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Abstract: Since the beginning of the 1990s, accurate traffic measurements carried out in different network scenarios
highlighted that Internet traffic exhibits strong irregularities (burstiness) both in terms of extreme variability and
long-term correlations. These features, which cannot be captured in a parsimonious way by traditional Markovian
models, have a deep impact on the network performance and lead to the introduction of α-stable distribution and
self-similar processes into the network traffic modeling. In this paper, a generalization of fractional Brownian
motion (fBm), which is able to capture both above-mentioned features of the real traffic, is considered.
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1 Introduction

The application of probabilistic methods in the mod-
eling and the analysis of telecommunication systems
has a long history. Namely, the first researches in
this framework date back to the beginning of the last
century when A. K. Erlang (1878–1929), as a scientif-
ic collaborator and the head of the newly-established
physico-technical laboratory of the Copenhagen Tele-
phone Company, studied the issues related to loss and
waiting time in automatic telephone exchanges. In the
1930s, the interests for these topics grew from a practical
as well as theoretical point of view. Indeed, Erlang’s re-
sults were soon used by telephone companies in several
countries and gave birth to a new branch in the frame-
work of probability theory, known as queueing theory,
which attracted the interests of well-known probabilists
such as Palm, Pollachek, Lindly, Khincine, Gnedenko,
to name just a few.

In the 1920–1930s, many empirical works showed
that, in case of telephone traffic, a suitable model is
represented by the Poisson process. At the same time,
Poisson flows have many “useful” mathematical prop-
erties:

– the superposition of independent Poisson processes
is still a Poisson process;

– it has independent and stationary increments; and

– under some mild regularity conditions, the superpo-
sition of independent flows converges to a Poisson
flow, if the number of flows grows, but the individual
rates become infinitesimal so that the overall rate
stays constant.

Because of the last property, in many works it has
been proposed that the amount of traffic in global
telecommunication backbones can be modelled as a
Poisson process. For several decades, such model has
been used without any further experimental validation
and applied to new network scenarios, such as packet-
switching networks.

At the beginning of the 1990s, a lot of empirical stud-
ies have been conducted in order to better understand
the statistical features of packet traffic in global net-
works, such as Internet, as well as in local area networks
inside research institutes, university campuses, and cor-
porates [1–3]. Statistical studies of the collected data
highlighted their radical differences with respect to the
ubiquitous Poisson process and other traditional (typi-
cally Markovian, for the sake of analytical tractability)
models. For instance, it is enough to visually check the
behavior of real traffic data under different level of ag-
gregations [4]. It is easy to see that at all the aggregation
levels (in the range from milliseconds to hours) the data
keep a random behavior, which appears to be almost the
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same at all the different scales (apart from a normal-
ization factor, related to the length of the observation
window).

More accurate mathematical analyses [1] pointed
out that real data presents fractal properties, i. e., they
can be interpreted as trajectories of so-called automodel

or self-similar processes. Moreover, it was showed that
traffic flows, unlike the Poisson model, presents long

range dependence, which has a huge impact on queu-
ing performance. The third important characteristic of
traffic data is that the distribution of many different
traffic features (such as file length, duration of on and
off periods of single sources) presents heavy tails.

These properties of actual traffic flows pointed out
the necessity of new traffic models, able to captures
them in a parsimonious way. It is worth mentioning that
similar models were already known in the field of proba-
bility theory since they have been successfully applied in
different frameworks, such as turbulence modeling and
statistical physics.

The rationale behind the fractal nature of traffics and
the links among the above-mentioned characteristics of
measured traces have been widely investigated [5]. In
particular, it has been shown that if locally the traffic
load presents heavy tails, then under a sufficiently high
level of aggregation it converges to a self similar process
(for a precise formulation of the problem and the related
scaling conditions (see [6–9]). According to the con-
sidered aggregation regime, two different models might
arise: fBm and α-stable Levy motion, which, as will be
clarified in the following, present “opposite” features.
In more detail, fBm presents long range dependence,
but the tails of its marginal distribution decay fast (by
definition, according to Gaussian law!). On the contrary,
α-stable Levy motion is characterised by independent
increments (i. e., no long memory at all!), but has heavy
tailed distribution (i. e., its tails decay as a power law).

The goal is to build a model, able to take into account
both these features of real traffic. Moreover, using such
model as input to a queeing system, it would be also
interesting to determine relevant queueing parameters,
such as the probability of buffer overflow, which gives
an upper bound for the loss probability in finite buffer
queues.

From the historical point of view, the first attempt
to apply the fractional concept to traffic modelling was
to use fBm BH(t) instead of traditional Poisson-based
models. Compared to standard Brownian motion (BM),
fBm has one extra parameter, the Hurst parameter H,
which quantifies the strength of the fractional scaling.
It is said usually, that fBm is self-similar, or fractional,
with Hurst parameter H . In [10], Norros has proposed
the following model for cumulative traffic

A(t) = mt+ (σm)1/2BH(t)

where m > 0 is the mean input rate, σ is the scale
factor. This model has been widely studied and have
been proposed asymptotic lower bounds [10] as well as
exact asymptotics in the case of large buffers [11, 12].

It is important to point out that in this case, one has
a long-range correlation, but not heavy tails of marginal
a distributions.

To deal with this issue, several papers extended Nor-
ros model by modelling the input traffic as α-stable
Levy motion [13, 14] or, to take into account also the
long range correlations, fractional α-stable Levy motion
(see [15, 16]).

In the paper, a new variant of fractional Levy mo-
tion is suggeated and, following the approach proposed
in [10], an asymptotic lower bound for the overflow
probability is determined.

2 Stable Distributions and Processes

Levy processes have been popular in modeling the tele-
traffic. Below, some definitions are given and some
properties of such processes are considered.

Definition 1. A stochastic process Y = (Y (t), t ≥ 0) is a

Levy process if

(1) Y (0) = 0 almost surely;

(2) Y has independent increments; and

(3) Y has stationary increments.

Usually, for the sake of regularity, the following prop-
erty is required: with probability one all trajectories of Y
are right-continuous and have finite limits from the left.

The distributions of the process Y is defined uniquely
by the distribution of random variable Y (1), which is
infinitely divisible.

The most familiar example of Levy process is the
BM (Weiner process).

Definition 2. A Levy process B = (B(t), t ≥ 0) is called

Brownian Motion if for any t ≥ 0, h > 0 the increment

B(t+h)−B(t) has Gaussian distribution with zero mean-

ing and variance σ2h.

If σ2 = 1, one has a standard BM. It is easily seen
that

K(t, s) = Cov (Y (t), Y (s)) = σ2min(t, s) .

By definition, BM has Gaussian distributions. Such
distributions have been got for normalized sums of in-
dependent identically distributed random variables with
finite variance. In the case of infinite variance, the
so-called stable distributions are considered.

Definition 3. A random variable Y is said to have an

α-stable distribution if its characteristic function has the

following form:
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ϕ(ω) := E
[

ejωX
]

= exp {jµω − σ|ω|α[1− jβ sgn (ω) θ(ω, α)]}

where 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1, µ ∈ R1, and

θ(ω, α) =















tan

(

απ

2

)

, α 6= 1 ;

−
2

π
ln |ω| , α = 1 .

Parameter α is called characteristic exponent and
specifies the level of burstiness in distribution, i. e., it
specifies the weight of the tails of the distribution. σ and
µ are called scale and location parameters. β is called
skewness parameter. If β = 0 then X is symmetrically
distributed around µ. If 0 < α < 1, µ = 0 and β = 1
then X has positive values with probability 1. In what
follows, a random variable Y is said to have standard
α-stable distribution if µ = 0 and σ = 1.

The α-stable distribution is infinitely divisible. So, it
generates some Levy process.

Definition 4. A stochastic process Lα = (Lα(t), t ≥ 0) is

said to be an α-stable Levy motion if it is a Levy process

such that Lα(1) has a given α-stable distribution.

If the distribution of Lα(1) is totally positive skewed
(0 < α < 1, β = 1), then all trajectories of the process
Lα are nondecreasing and nonnegative. Such process is
called α-stable subordinator.

If α = 2, µ = 0, one has again BM B.

There exists very interesting relation between
α-stable Levy motions with different α.

Theorem 1. If (Lα1(t), t ≥ 0), 0 < α1 ≤ 2, is a α1-
stable Levy motion with symmetric distributions, (Lα2(t),
t ≥ 0), 0 < α2 < 1, is a α2-stable subordinator, then

stochastic process Y = (Y (t) := Lα1(Lα2(t)), t ≥ 0) is

α1α2-stable Levy motion with symmetric distributions.

This theorem is a corollary of the following result by
Zolotarev [17, theorem 3.3.1].

Theorem 2. If Y1 has symmetric α1-stable distribution,

0 < α1 ≤ 2, Y2 has one-sided α2-stable distribution,

0 < α2 < 1, then random variable Y = Y1Y
1/α1
2 has

symmetric α1α2-stable distribution.

In particular, for α1 = 2 and 0 < α2 = α/2 < 1,
one gets the following

Theorem 3. If B = (B(t), t ≥ 0) is the Brownian motion,

Lα/2 = (Lα/2(t), t ≥ 0) is a α/2-stable subordinator,

then Lα = (Lα(t) := B(Lα/2(t)), t ≥ 0), 0 < α < 2, is

an α-stable Levy motion with symmetric distributions.

3 Self-Similar Processes

Definition 5. A process Y = (Y (t), t ≥ 0) is self-similar,

with Hurst parameter H ≥ 0, if it satisfies the condition

Y (t)
d
= c−HY (ct) , ∀t ≥ 0 , ∀c > 0 ,

where the equality is the sense of finite-dimensional distri-

butions.

Two of the most popular examples of self-similar
processes are fBm and α-stable Levy motion.

Definition 6. The fractional Brownian motion with Hurst

parameter H is a Gaussian process (BH(t), t ≥ 0) with

zero mean and correlation function

KH(t, s) =
1

2

[

|t|2H + |s|2H − |t − s|2H
]

.

The definition of α-stable Levy motion see above.
More information about stable and self-similar pro-

cesses can be found in [18, 19].

4 New Variant of Fractional Levy
Motion

Above, it was shown how to get symmetric α-stable
Levy motion using BM and α/2-stable subordinator.
Below, it is proposed to use the same construction to get
fractional Levy motion from fBm BH and α/2-stable
subordinator Lα/2.

Let (BH(t), t ≥ 0) be the fBm with Hurst param-
eter H, (L1α(t), t ≥ 0), (L2α(t), t ≥ 0) be standard
α-stable subordinators, 0 < α < 1, and BH , L1α and L2α
are independent. Consider the new process

X(t) :=







BH(L
1
α(t)) , t ≥ 0 ;

−BH(L
2
α(t)) , t < 0 .

Theorem 4. The above process X is self-similar with Hurst

parameter H1 = H/α.

P r o o f . The processes (Lk
α(t), t ≥ 0), k = 1, 2, are

α-stable and self-similar with Hurst parameter 1/α. So,
one has

(Lk
α(ct), t ≥ 0)

d
= (c1/αLk

α(t), t ≥ 0) .

Then,

(X(ct), t ∈ R1) = ±BH(L
k
α(c|t|), t ∈ R1)

d
= (±BH(c

1/αLk
α(|t|), t ∈ R1) .

Using self-similarity of BH for fixed τ = Lk
α(|t|), for

any a > 0, one has

(BH(aτ), τ ≥ 0)
d
= (aHBH(τ), τ ≥ 0)
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or

(±BH(c
1/ατ), τ ≥ 0)

d
= (±cH/αBH(τ), τ ≥ 0) .

Due to the complete probability formula, the result is
obtained.

Corollary 1. For any t > 0,

X(t)
d
= (L1α(t))

HY

where Y has standard normal distribution andL1α(t)andY
are independent.

Remark. Hurst parameter H1 for above process X can
be any positive number. But for traffic applications, it is
more interesting the case where 1/2 < H1 < 1. So, it is
assumed in what follows.

Theorem 5. The above process X has stationary incre-

ments.

P r o o f . Fractional Brownian motion BH has stationary
increments. So for any t1 < t2

BH(t2)− BH(t1)
d
= BH(t2 − t1) .

Then, for any t ≥ 0, h > 0 and fixed Lk
α(t + h) = t2,

Lk
α(t) = t1, one has

BH(L
k
α(t+h))−BH(L

k
α(t))

d
= BH(L

k
α(t+h)−Lk

α(t)) .

Due to the complete probability formula, one has the
same for random moments of time. The process Lk

α(t)
has stationary increments too. So, one gets

BH(L
k
α(t+ h)− Lk

α(t))
d
= BH(L

k
α(h)) .

5 Application to Traffic Modeling

Define the cumulative traffic (or arrival) process A(t),
i. e., the total amount of load produced by a source in
the time interval [0, t], t > 0, by

A(t) := mt+ (σm)1/βX(t) ,

where m > 0 is the mean input rate, σ is the scale factor,
β = α/H = 1/H1, X is the process defined above.

Consider a single server queue with constant service
rate r > 0 and infinite buffer space, where input is
the stable self-similar process defined above (r > m for
stability). The buffer occupancy Q(t, r) at time t ∈ R1

(queue size or queue length) can be written as

Q(t, r) = sup
s≤t
(A(t) − A(s)− r(t − s)) .

Due to theorem 2, the process Q = (Q(t, r), t
∈ R1), is stationary. So, the most interesting is the
following probability of overflow:

ε(b) = P (Q(0, r) > b) = P

(

sup
τ≥0
(A(τ) − rτ) > b

)

.

Using the technique elaborated in papers [1, 13],
one can get the lower bound for the probability of buffer
overflow for large b.

It is easily seen that

ε(b) ≥ sup
τ≥0

P ((A(τ) − rτ) > b)

= sup
τ≥0

P (mτ + (σm)1βX(τ)− rτ > b)

= sup
τ≥0

P

(

X(τ) >
b+ (r − m)τ

(σm)1/β

)

= sup
τ≥0

P

(

τ1/βX(1) >
b+ (r − m)τ

(σm)1/β

)

= sup
τ≥0

P

(

X(1) >
b+ (r − m)τ

(σmτ)1/β

)

.

Last probability under supremum is a decreasing func-
tion of the value

f(τ) =
b+ (r − m)τ

(σmτ)1/β
.

Elementary calculations give us that the minimal value
of this function is achieved at the point

τ0 =
b

β(1− 1/β)(r − m)
=

bH1
(1 − H1)(r − m)

.

It follows

ε(b) ≥ P (X(1) > f(τ0) = b1)

where

b1 =
(r − m)H1(1 − H1)

−(1−H1)

(σmH1)
H1

b1−H1 .

Using corollary 1, one gets

P (X(1) > b1) = P ((L1α(1))
HY > b1)

≥ P ((L1α(1))
HY > b1, Y > 1)

≥ P ((L1α(1))
H > b1, Y > 1)

= P (L1α(1) > (b1)
1/H)P (Y > 1) .

For large x > 0 (see [20, theorem 2.4.1]), one has

P (L1α(1) > x) ∼ C(α)x−α

where

C(α) =
sin(πα)

π
•(α) .

It follows for large b

ε(b) ≥ C(α)(b1)
−1/H1P (Y > 1)

= C1(α, H1)σ
m

r − m
b−(1−H1)/H1 .

Finally, one has the following
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Theorem 6. An asymptotic lower bound for the overflow

probability is given by

ε(b) ≥ C1(α, H1)σ
m

r − m
b−(1−H1)/H1 , b → ∞ .
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ДРОБНОЕ ДВИЖЕНИЕ ЛЕВИ С ЗАВИСИМЫМИ ПРИРАЩЕНИЯМИ

И ЕГО ПРИЛОЖЕНИЕ К МОДЕЛИРОВАНИЮ СЕТЕВОГО ТРАФИКА
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Аннотация: С начала 1990-х гг. были проведены многочисленные высокоточные измерения для различных
сетевых сценариев, которые показали, что трафик Интернет проявляет сильную иррегулярность, выра-
женную в чрезвычайной вариабельности, а также в наличии долговременной зависимости. Эти новые
особенности, которые не удается описать экономным образом с помощью традиционных марковских
моделей, имеют сильное влияние на поведение сети, и это привело к необходимости введения в модели-
рование сетевого трафика α-устойчивых распределений и самоподобных процессов. В настоящей работе
рассматривается некоторое обобщение дробного броуновского движения, которое позволяет охватить
одновременно обе отмеченные выше особенности реального трафика.

Ключевые слова: дробное броуновское движение; α-устойчивый субординатор; самоподобные процессы;
вероятность переполнения буфера
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