за всестороннюю помощь и постоянную поддержку в процессе работы над статьями и диссертацией; В.М. Полукееву и А.А. Сердюк за помощь в проведении экспериментов; В.О. Япаскурту, Н.Г. Зиновьевой, В.Д. Щербакову, Н.Н. Коротаевой, Е.В. Гусевой, А.Н. Некрасову и К.В. Вану за помощь в аналитических исследованиях, С.Т. Подгорновой за постоянную готовность помочь в вопросах оформления работ и не только, О.Г. Сафонову за предоставление образца шпинелевого лерцолита и всестороннее содействие работе в ИЭМ, С.М. Толчинскому за помощь в подготовке образцов, W.L.Griffin и S.E.M. Gain за научное сотрудничество и проведение анализов редких элементов, В.М. Козловскому за помощь в подготовке образцов исходных веществ, В.Д. Щербакову, А.В. Боброву и А.А. Арискину за обсуждение работы и ценные рекомендации по ее улучшению, всем сотрудникам кафедры петрологии геологического факультета за интерес к работе и доброе отношение.

В исследованиях использовалось оборудование, приобретенное по Программе развития Московского университета.

Кроме того, автор благодарит А.Е. Петрунина и А.В. Загурного за всестороннюю помощь и поддержку, всех членов своей семьи, в том числе родителей Ю.А. Шура и Т.Л.Дритову, сестру Д.Ю. Шур и детей А.Е. Шура, Я.А. Скоблова и С.А. Скоблову за поддержку и внимание к работе, а А.Ю. Скоблова также за помощь в подготовке порошка исходного вещества.

СТРУКТУРА И СОДЕРЖАНИЕ РАБОТЫ

Глава 1. Литературный обзор

В данной главе приводится краткий обзор работ по изучению процессов взаимодействия флюидов и расплавов, выделяющихся из пород субдуцирующей океанической коры с породами мантийного клина. Рассматриваются как работы по изучению природных объектов (ксенолитов в надсубдукционных вулканитах, гипербазитов, фрагментов надсубдукционной альпинотипных мантии ИЗ серпентинитовых и сланцевых меланжей), так и экспериментальные исследования, а термомеханическому и также работы по численному термодинамическому моделированию процессов, происходящих в зонах субдукции.

Глава 2. Методика проведения экспериментов

В главе описаны исходные вещества, использовавшиеся в экспериментах в качестве модельных аналогов пород субдуцирующей коры (карбонат-содержащие глаукофановый сланец и гранатовый амфиболит) и мантии (дунит, гарцбургит, лерцолит и вебстерит) и методика приготовления порошков. Приводятся валовые составы исходных пород, полученные методом рентгено-флуоресцентного анализа и данные электронномикрозондового анализа исходных породообразующих минералов. Характеризуется материал (Pt и сплав Ag₃₀Pd₇₀) и размеры ампул. Описан способ закладки в ампулы исходных веществ – в большинстве опытов внутреннее наполнение ампул представляло собой "сэндвич", слои которого имели примерно равные объемные соотношения: вниз помещались породы, являвшиеся модельными аналогами пород субдуцирующего слэба, сверху – модельные аналоги пород мантийного клина, что в общем случае соответствует взаимному расположению коровых и мантийных пород в поддуговой области зон субдукции. В большинстве экспериментов верхняя крышка ампул была негерметичной либо отсутствовала, благодаря чему создавались условия максимально приближенные к природным, когда флюид, выделяющийся при дегидратации пород слэба одноактно проходит через вещество мантийного клина и покидает систему. Описано оборудование, при помощи которого проводились эксперименты – установка цилиндр-поршень с соляной ячейкой высокого давления с графитовым нагревателем.

Опыты производились в температурном диапазоне 750 - 900 °C и давлении 2,9 ГПа, что соответствует, как верхней глубине дуги [Tatsumi and Eggins, 1995], так и геотермам на границе кора-мантия, полученным с помощью термомеханического моделирования для горячих зон субдукции (Рис. 2-1). Длительность экспериментов составляла 68-283

часов. Описаны методики проведения экспериментов и подготовки образцов к исследованиям.

Рис. 2-1. *P-T* диаграмма с условиями экспериментов, параметрами пика метаморфизма эксгумированных высокобарных и ультравысокобарных эклогитов и геотермами на поверхности слэбов (по Spandler, Pirard, 2013 с упрощениями).

Глава 3. Методы исследования

В главе описаны методы аналитических исследований, использовавшиеся в работе (оптическая микроскпия, электронная микроскопия и рентгеноспектральный микроанализ, рентгенофлуоресцентный анализ, колебательная (рамановская) спектроскопия, спектрометрия с индуктивно-связанной плазмой), а также метод расчета фазовых диаграмм для заданного валового состава породы при помощи программного комплекса PerpleX (версия 6.7.7, Connolly, 2005).

Глава 4. Эксперименты в системе гранатовый амфиболит– ультрамафит 4.1. Преобразования гранатового амфиболита

Во всех опытах происходила эклогитизация исходного амфиболита с образованием граната, омфацита, кварца, карбоната, фенгита и выделением водного флюида (при $T \le 800^{\circ}$ C) или расплава (при $T \ge 850^{\circ}$ C). При этом расплав и карбонаты мигрировали в вышележащий ультрамафитовый слой и в метабазитовой части не сохранялись, за исключением опытов по плавлению амфиболита в герметичных ампулах без ультрамафитового слоя, где ввиду отсутствия возможности миграции, они заполняют межзерновые пространства среди новообразованных минералов эклогитового парагенезиса (Рис. 4.1, а).

В сэндвич-экспериментах с негерметичной верхней крышкой парагенезис пристеночных зон апо-амфиболитового слоя толщиной 30-60 мкм отличается от состава основного объема слоя. Пристеночные участки либо лишены граната, либо содержат его в меньшем количестве, и представляют собой кварц-фенгит-омфацитовый парагенезис (Рис. 4.1, в, г). Отличие пристеночных зон от основного объема метабазитового слоя наблюдается не только в случае использования платиновых ампул, когда это может быть связано с потерей Fe в стенки ампулы, но и в опытах с серебро-палладиевыми ампулами, ведущими себя индифферентно. Выделявшийся при превращении амфиболит → эклогит водно-углекислый флюид, вызывает помимо дегидратационного плавления (в опытах с температурой 850 °C и выше), преобразования как внутри перидотитового слоя, так и на его контакте с амфиболитом и новообразованным расплавом.

Рис. 4.1 Фрагменты слоя карбонатсодержащего гранатового амфиболита (метабазита) после опытов. (а) Эклогитовый парагенезис с карбонатом и расплавом (с пузырьками жидкости) в опыте с чистым метабазитом при 900°С - 2,9ГПа (Sub86); (б) Эклогитовый парагенезис в центральной части метабазитового слоя в сэндвич-эксперименте при 900°С - 2,9 ГПа (Sub72), карбонат и расплав отсутствуют; (в) Пристеночная зона метабазитового слоя в сэндвич-эксперименте при 900°С - 2,9 ГПа (Sub72), карбонат и расплав отсутствуют; (в) Пристеночная зона метабазитового слоя в сэндвич-эксперименте при 850°С - 2,9 ГПа (Sub55). Большая стрелка указывает на верхушку ампулы. Видна узкая область фенгит-омфацитового парагенезиса у стенки ампулы. Расплав пропитал только одну из углеродных ловушек; (г) Пристеночная зона метабазитового слоя в сэндвич-эксперименте при 850°С - 2,9 ГПа (Sub57). Видна зона кварц-фенгит-омфацитового парагенезиса у стенки ампулы. Стрелки показывают направление фокусированного флюидного потока. Изображения в обратнорассеянных электронах.

4.2. Реакционные зоны

На границах слоев амфиболит-ультрамафит развиваются реакционные зоны с переменными мощностями, химическим составом и минеральными парагенезисами (Рис. 4.2-1). Реакционные зоны шире в опытах без расплава (с более низкой температурой), чем в экспериментах с расплавом.

Реакционные зоны в основании дунитового слоя состоят преимущественно из ортопироксена, выше располагается зона, в которой присутствуют как новообразованные ортопироксен и магнезит, так и реликты оливина (Рис. 4.2-1). В основании реакционной зоны со стороны гранатового амфиболита встречаются гранат и флогопит.

Рис. 4.2-1. Метасоматические реакционные зоны. (а) Ортопироксеновая реакционная зона в основании дунитового слоя в опыте без расплава при 750°С - 2,9 ГПа (Sub56). (б) Омфацитгранатовая реакционная зона в амфиболитовом слое и ортопироксен-магнезитовая в лерцолитовом слое, в опыте при температуре 900°С и 2,9 ГПа (Sub72). Шкала показывает ширину реакционной зоны в перидотите. Изображение в обратнорассеянных электронах.

Реакционные зоны гранат-ортопироксен-магнезитового и ортопироксенмагнезитового состава развиваются в нижней части лерцолитового слоя при 800 и 900° С соответственно. Гранат + омфацит слагают метабазитовую часть реакционной зоны.

Реакционные зоны развиваются также между перидотитами и обособлениями расплавов в боковых частях ампул. Обычно они сложены несколькими минеральными зонами, последовательно сменяющими друг друга. Во всех опытах, в которых образуется расплав, вне зависимости от температуры и состава ультрамафита, внешние, контактирующие с расплавом зоны реакционных кайм, сложены магматическим омфацитом, а внутренние, контактирующие с дунитом, зоны имеют магнезитортопироксеновый состав, идентичный реакционным зонам на контакте метабазита с ультрамафитом и образуются метасоматическим путем. В зависимости от температуры экспериментов и состава перидотитового слоя, прочие минералы, присутствующие в реакционных зонах слегка различаются. Так, в реакционных каймах опытов при 850 °С с дунитовым верхним слоем реакционная зона состоит из четырех зон: омфацит-флогопит флогопит | флогопит + ортопироксен | ортопироксен-магнезит (Рис. 4.2-2, а). Гранат сосуществует с омфацитом при отсутствии флогопита в опытах с верхним слоем, сложенным лерцолитом при той же температуре, и при более высоких температурах во всех опытах (Рис. 4.2-2, б). Стекло обычно содержит множество субмикронных пузырьков, равномерно распределенных в центральных частях обособлений расплава.

Рис. 4.2-2 Реакционные зоны на контакте кислого расплава с перидотитами. (а) Зональность на контакте с дунитом в опыте при 850°С и 2,9 ГПа (Sub55). (б) Биминеральный эклогитовый парагенезис на контакте с лерцолитом при 850°С - 2,9 ГПа (Sub95). Стрелки показывают направление фокусированного потока. Изображения в обратнорассеянных электронах.

4.3. Преобразования ультрамафитовых слоев

Новообразованные минералы появляются по границам зерен в слоях перидотитов выше реакционных зон за счет компонентов, привносимых флюидом, выделяющимся при эклогитизации амфиболита.

Дунитовые слои во всех опытах содержат развивающийся по границам зерен ортопироксен, сосуществующий с мелкими червеобразными выделениями магнезита. Кроме того, в опытах при 750 °C появляется хлорит (Рис. 4.2.-1), а при 800-900 °C – гранат (Рис. 4.3-1).

Рис. 4.3-1. Преобразования в исходно мономинеральном дунитовом слое в опыте при 800°С – 2,9ГПа (Sub52): а) изображение в обратнорассеянных электронах; б) фазовая карта, соотношения минералов соответствуют гранатсодержащему гарцбургиту.

Количество новообразованного ортопироксена часто превышает 10%, граната – 2-3 %, порода с таким относительным содержанием минералов формально может быть названа гранатсодержащим гарцбургитом, хотя генетически оливин в ней не имеет ничего общего с остальными минералами.

Новообразованные ортопироксен, гранат и магнезит типичны и для лерцолитового слоя (Рис. 4.3-2). Мельчайшие выделения обогащенной К и обедненной Si фазы, интерпретируемой, как флогопит, обнаруживаются на границах зерен в слое лерцолита при 800 °C. В продуктах всех опытов с участием лерцолита образуется зона, свободная от клинопироксена, состоящая из исходного ортопироксена, частично замещенного

оливина и вновь образованных граната, ортопироксена и магнезита (Рис. 4.3-2).

Таким образом, дунит и лерцолит под воздействием кислых расплавов (флюидов) в результате экспериментов превращаются в одну и ту же породу – гарцбургит.

Рис. 4.3-2. Гранат-гарцбургитовая ассоциация, возникшая при метасоматозе в слое исходного лерцолита в опыте при 800°С – 2,9 ГПа (Sub60). Эклогитовая минеральная ассоциация, развитая в метабазитовом слое, обозначена как эклогит. Стрелка указывает направление потока жидкости (расплава) к верхней части ампулы. Изображение в обратнорассеянных электронах.

4.4. Составы минералов

Приводятся представительные электронно-зондовые микроанализы всех минералов и стекол из разных структурных участков ампул. Для сосуществующих омфацита и граната приводятся оценки равновесной температуры при 2,9 ГПа по нескольким геотермометрам, соответствующие температурам экспериментов в пределах точности метода. Охарактеризованы вариации состава всех минералов, встречающихся в продуктах опытов, главными среди которых являются нижеследующие. Оливин является самым реакционно - активным из минералов перидотитов в экспериментах и частично или полностью расходуется на образование ортопироксена, граната и магнезита. Изменений состава оливина ($X_{Mg} = 0.93$ в дуните и $X_{Mg} = 0.91$ в лерцолите) после опытов обнаружено не было (включая % NiO на контактах с вновь образованным Opx).

Ортопироксен является главным минералом реакционных зон и новообразований в перидотитовых слоях. Большинство зерен такого новообразованного ортопироксена слишком малы для точного определения состава. Состав ортопироксена в реакционных зонах является переменным ($X_{Mg} = 0.87-0.96$, $Al_2O_3 = 0.98-2.75$ мас.%, NiO = 0.17-0.31 мас.%) и зависит от его расположения в ампуле.

Клинопироксен является главным минералом апо-амфиболитового эклогита и реакционных зон на контактах расплав/перидотит. Весь новообразованный клинопироксен представляет собой омфацит ($X_{Jd} = 0,30-0,45$). Повышение температуры эксперимента приводит к снижению X_{Mg} и X_{Jd} в метабазите. Омфацит из реакционных зон обычно обогащен X_{Mg} и обеднен X_{Jd} по сравнению с эклогитовым.

Гранат встречается преимущественно в метабазитовом слое и по границам зерен в слоях перидотита. Новообразованные гранаты представляют собой твердые растворы альмандин-пироп-гроссулярового ряда. Гранаты в слоях метабазита имеют $X_{Mg} = 0,25$ -0,37 и $X_{Ca} = 0,21$ -0,25. Гранаты в реакционных зонах и матрице перидотита слишком малы для количественного анализа.

4.5. Составы расплавов

Приводятся данные по содержанию главных элементов в закаленном расплаве (стеклах), полученные с помощью электронной микроскопии расфокусированным пучком электронов. Расплавы относительно однородны ($1\sigma = 10\%$) и имеют риолитовый состав (Рис. 4.5-1) с 0,02-0,22% хлора и 84-90% аналитических сумм (предполагается, что недостаток до 100% показывает содержание воды и углекислоты).

Приводятся данные по содержанию в расплавах (стеклах) редких элементов, полученные при помощи LA-ICP-MS. Расплавы обогащены LREE (легкими редкоземельными элементами) и LILE (крупноионными литофильными элементами), сильно истощены Y и HREE (тяжелыми редкоземельными элементами) и имеют более высокие отношения Sr / Y и La / Yb, чем островодужные андезиты, дациты и риолиты (Рис.4.5-2, 4.5-3).

Представлены графики распределения редких элементов в экспериментальных расплавах в сравнении со средними составами различных адакитов и ТТГ (по Martin et al., 2005).

Рис. 4.5-1. Составы первичных и гибридизированных экспериментальных расплавов (стекол).

Рис. 4.5-2. Характер распределения редких элементов в экспериментальных расплавах в сравнении со средним составом высококремнистых адакитов (HSA) (по Martin et al., 2005). Все расплавы нормализованы на содержания в примитивной мантии (McDonough et al., 1992).

Рис. 4.5-3. Геохимические особенности первичных и гибридизированных экспериментальных расплавов по сравнению с различными типами адакитов и экспериментальными расплавами по Rapp et al. (1999). Поля природных адакитовых составов даны по: (a) Castillo (2006); (б) Martin et al. (2005).

4.6. Профили содержания главных петрогенных компонентов

В разделе представлены изменения содержаний окислов главных петрогенных элементов вдоль ампул в опытах взаимодействия карбонат-содержащего гранатового амфиболита с дунитом (Sub52) и лерцолитом (Sub60) при 800 °C и 2,9 ГПа, на основе которых можно судить о привносе-выносе компонентов. Данные были получены при помощи количественного рентгеновского картирования области исходного контакта метабазит-перидотит и метода интегральных профилей.

Показано, что по мере приближения к контакту с метабазитом в слое лерцолита повышается содержание SiO₂, Al₂O₃ и снижается содержание FeO и CaO (Рис. 4.6-1, а).

Рис. 4.6-1. Интегральные профили оксидов на границе раздела метабазит-лерцолит в продуктах опыта Sub60 (800°C - 2,9ГПа) в области, изображенной на рис.4.3-2. (а) Основные мигрирующие оксиды. (б) CaO. Стрелками показаны направления движения CaO и флюида. На врезке показан профиль, нормализованный к содержанию MgO. Горизонтальные пунктирные линии – исходные концентрации соответствующих оксидов по данным XRF. Заштрихованные области (б) показывают обогащение и снижение содержания CaO. Са диффундирует в сторону метабазита (выделено зеленым цветом), то есть против направления потока флюида и переноса большинства элементов, а также исходного градиента концентраций.

Резкое снижение содержания CaO в лерцолитовом слое на расстоянии около 125 мкм от контакта с амфиболитовым слоем связано с разложением клинопироксена.

Профиль содержания CaO не комплементарен содержанию никакого другого петрогенного окисла при нормировании всех оксидов на MgO, (врезка на Puc. 4.6-1, б), что указывает на соответствие профиля реальному распределению CaO в ампуле. Расчеты баланса масс показывают, что потеря ~ 60% CaO в интегральном профиле (сопровождающая распад клинопироксена) компенсируется обогащением CaO в гранатомфацитовой зоне метабазитового слоя, указывая на диффузию Ca в сторону метабазита против исходного градиента концентраций и направления основного флюидного потока.

4.7. Профили содержания редких элементов

В разделе приведены анализы и профили содержания редких элементов в продуктах четырех сэндвич-экспериментов по взаимодействию карбонатсодержащего гранатового амфиболита с дунитом при температурах от 750 до 900 °C (Sub55, Sub56, Sub73) и лерцолитом при 800°C (Sub60), полученные с помощью LA-ICP-MS. Описаны особенности распределения редких элементов в каждом из опытов. Показано, что распределение РЗЭ зависит от температуры эксперимента. Так, в продуктах опыта при 750 и 850°C происходит в перемещении LREE из амфиболита в дунит (Рис. 4.7-1, а). Однако, при 900 °C происходит снижение содержания LREE и в дуните, (Рис. 4.7-1, б), что объясняется хроматографическим фракционированием в пропитывающем потоке флюида.

Рис. 4.7-1. Содержание редких элементов в исходных дуните и амфиболите и профили распределения РЗЭ в слоях ампул: (а) опыт Sub56 (750°C - 2,9 ГПа); (б) опыт Sub73 (900°C - 2,9ГПа). Номера соответствуют номерам анализов в тексте дисссертации.

Рис. 4.7-2. Содержание редких элементов в исходных лерцолите и амфиболите и профили распределения РЗЭ в слоях ампул в опыте Sub60 (800°C - 2,9ГПа). Номера соответствуют номерам анализов в тексте диссертации.

В опыте с лерцолитом при 800 °С происходит перераспределение LREE из лерцолита в метабазит (Рис. 4.7-2).

4.8. Интерпретация процессов в ампулах

В разделе резюмируются основные черты, характерные для продуктов экспериментов с амфиболитом, обсуждаются критерии и приводятся аргументы в пользу достижения равновесия в опытах. Предполагаются причины и процессы, приводящие к наблюдаемым результатам, в том числе различный характер потоков флюида (расплава) из метабазита в вышележащие породы мантийного клина (Рис. 4.8-1) и минеральные реакции, протекающие в опытах. Выделяются характерные особенности каждого из типов одновременно действующих потоков – пропитывающий поток проявляется в росте граната, магнезита и ортопироксена по межзерновым границам в перидотитах.

Рис. 4.8-1. Схематическое изображение взаимодействия метабазита с дунитом и лерцолитом в ампулах. (а) Исходное строение ампул с верхними слоями дунита и лерцолита. (б) Обобщенные продукты опытов, направления и типы потоков жидкости. (в) Обобщенные минеральные парагенезисы (не в масштабе) в продуктах опытов.

Фокусированный поток приводит к образованию узких зон фенгитсодержащего парагенезиса вдоль стенок ампул в метабазите и скоплений расплава в перидотите, отделенных от него реакционными зонами с омфацитом.

Диффузионный поток, масштаб которого намного меньше, формирует реакционные зоны на исходном контакте метабазит-перидотит. Обсуждается поведение карбонатов в экспериментах и определяющие его факторы, а также критерии оценки степени открытости системы.

Глава 5. Эксперименты в системе глаукофановый сланец – ультрамафит 5.1. Преобразования глаукофанового сланца

В глаукофановом сланце проявлена эклогитизация исходных минералов с выделением карбонатно-водного флюида (расплава). В продуктах всех экспериментов метабазитовые слои сложены преимущественно зернами исходного глаукофана, по границам которых развивается агрегат мелких зерен омфацита с редкими зернами ксеноморфного кварца и идиоморфного граната (Рис. 5.1-1) Степень преобразования исходного глаукофанового сланца возрастает по мере приближения к контакту с ультрамафитом.

Минеральный состав новоовообразованного эклогитового парагенезиса в заметной степени зависит от состава вышележащего ультрамафита. Так, в метабазитовом слое сохраняется карбонат и присутствуют К-содержащие фазы лишь в тех случаях, когда вышележащий ультрамафитовый слой представлен вебстеритом.

Рис. 5.1-1. Преобразования глаукофанового сланца в опытах при 800°С – 2,9ГПа. Изображение в обратнорассеянных электронах. Виден рост кристаллов омфацита, граната и кварца по границам зерен: (а) опыт с вышележащим гарцбургитовым слоем; (б) опыт с вышележащим вебстеритовым слоем, видны многочисленные кристаллы магнезита (Mgs).

5.2. Реакционные зоны

В разделе описаны реакционные зоны, образующиеся в результате флюидного воздействия на ультрамафитовый субстрат (дуниты, гарцбургиты и вебстериты) и зависимость их минерального парагенезиса от состава протолита и компонентов, привносимых флюидом (расплавом).

В реакционных зонах по гарцбургиту наблюдаются реликты исходного ортопироксена, сцементированные таблитчатыми и игольчатыми кристаллами новообразованного ортопироксена и листочками флогопита (Рис. 5.2-1), либо недиагностируемой из-за малых размеров калиевой фазой. Новообразованный ортопироксен слагает также тонкие каемки вокруг исходного ортопироксена, что хорошо заметно на изображениях в обратнореассеянных электронах, благодаря его более железистому составу.

В реакционной зоне в основании вебстеритового слоя (Рис. 5.2-2) образуются кварц, омфацит и ортопироксен, формирующий каемки вокруг исходного ортопироксена подобно ортопироксену в реакционных зонах по гарцбургиту. В ядрах омфацита часто сохраняются реликты исходного клинопироксена. Происходит увеличение объемного содержания клинопироксена (омфацит + реликтовый клинопироксен) по сравнению с исходной смесью.

Таким образом, реакционные зоны по разным субстратам заметно отличаются минералогически, вследствие чего в них удерживаются разные щелочные компоненты: калий – гарцбургитовом, натрий – в вебстеритовом.

Рис. 5.2-1. Реакционная зона на контакте глаукофанового сланца с гарцбургитом в продуктах опыта при 800°С – 2,9ГПа (Sub41). (а) – изображение в обратнорассеянных электронах, (б) – фазовая карта.

Рис. 5.2-2. Реакционная зона на контакте глаукофанового сланца с вебстеритом в продуктах опыта при 800°С – 2,9 ГПа (Sub40). (а) - изображение в обратнорассеянных электронах, (б) – фазовая карта

5.3 Преобразования ультрамафитовых слоев

Привнос коровых компонентов в ультрамафитовые слои ампул приводит к частичному изменению их химического и минерального состава. В главе описаны преобразования дунитов, гарцбургитов и вебстеритов. Во всех ультрамафитах новообразованные фазы маркируют пути миграции флюида (расплава).

В гарцбургитовом слое происходит образование ортопироксена и магнезита, причем содержание последнего может достигать 10% (Рис. 5.3-1, а), в нижней части слоя изредка встречается хлорит. В вебстеритовом слое образуются субмикронные зерна кварца и каемки омфацита вокруг зерен клинопироксена (Рис. 5.3-1, б).

В виду отсутствия областей сегрегации расплава или его тонких пленок в продуктах опытов с глаукофановым сланцем, мобильную фазу в них мы называем флюидом, не исключая возможность присутствия в процессе водосодержащего расплава.

Рис. 5.3-1. Преобразование ультрамафитов в опытах при 800°С – 2.9ГПа (а)-гарцбургита (опыт Sub 113); (б) – вебстерита (опыт Sub 111). Изображение в обратнорассеянных электронах.

В разделах 5.4 Составы минералов и 5.5 Профили содержания главных петрогенных элементов приводятся представительные микрозондовые анализы всех минералов из разных структурных участков ампул. Для сосуществующих омфацита и граната приводятся оценки равновесной температуры при 2,9 ГПа по нескольким геотермометрам, соответствующие температурам экспериментов в пределах точности метода. Охарактеризованы вариации состава всех минералов, встречающихся в продуктах опытов. Приводится профиль содержания главных петрогенных компонентов в глаукофановом слое при его взаимодействии с дунитом.

5.6 Интерпретация процессов в ампулах

В разделе обобщаются процессы, происходившие в слое глаукофанового сланца, на его границе с ультрамафитовыми слоями и в ультрамафитовых слоях. Приводятся критерии достижения равновесия в эксперименте, минеральные реакции, протекавшие во всех слоях ампул. Обсуждаются возможные виды флюидных потоков в ампулах и критерии их различия, влияние на них температурного градиента в ампулах. Отмечается различие в поведении щелочных элементов (натрия и калия) и углекислоты в зависимости от минерального состава ультрамафита (Рис. 5.6).

Рис.5.6. Схематическое изображение процессов в ампулах в опытах с глакофансланцевым коровым слоем: (а) – ультрамафит представлен гарцбургитом, (б) – ультрамафит представлен вебстеритом. Стрелки показывают перенос компонентов между слоями.

Глава 6. Обсуждение результатов

В главе обсуждаются различные аспекты процессов, происходивших во время экспериментов в ампулах, обобщаются наблюдения, проводятся параллели с

23

природными объектами и процессами. В том числе, описано контрастное происхождение метасоматических гарцибургитов, наблюдавшееся в опытах при фертилизации дунита и деплетировании лерцолита, приводятся примеры сходных природных объектов. Рассмотрены критерии различия пропитывающего и фокусированного потоков жидкостей, проведено сравнение результатов данной работы с другими экспериментальными работами по моделированию различных потоков и природными данными.

Обсуждается близость полученных экспериментальных расплавов к адакитам и ТТГ. Рассмотрено поведение редких элементов в опытах и возможное применение результатов экспериментов к процессам, происходящим при взаимодействии кора-мантия в зонах субдукции. Обсуждаются возможные причины Eu аномалии в перидотитах и эклогитах.

Рассматривается поведение карбонатов в эксперименте и в природе в зонах субдукции. Обсуждается приложение наблюдавшейся в экспериментах гранатизации мантийных перидотитов к изучению природных объектов.

Проводится сравнение результатов экспериментов по эклогитизации глаукофановых сланцев с фазовой диаграммой для этой системы, полученной при термодинамическом моделировании при помощи программного комплекса PerpleX (версия 6.7.7, Connolly, 2005). Обсуждается наблюдавшееся в экспериментах вполне подвижное и инертное поведение различных компонентов, состояние флюидной фазы при параметрах экспериментов.

Приводятся многочисленные примеры согласования полученных в данной работе экспериментальных результатов с природными наблюдениями.

ЗАКЛЮЧЕНИЕ

В работе представлены результаты экспериментального моделирования взаимодействия разных пород погружающейся плиты (карбонатсодержащих амфиболита и глаукофанового сланца) и вышележащей мантии (дунита, гарцбургита, лерцолита и вебстерита). Выполнено несколько серий экспериментов при *P*-*T* условиях горячей зоны субдукции, в результате которых выявлены следующие закономерности:

1. Перенос компонентов из слэба в породы мантийного клина происходит при одновременном действии фокусированных, пропитывающих и диффузионных потоков. Пропитывающий поток проявляется в росте новообразованных минералов по границам зерен в ультрамафитах, но остается невидимым в слоях метабазита. Фокусированный

поток приводит к образованию вдоль стенок ампул узких зон другого минерального парагенезиса, чем остальная часть метабазитового слоя, и скоплений расплава, от перидотита реакционными зонами, отделенных содержащими омфацит. Фокусированный поток проявлен в жильных сериях перидотитов мантийного клина и в эклогитовых комплексах складчатых областей. Диффузионный поток формирует реакционные зоны на границе метабазит-ультрамафит и частично расплав-перидотит. Масштаб диффузионного потока намного меньше, чем фокусированного И пропитывающего. Диффузионный поток является вероятным механизмом образования богатых ортопироксеном пород, описанных в различных орогенных поясах.

2. Выделяющиеся из метабазита кислые расплавы и водно-углекислые флюиды могут приводить к образованию гарцбургитов путем фертилизации дунита либо истощения лерцолита. Последний процесс сопровождается выносом Са из лерцолита в слой метабазита, т.е. против направления переноса большинства элементов и градиента концентрации Са. В новообразованных гранатовых гарцбургитах оливин имеет отличный от новообразованных минералов генезис, что соответствует понятию невидимый (steals, O'Reilly & Griffin, 2013) метасоматоз, поскольку признаки метасоматических преобразований при этом могут быть незаметны.

3. Протолит в надсубдукционной мантии может определять характер метасоматических процессов и перенос компонентов на границе коры и мантии. Так, в продуктах опытов натрий при эклогитизации переносился водным флюидом только в вебстеритовый протолит, а калий – только в гарцбургитовый. Применительно к зонам субдукции это может означать, что перидотитовый состав надсубдукционной мантии способствует экстракции калия из метабазита, препятствуя образованию в эклогитах фенгита – важнейшего концентратора воды на этих глубинах (van Keken et al., 2011). Вебстеритовый слой, наоборот, создает благоприятные условиях для сохранения калиевой слюды в эклогите, обеспечивая резервуар водного флюида до больших глубин. Разнонаправленная миграция щелочей указывает также на то, что вынос крупноионных литофильных элементов (LILE) и легких редкоземельных элементов (LREE) из слэба может отличаться для разных мантийных субстратов, что будет отражаться на содержаниях этих компонентов в островодужных вулканитах.

4. Перенос углерода из карбонатсодержащих метабазитов в вышележащие мантийные породы контролируется не термодинамической стабильность карбонатов, а их

растворением в восходящем водосодержащем флюиде. Вынос карбонатов из пород субдуцирующей плиты установлен в высокобарных комплексах (Frezzotti et al., 2011; Ague, Nicolescu, 2014). Вместе с тем, вебстериты препятствуют этому процессу, и карбонат остается в пределах метабазита.

5. Эклогиты группы А могут образовываться в том числе при реакционном взаимодействии кислого расплава с перидотитом. Важным условием роста магматического омфацита, ассоциирующего с гранатом и ортопироксеном, является сегрегация кислого расплава в оливинсодержащем субстрате.

Несмотря на систематичность проведенного исследования, многие важные аспекты субдуцирующей взаимодействия плиты И вышележашей мантии остались неизученными. Так, существенную роль в формировании специфических характеристик островодужного магматизма играют флюиды и расплавы, выделяющиеся ИЗ субдукционного осадка (Plank, Langmuir, 1998; Kerrik, Connolli, 2001; Schmidt, Poli, 2014), поэтому следующим этапом исследований являются эксперименты с его участием. составляющей исследований Важной этих является большее привлечение термодинамического моделирования при помощи программного комплекса PerpleX (Connolly, 2005), позволяющего моделировать фазовые диаграммы для заданного валового химического состава системы.

Список публикаций по теме диссертации

Статьи, опубликованные в журналах Scopus, WoS, RSCI:

1. Перчук А.Л., Шур М.Ю., Япаскурт В.О., Подгорнова С.Т. (2013) Экспериментальное моделирование мантийного метасоматоза, сопряженного с эклогитизацией корового вещества в зоне субдукции. *Петрология*, том 21, № 6, с. 632-6532.

2. Шур М.Ю., Перчук А.Л. (2015) Омфацитовый парадокс в перидотитах мантии, *Геология и геофизика*, том 56, № 11, с. 1987-1999

3. Perchuk A.L., Yapaskurt V.O., Griffin W.L., **Shur M.Yu,** Gain S.E.M (2018) Three types of element fluxes from metabasite into peridotite in analogue experiments: Insights into subduction-zone processes. *Lithos*, v. 302, p. 203-223

4. Перчук А.Л., Япаскурт В.О., Зиновьева Н.Г., Шур М.Ю. (2018) Экспериментальные свидетельства разнонаправленной миграции натрия, калия и СО₂ при взаимодействии глаукофанового сланца с гарцбургитом и вебстеритом в зонах субдукции. *Петрология*, том 26, № 6, с. 612-632

Тезисы докладов на российских и международных конференциях:

1. Шур М.Ю., Япаскурт В.О., Перчук А.Л. (2013). Экспериментальное моделирование флюидномагматического взаимодействия дунита с метабазитами при *P-T* условиях зоны субдукции. Тезисы докладов IX Международной школы по наукам о Земле имени профессора Л.Л.Перчука, с.142-145 2. Шур М.Ю., Перчук А.Л., Япаскурт В.О. (2013). Контрастный характер преобразования вебстерита при фокусированном и пропитывающем флюидных потоках: эксперимент при *P-T* условиях зоны субдукции. Тезисы докладов IX Международной школы по наукам о Земле имени профессора Л.Л.Перчука, с.206-209

3. Перчук А.Л., Дубинина Е.О., Япаскурт В.О., Шур М.Ю. (2013). Флюидно-магматическое преобразование мантии в зонах субдукции. Материалы Международной научно-практической конференции "Континентальный неовулканизм Альпийской складчатой зоны Восточной Европы", с 15-16

4. Перчук А.Л., **Шур М.Ю.**, Япаскурт В.О., Подгорнова С.Т. (2013). Образование гранатового гарцбургита по дуниту в процессе мантийного метасоматоза: эксперимент при *P-T* условиях зоны субдукции. Всероссийский ежегодный семинар по экспериментальной минералогии, петрологии и геохимии (ВЕСЭМПГ-2013), тезисы докладов, с.102

5. Шур М.Ю., Перчук А.Л., Япаскурт В.О. (2013). Мантийный метасоматоз вебстерита: эксперимент при *P-T* условиях зоны субдукции. Материалы Четырнадцатой международной конференции «Физико-химические и петрофизические исследования в науках о Земле», с. 296-298

6. Шур М.Ю., Перчук А.Л., Япаскурт В.О. (2014). Кислые расплавы в надсубдукционной мантии при 850°С и 2.9ГПа (по экспериментальным данным). Всероссийский ежегодный семинар по экспериментальной минералогии, петрологии и геохимии (ВЕСЭМПГ-2013), тезисы докладов, с.134

7. Perchuk A., **Shur M.**, Yupaskurt V. (2014). Fluid-melt-rock interaction at slab/mantle interface in subduction zone: results of experimental modeling under UHP conditions. IMA-2014 Abstracts, p. 222

8. Перчук А.Л., Япаскурт В.О., **Шур М.Ю.** (2015). Различные типы гарцбургитов в надсубдукционной мантии. Тезисы докладов X Международной научной школы по наукам о Земле имени профессора Л.Л. Перчука (I.S.E.S.) Миасс, Россия с. 35-36

9. Перчук А.Л., Япаскурт В.О., **Шур М.Ю.** (2015). Мантийный метасоматоз в зонах субдукции по данным экспериментального моделирования. Материалы XII Всероссийского Петрографического совещания с участием зарубежных ученых. С. 216-217.

10. Yupaskurt V.O., Perchuk A.L., **Shur M.Y.** (2016). Experimental modeling of slab-mantle interaction under UHP conditions. Goldschmidt Yokohama 2016 Conference Abstracts, p. 3584

11. Perchuk A.L., Yupaskurt V.O., Griffin W.L., **Shur M.Yu,** Gain S.E.M. (2017). Major and trace element fluxes at carbonated metabasite-peridotite interface: insight from experimental modeling. 12th International Eclogite Conference High- and ultrahigh-pressure rocks - keys to lithosphere dynamics through geologic time, Abstract book and mid-conference excursion field guide, pp. 103-103

12. Перчук А.Л., Япаскурт В.О., Гриффин В., **Шур М.Ю.,** Гейн С., Зиновьева Н.Г. (2018). Экспериментальное моделирование метасоматоза в супрасубдукционной мантии: роль субстрата и режима миграции компонентов. Тезисы докладов Международной конференции, посвященной 110-летию со дня рождения академика В.С. Соболева, с. 51

Символы минералов:

Carb - карбонат; Chl – хлорит;	Mgs – магнезит; Ol – оливин;	Ph – фенгит; Phl – флогопит;
Срх – клинопироксен	Отр – омфацит;	Rut – рутил.
Gln – глаукофан;	Qz – кварц;	
Grt – гранат;	Орх – ортопироксен;	

Подписано в печать 15.04.2019 Формат 60 x 90 1/16 Бумага офсетная. Печать цифровая. Объем: усл.печ.л. 1,5 Тираж 130 экз. Заказ № 2019/ Отпечатано в типографии ИФЗ РАН 123242, Москва, ул. Б. Грузинская., д. 10, стр. 1