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Current-voltage characteristics of tunnel Josephson junctions with a ferromagnetic interlayer
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2LPMMC, Université Joseph Fourier and CNRS, 25 avenue des Martyrs, BP 166, F-38042 Grenoble, France

3Donostia International Physics Center (DIPC), Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
4Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST),

and JST-CREST, Tsukuba, Ibaraki 305-8568, Japan
5Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, NL-7500 AE Enschede, The Netherlands

6Nuclear Physics Institute, Moscow State University, Moscow 119992, Russia
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We present a quantitative study of the current-voltage characteristics (CVC) of diffusive superconductor/
insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions. In order to obtain the CVC we calculate
the density of states (DOS) in the F/S bilayer for arbitrary length of the ferromagnetic layer, using quasiclassical
theory. For a ferromagnetic layer thickness larger than the characteristic penetration depth of the superconducting
condensate into the F layer, we find an analytical expression which agrees with the DOS obtained from a
self-consistent numerical method. We discuss general properties of the DOS and its dependence on the parameters
of the ferromagnetic layer. In particular we focus our analysis on the DOS oscillations at the Fermi energy. Using
the numerically obtained DOS we calculate the corresponding CVC and discuss their properties. Finally, we use
CVC to calculate the macroscopic quantum tunneling (MQT) escape rate for the current biased SIFS junctions
by taking into account the dissipative correction due to the quasiparticle tunneling. We show that the influence
of the quasiparticle dissipation on the macroscopic quantum dynamics of SIFS junctions is small, which is an
advantage of SIFS junctions for superconducting qubits applications.
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I. INTRODUCTION

The possibility to switch the ground state of a Josephson
junction from a 0 to a π phase state and the possible
application of such junctions in quantum information led to
a renewal of interest in the study of the so-called π Josephson
junctions. The existence of such a transition was predicted
more than thirty years ago;1 however due to technological
requirements only recently it was observed. The realization
of π Josephson junctions was achieved in superconductor/
ferromagnet/superconductor (SFS) junctions.2–21 Microscop-
ically, S/F hybrid structures are characterized by an unusual
proximity effect, with a damped oscillatory behavior of the
superconducting correlations in the F layer (for a review see
Refs. 22–24 and references therein). This unusual proximity
effect in S/F layered structures leads to a number of striking
phenomena such as the nonmonotonic dependence of their
critical temperature and the appearance of oscillations of
critical current in SFS Josephson junctions as a function of
the F-layer thickness.2,9 In particular the change of sign of the
critical current corresponds to the so-called 0-π transition.

On the other hand, SFS junctions, as any metallic junction,
exhibit very small resistances and therefore are not quite
suitable for those applications, for which active Josephson
junctions are required. This problem can be solved by adding
an additional insulating (I) layer to increase the resistance.
SIFS junctions represent an interesting case for practical use
of π Josephson junctions. For instance, a SIFS structure offers
the freedom to tune the critical current density over a wide
range and at the same time realize high values of the product

of the junction critical current Ic and its normal state resistance
Rn.13–15 In addition, Nb based tunnel junctions are usually
underdamped, which is desired for many applications. Due
to these advantages, SIFS π junctions have been proposed as
potential elements in superconducting classical and quantum
logic circuits.25,26 For instance, SIFS junctions can be used
as complementary elements (π shifters) in RSFQ circuits (see
Ref. 27 and references therein). Finally, SIFS structures have
been proposed for the realization of so-called ϕ junctions
with a ϕ drop in the ground state, where 0 < ϕ < π .28 The
properties of SIFS junctions have been intensively studied both
experimentally9–18 and theoretically.28–31 However, properties
of the quasiparticle current have received relatively little
attention so far, although they can be very important for
the description of SIFS junctions as possible elements of
superconducting logic circuits.

The purpose of this work is to provide a quantitative
model describing the behavior of quasiparticle current in
SIFS junctions as a function of parameters characterizing
material properties of the ferromagnetic interlayer. We also
focus our study on the properties of the density of states
(DOS) in S/F bilayers and discuss the oscillations of the
DOS at Fermi energy. Finally, we calculate the macroscopic
quantum tunneling (MQT) escape rate for current-biased SIFS
junctions by taking into account the dissipative correction due
to the quasiparticle tunneling. Based on this we conclude
that the influence of the quasiparticle dissipation on the
macroscopic quantum dynamics of SIFS junctions is small,
which is an advantage of SIFS junctions for quantum logic
(qubit) applications.
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The paper is organized as follows. In the next section we
formulate the theoretical model and the basic equations. In
Sec. III we solve the nonlinear Usadel equations numerically
for arbitrary length of the ferromagnetic layer, and calculate the
DOS in the F layer. We compare these results with an analytical
expression for DOS in case of a long SIFS junction, i.e., when
the thickness df of the ferromagnetic layer is much larger
than the decay length of the characteristic superconducting
correlations in the ferromagnet ξf 1. We also discuss the
oscillations of the DOS at the Fermi energy. In Sec. IV we
present the current-voltage characteristics of SIFS junctions
for different parameters of the ferromagnetic interlayer. In
Sec. V, we use these data to calculate the MQT escape rate
for current-biased SIFS junctions by taking into account the
dissipative effect of the quasiparticle tunneling. Finally we
summarize the results in Sec. VI.

II. MODEL AND BASIC EQUATIONS

We consider a SIFS junction such as the one depicted in
Fig. 1. It consists of a ferromagnetic layer of thickness df and
two thick superconducting electrodes along the x direction.
The left and right superconductor/ferromagnet interfaces
are characterized by the dimensionless parameters γB1 and
γB2,32,33 respectively, where γB1,B2 = RB1,B2σn/ξn, RB1,B2 are
the resistances of the left and right S/F interfaces, respectively,
σn is the conductivity of the F layer, ξn = √

Df /2πTc, Df

is the diffusion coefficient in the ferromagnetic metal, and
Tc is the critical temperature of the superconductor (we
assume h̄ = kB = 1, except for Sec. V). We also assume
that the S/F interfaces are not magnetically active. We will
consider the diffusive limit, in which the elastic scattering
length � is much smaller than the decay characteristic
length ξf 1 = min[ξf 1↑,ξf 1↓] [for the definitions of ξf 1↑(↓) see
Eqs. (16) below].

We assume that the tunneling barrier is located at the left
S/F interface, while the right interface is perfectly transparent;
this means that γB1 � 1 while γB2 � 1. In this case the left S
layer and the right F/S bilayer in Fig. 1 are decoupled and we
can calculate the quasiparticle current through a SIFS junction
using the standard tunneling formula34

I = 1

eR

∫ ∞

−∞
dE Ns(E − eV )Nf (E) [f (E − eV ) − f (E)] ,

(1)

FIG. 1. (Color online) Geometry of the considered system. The
thickness of the ferromagnetic interlayer is df . The transparency of
the left (right) S/F interface is characterized by the coefficient γB1(B2).
The left interface is an insulating barrier, γB1 � 1 (shown by a black
line), while the right interface is transparent, γB2 � 1 (shown by a
gray line).

where Ns(E) = |E|�(|E| − 	)/
√

E2 − 	2 is the BCS DOS,
�(x) is the Heaviside step function, Nf (E) is the DOS
in the ferromagnetic interlayer at x = −df /2, f (E) = [1 +
exp(E/T )]−1 is the Fermi function, and R ≡ RB1. Both Ns(E)
and Nf (E) are normalized to their values in the normal state.
In particular at zero temperature, T = 0, the current acquires
the form

I = �(eV − 	)
1

eR

∫ eV −	

0
dE Ns(E − eV )Nf (E). (2)

To obtain Nf (E) we notice that since γB1 � 1, the left
superconducting lead does not influence the DOS in the ferro-
magnetic interlayer (to zero order in the barrier transparency).
This reduces the problem to the following: We need to find the
DOS of a single F/S bilayer, which can be done by solving the
Usadel equations in the ferromagnetic layer.

Using the θ parameterizations of the normal and anomalous
Green’s functions, G = cos θ , F = sin θ , we can write the
Usadel equations in the F layer as35–37

Df

2

∂2θf ↑(↓)

∂x2
=

(
ω ± ih + 1

τz

cos θf ↑(↓)

)
sin θf ↑(↓)

+ 1

τx

sin(θf ↑ + θf ↓) ± 1

τso

sin(θf ↑ − θf ↓),

(3)

where the positive and negative signs correspond to the spin-up
↑ and spin-down ↓ states, respectively. In this notation the
spin-up state corresponds to the anomalous Green’s function
F↑ ∼ 〈ψ↑ψ↓〉 while the spin-down state corresponds to F↓ ∼
〈ψ↓ψ↑〉, where ψ↑(↓) are the electron fermionic operators. The
ω = 2πT (n + 1

2 ) are the Matsubara frequencies, and h is the
exchange field in the ferromagnet. The scattering times are
labeled here as τz, τx , and τso, where τz(x) corresponds to the
magnetic scattering parallel (perpendicular) to the quantization
axis, and τso is the spin-orbit scattering time.38–41

We consider here ferromagnets with a strong uniaxial
anisotropy, in which case the magnetic scattering does not
couple the spin-up and spin-down electron populations; i.e., the
perpendicular fluctuations of the exchange field are suppressed
(τ−1

x ∼ 0). Therefore, we will neglect τx in our consideration
and denote τz as a magnetic scattering time τm. We will also
consider ferromagnets with weak spin-orbit interactions and
henceforth also neglect the spin-orbit scattering time τso. In
this case the Usadel equations in the ferromagnetic layer for
different spin projections are not coupled any more and can be
written as

Df

2

∂2θf ↑(↓)

∂x2
=

(
ω ± ih + cos θf ↑(↓)

τm

)
sin θf ↑(↓), (4)

while in the S layer the Usadel equations take the form

Ds

2

∂2θs

∂x2
= ω sin θs − 	(x) cos θs. (5)

Here Ds is the diffusion coefficient in the superconductor and
	(x) is the superconducting pair potential. Notice that in the
latter equation we have omitted the subscripts “↑ (↓)” because
both equations are identical in the superconductor.
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Equations (4) and (5) should be complemented by the
self-consistency equation for the superconducting order
parameter 	,

	(x) ln
Tc

T
= πT

∑
ω>0

(
2	(x)

ω
− sin θs↑ − sin θs↓

)
, (6)

and by the boundary conditions at the outer boundary of the
ferromagnet, (

∂θf

∂x

)
−df /2

= 0, (7)

and at the F/S interface,32

ξnγ

(
∂θf

∂x

)
df /2

= ξs

(
∂θs

∂x

)
df /2

, (8a)

ξnγB2

(
∂θf

∂x

)
df /2

= sin(θs − θf )df /2, (8b)

where γ = ξsσn/ξnσs , σs is the conductivity of the S layer, and
ξs = √

Ds/2πTc. The parameter γ determines the strength
of suppression of superconductivity in the right S lead near
the interface compared to the bulk: No suppression occurs
for γ = 0, while strong suppression takes place for γ � 1.
In our numerical calculations we will assume small γ � 1.
Notice that the interface parameters do not depend on the spin
direction. In other words we are not considering spin-active
interfaces. In the case of spin-active barriers, one should use the
boundary conditions introduced in Refs. 42–44, rather than the
standard Kupriyanov-Lukichev boundary conditions Eqs. (8).

To complete the boundary problem we also set a boundary
condition at x = ∞,

θs(∞) = arctan
	

ω
, (9)

where the Green’s functions acquire the well-known bulk BCS
form. Equations (4)–(9) represent a closed set of equations that
should be solved self-consistently. As will be discussed in the
next section, the knowledge of the Green’s function will allow
us to compute the DOS at the outer F boundary.

III. DENSITY OF STATES IN THE F/S BILAYER

The DOS Nf (E) normalized to the DOS in the normal state
can be written as

Nf (E) = [Nf ↑(E) + Nf ↓(E)]/2, (10)

where Nf ↑(↓)(E) are the spin-resolved DOS written in terms
of spectral angle θ ,

Nf ↑(↓)(E) = Re[cos θf ↑(↓)(iω → E + i0)]. (11)

To obtain Nf , we use a self-consistent two-step iterative
procedure.37,45–47 In the first step we calculate the pair potential
coordinate dependence 	(x) using the self-consistency equa-
tion in the S layer, Eq. (6). Then, by proceeding to the analytical
continuation in Eqs. (4) and (5) over the quasiparticle energy
iω → E + i0 and using the 	(x) dependence obtained in the
previous step, we find the Green’s functions by repeating the
iterations until convergency is reached.

Before showing the numerical results we consider an
analytic limiting case. If the F layer is thick enough (df � ξf 1)

and γ = 0 in Eq. (8a), the DOS at the free boundary of the
ferromagnet can be written as29,48

Nf ↑(↓)(E) = Re[cos θb↑(↓)] ≈ 1 − 1
2 Reθ2

b↑(↓). (12)

Here θb↑(↓) is the value of θf at x = −df /2, given by

θb↑(↓) = 8F (E)√
(1 − η2)F 2(E) + 1 + 1

exp

(
−p

df

ξf

)
, (13)

where ξf = √
Df /h. In Eq. (13) we use the following

notations,

p↑(↓) =
√

2/h
√

−iER ± ih + 1/τm, (14a)

η2
↑(↓) = (1/τm)(−iER ± ih + 1/τm)−1, (14b)

F (E) = 	

−iER +
√

	2 − E2
R

, ER = E + i0. (14c)

Here, we again adopt the convention that a positive
(negative) sign in front of h corresponds to the spin-up state ↑
(spin-down state ↓). Hereafter we will write spin labels ↑ (↓)
explicitly only when needed.

From Eqs. (12) and (13) we obtain for the full DOS the
following expression in the limit df � ξf 1,

Nf ≈ 1 − Re
∑
↑, ↓

16F 2(E) exp
( − p

2df

ξf

)
(
√

(1 − η2)F 2(E) + 1 + 1)2
. (15)

At this point, we define the characteristic decay and oscillation
lengths ξf 1,2↑(↓) as

p↑(↓)/ξf = 1/ξf 1↑(↓) + i sgn(h ∓ E)/ξf 2↑(↓), (16a)

1

ξf 1↑(↓)
= 1

ξf

√√√√√(
E ∓ h

h

)2

+ 1

h2τ 2
m

+ 1

hτm

, (16b)

1

ξf 2↑(↓)
= 1

ξf

√√√√√(
E ∓ h

h

)2

+ 1

h2τ 2
m

− 1

hτm

. (16c)

In the absence of magnetic scattering both lengths coincide
and are equal to ξf

√
h/|E ∓ h| for different spin orientations.

One can rewrite Eq. (15) in the following form,

Nf ≈ 1 −
∑
↑, ↓

exp

(
−2df

ξf 1

) [
A sin

(
χ + 2df

ξf 2

)

+B cos

(
χ + 2df

ξf 2

)]
, (17)

where the coefficients A, B, and χ can be obtained by
expansion of the real part in Eq. (15); only two of them
are independent. This form explicitly shows the damped
oscillatory behavior of superconducting correlations in the
F layer. The lengths ξf 1,2 are also the lengths of decay and
oscillations of the critical current in SIFS junctions [see
Eqs. (26) in Ref. 29]. The period of the DOS oscillations
is approximately twice smaller than the period of the critical
current oscillations and the exponential decay is approximately
twice faster than the decay of the critical current.29

Now we turn to the exact numerical solution. The obtained
energy dependencies of the DOS at the free F boundary of the
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FIG. 2. (Color online) DOS Nf (E) on the free boundary of the
F layer in the F/S bilayer calculated numerically in the absence of
magnetic scattering (1/τm	 = 0) for different values of the F layer
thickness df , h/	 = 4, T = 0.1Tc. Parameters of the F/S interface
are γ = γB2 = 0.01. (a) df /ξn = 0.5. (b) df /ξn = 1. (c) df /ξn =
2. (d) df /ξn = 3. The approximate analytical solution, Eq. (15), is
shown by dashed red lines.

F/S bilayer are presented in Figs. 2, 3, and 4. The exchange
field is chosen such that h > 	, which corresponds to the
experimental situation.

Figure 2 shows the DOS energy dependence for different
df in the absence of magnetic scattering. At small df we
observe the DOS double peak due to the Zeeman splitting of
the BCS peak at E = 	. Most probably in the experiments, the
BCS Zeeman-split peak as presented in Fig. 2(a) will be seen
as a single peak due to many-body interaction effects, which
introduce a finite lifetime (damping) of the quasiparticles. We
also observe that at small df and relatively small exchange field
h, full DOS turns to zero inside a minigap, which vanishes with
the increase of df .

The minigap also exists in the normal metal (N) DOS in
the S/N bilayers. If the thickness dn of the normal metal is
larger than the coherence length, the characteristic scale of the
minigap is set by the Thouless energy, ET h = Dn/d

2
n , where

Dn and is the diffusion coefficient of the normal metal.46 In the
F layer of the S/F bilayer, the exchange field h shifts the DOS
for the two spin subbands in opposite directions; therefore the
critical value hc of the exchange field at which the minigap in
the spectrum closes can be roughly estimated as49

hc ∼ ET h, ET h = Df

/
d2

f . (18)

This equation shows the qualitative tendency that for smaller
df a higher h is needed to close the minigap [see also
Fig. 3(a)]. The estimation, Eq. (18), is only valid in the absence
of magnetic scattering, since τm also influences the minigap50

[see also Fig. 4(a)].
In Fig. 2 we also observe that after the minigap closes,

the DOS at the Fermi energy Nf (0) rapidly increases to
values larger than unity with further increase of df ; then it

FIG. 3. (Color online) DOS Nf (E) on the free boundary of the
F layer in the F/S bilayer calculated numerically in the absence of
magnetic scattering (1/τm	 = 0) for different values of the exchange
field h. Parameters of the F/S interface are γ = γB2 = 0.01, T =
0.1Tc. Plots (a) and (b): df /ξn = 1; plots (c) and (d): df /ξn = 3. For
plots (a) and (c) solid black line corresponds to h/	 = 2, dashed
red line to h/	 = 2.5, dash-dotted blue line to h/	 = 3. For plots
(b) and (d) solid black line corresponds to h/	 = 4, dashed red line
to h/	 = 5, dash-dotted blue line to h/	 = 6.

FIG. 4. (Color online) DOS Nf (E) at the free boundary of the F
layer in the F/S bilayer calculated numerically for αm = 1/τm	 =
0.5 (solid black line), αm = 1 (dashed red line), and αm = 3 (dash-
dotted blue line) for different values of the F layer thickness df , h =
4	, T = 0.1Tc. Parameters of the F/S interface are γ = γB2 = 0.01.
(a) df /ξn = 0.5. (b) df /ξn = 1. (c) df /ξn = 2. (d) df /ξn = 3. For
plots (c) and (d) the curves with αm = 3 are not shown since they
are of the order of unity at corresponding scale. Inset of the plot (a):
Nf (E) dependence for df /ξn = 0.5 for higher values of αm; αm = 5
(solid black line), αm = 7 (dashed red line), αm = 15 (dash-dotted
blue line).
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FIG. 5. (Color online) Dependence of δNf as a function of
the F layer thickness df for different exchange fields (a) and
magnetic scattering times (b); dependence of δNf as a function of
exchange field (c) and magnetic scattering time (d) for different df .
The temperature T = 0.1TC . Parameters of the F/S interface are
γ = γB2 = 0.01. (a) No magnetic scattering (1/τm	 = 0), h/	 =
2 (black solid line), h/	 = 4 (red dashed line), h/	 = 6 (blue
dash-dotted line). (b) h/	 = 4, αm = 1/τm	 = 0 (black solid line),
αm = 1 (red dashed line), αm = 3 (blue dash-dotted line). (c) No
magnetic scattering, df /ξn = 0.5 (black solid line), df /ξn = 1 (red
dashed line), df /ξn = 2 (blue dash-dotted line), df /ξn = 3 (black
short-dashed line). (d) h/	 = 4, df /ξn = 0.5 (black solid line),
df /ξn = 1 (red dashed line), df /ξn = 2 (blue dash-dotted line),
df /ξn = 3 (black short-dashed line).

oscillates around unity while its absolute value exponentially
approaches unity (see also Fig. 5). This is the well-known
damped oscillatory behavior of the DOS in F/S bilayers.
Experimental evidence for such behavior was provided by
Kontos et al.51 In the case of a long enough ferromagnetic
layer we also observe the DOS peak at E = h, which was
previously discussed in Ref. 52. A similar effect was also
discussed in N/F/S structures, where it was shown that a zero
energy peak appears in DOS if ET h = h.53

We also show in Fig. 2 the analytical approximation,
Eq. (15), which is in good agreement with the numerical result
for thick enough ferromagnetic layers. In the numerically
obtained curves the peak at E = h is smeared because of finite
γ = 0.01 for the transparent F/S interface at x = df /2.

In the absence of magnetic scattering we rewrite the
analytical DOS expression, Eq. (15), for E � 	 in the
following way,

Nf (E) = 1 +
∑
±

16	2 cos
( 2df

ξf

√
|E±h|

h

)
(E + ε)(

√
E + ε + √

2ε)2

× exp

(
−2df

ξf

√
|E ± h|

h

)
, (19)

where ε = √
E2 − 	2. We can clearly see the exponential

asymptotic of the peak at E = h from the Eq. (19). We should

keep in mind that Eq. (19) is valid for large df /ξf , but never-
theless we may qualitatively understand why we do not see the
peak at E = h for a small ratio of df /ξf : If this factor is small
the variation of the exponent exp{−2(df /ξf )

√|E − h|/h}
near the point E = h is also small. The peak is observable
only for h of the order of a few 	. For larger exchange fields
the peak is very difficult to observe, since the energy dependent
prefactor of the exponent in Eq. (19) decays as E−2 for E � 	.

Figure 3 shows the DOS energy dependence for different
values of the exchange field h in the absence of magnetic
scattering. For stronger exchange field the minigap closes at
smaller df , in qualitative correspondence with Eq. (18). From
numerical calculations we obtain the following condition [see
also Fig. 5(c)], valid for τ−1

m ∼ 0,54

hc ≈ 0.77ET h ≈ 2.71	

(
ξn

df

)2

. (20)

In Fig. 3 we also observe the peak at E = h; at large
enough exchange fields its amplitude can be much larger
than the amplitude of the peak at E = 	 [see Fig. 3(d), blue
dash-dotted curve]. The existence of the DOS peak at E = h

gives a possibility to measure the exchange field directly in
experiment by measuring the F/S bilayer DOS in compounds
with small magnetic scattering (since magnetic scattering
is smearing the peak, see below). For example, in Ref. 55
were reported exchange fields for Pd1−xNix with different Ni
concentration, obtained by a fitting procedure. Considering
Nb as a superconductor with 	 =1.3 meV, we can estimate
the exchange field in Pd1−xNix : For 7% of Ni fitting gives h =
2.8 meV, which is 2.2	, and for 11.5% of Ni h = 3.9 meV,
which is 3	.55 It is interesting to use direct measurements of
the DOS peak at E = h to check these fitting predictions of
Ref. 55.

Ferromagnetic metals with exchange fields of the order of
few 	 are crucially important for the fabrication of SIFS junc-
tions, valid for superconducting logic applications. Presently
used ferromagnets have h � 	, and therefore short oscillation
length [see Eq. (16c)], which makes it difficult to control
the F layer thickness. In already existing SIFS structures the
roughness is often larger than desired precision of df .56 We
hope that our results will trigger the experimental activity in
finding ferromagnetic alloys with h of the order of few 	.

Figure 4 shows the DOS energy dependence for different
values of magnetic scattering time. Similarly to Fig. 3, for
stronger magnetic scattering the minigap closes at smaller
df . Also the DOS peak at E = h, visible for a long enough
ferromagnetic layer, is smeared. The analytical solution (not
shown), Eq. (15), also agrees quite well with the numerical
results for df � ξf 1.

Although our results are obtained for weak ferromagnets,
they can in certain cases be extended for ferromagnets with
strong exchange fields, h � 	. In the absence of magnetic
scattering the Usadel equation in energy representation,
Eq. (4), can be rewritten as

i

2

∂2θf ↑(↓)

∂y2
=

(
E

h
∓ 1

)
sin θf ↑(↓), (21)

where y = x/ξf is the dimensionless coordinate. In the case
of h � 	, we can neglect the first term on the right-hand side
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of Eq. (21) to obtain the subgap DOS. Thus, in that case the
subgap structure scales with the length ξf and for example
the results presented in Fig. 2 for h = 4	 also describe the
DOS in the case of a high exchange field if one scales df

correspondingly. This procedure does not apply however for
h = 2	 (see Fig. 3), since in that case one cannot simply
neglect the term E/h in Eq. (21).

To show explicitly the aforementioned DOS oscillations at
the Fermi energy51 in Fig. 5, where we plot the numerically
calculated function

δNf (df ,h,τm) = |1 − Nf 0|, Nf 0 = Nf (E = 0). (22)

Using Eqs. (12)–(17) and (22) we get the analytical
expression for the function δN , valid for df � ξf 1,

δN = 32

∣∣∣∣∣Re

[
1(√

2 − η2
0 + 1

)2
exp

(
− p0

2df

ξf

)]∣∣∣∣∣, (23)

where

p0 = √
2/h

√
ih + 1/τm, (24a)

η0 = (1/τm)(ih + 1/τm)−1. (24b)

At vanishing magnetic scattering we obtain

δN = 32

3 + 2
√

2

∣∣∣∣cos

(
2df

ξf

)
exp

(
−2df

ξf

)∣∣∣∣ , (25)

in which case the characteristic lengths of decay and oscilla-
tions are equal to ξf .

The dependence of δNf (df ) on the ferromagnetic layer
thickness df at different values of exchange field and magnetic
scattering time is presented in Figs. 5(a) and 5(b). From
Fig. 5(a) we can see that with increasing exchange field h the
minigap closes at smaller df in agreement with Eq. (20), the
period of the DOS oscillations at the Fermi energy decreases,
and the damped exponential decay occurs faster. This is easy to
see from Eq. (25), since in the absence of magnetic scattering
δN depends on h only as a function of ξf .

From Fig. 5(b) we can see that with increasing αm = 1/τm	

the period of the DOS oscillations on the contrary increases,
although the minigap also closes at smaller df and the damped
exponential decay occurs faster. To understand this behavior
we rewrite here the decay and oscillation lengths, Eq. (16), at
the Fermi energy,

1

ξf 1
= 1√

Df

√√√√√
h2 + 1

τ 2
m

+ 1

τm

, (26a)

1

ξf 2
= 1√

Df

√√√√√
h2 + 1

τ 2
m

− 1

τm

. (26b)

We see from these equations that with increasing αm the length
of decay ξf 1 decreases, while the length of oscillations ξf 2

increases.
The dependencies of δNf on exchange field and magnetic

scattering time are presented in Figs. 5(c) and 5(d), correspond-
ingly. In Fig. 5(c) we see oscillations of the DOS at the Fermi
energy δNf (h) around unity with increasing exchange field in
the absence of magnetic scattering. In Fig. 5(d) we show the

function δN (τm). It is interesting to note that its behavior can
be both oscillatory and also monotonous. When the parameter
αm increases starting from the minigap state (black solid curve)
it is totally monotonous: Increasing αm the minigap closes and
the DOS starts to increase to unity, but never overshoots unity
[we checked this up to αm = 80, see also Fig. 4(a)]. If we start
from the state where the minigap is already closed, we first
observe oscillations, but then again a switch to monotonous
behavior. For intermediate F-layer thicknesses we see just one
oscillation and then DOS monotonously approaches unity (we
checked this up to αm = 80), while for thicker ferromagnets
(df /ξn = 3) we observe two oscillations and then a monotonic
behavior.

The dependencies δN(h) and δN(τm) can be important if
in the experiment the material properties of the ferromagnetic
interlayer, i.e., exchange field h and magnetic scattering time
τm, can vary with some external parameter, for example
temperature, magnetic field, etc.

Before turning to the calculation of the CVC we discuss
briefly a recent experiment57 in which a pronounced double
peak in the DOS of Ni/Nb bilayers was reported. This double
peak cannot be explained within our model based on the
Zeeman splitting. The reason for the double peak in Ref. 57
remains controversial. In Ref. 44 it was numerically fitted
by adding an extra parameter to the model, characterizing
spin-active interfaces. However, this fit is far from being
satisfactory. Nevertheless there is another feature of the DOS
observed in Ref. 57 which can be explained within our model:
By increasing df the “normal” peak at E = 	 [which is the
BCS Zeeman-split peak in Fig. 2(a)] is “inverted” [Figs. 2(b)
and 2(c)] and becomes “normal” again [Fig. 2(d)] as df is
further increased. According to our model, at E = 	 Eq. (19)
reduces to the following expression,

Nf (	) = 1 + 16
∑
±

cos

(
2df

ξf

√
h ± 	

h

)

× exp

(
− 2df

ξf

√
h ± 	

h

)
. (27)

This expression explains the inversion of the peak at E = 	

as a function of df . The peak is “normal” (“inverted”) if the
DOS at 	 is larger (smaller) than unity. This variation is due
to the sign of the cosine function in Eq. (27), which depends
on the df /ξf ratio.

IV. CURRENT-VOLTAGE CHARACTERISTICS
OF A SIFS JUNCTION

In this section we calculate the current-voltage characteris-
tics (CVC) of a SIFS junction at low temperature, T = 0.1Tc,
using Eq. (1) and DOS Nf (E,df ,h,τm) numerically obtained
in the previous section.

Figure 6 shows the CVC of a SIFS junction in the absence of
magnetic scattering. For comparison we also present the CVC
of a SINS tunnel junction, i.e., a junction with a normal metal
interlayer instead of a ferromagnet (h = 0). SINS structures
were studied previously in Ref. 46. We observe several features
of SIFS CVC which are the signatures of the proximity effect
in the S/F bilayer.
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FIG. 6. (Color online) Current-voltage characteristics of a SIFS
junction in the absence of magnetic scattering for different values of
the F-layer thickness df . The temperature T = 0.1Tc. The exchange
field h = 0 (black line, which corresponds to the case of a SINS
junction), h/	 = 2 (blue dash-dotted line), and h/	 = 4 (red
short-dashed line). (a) df /ξn = 0.5. (b) df /ξn = 1. (c) df /ξn = 2.
(d) df /ξn = 3. Insets in (a), (b), and (c) are explained in the
text.

For a thin enough F layer we observe the “kink” on the
CVC at eV ≈ 2	 [Fig. 6(a)], which corresponds to the case
when the DOS Nf (E) exhibits a pronounced minigap. The
corresponding DOS energy dependence (h/	 = 4, df /ξn =
0.5) is shown in the inset. We can also see that for a certain
range of parameters the CVC of a SIFS junction exhibit
a nonmonotonic “wave” behavior. We can observe it for
h/	 = 4 (red short-dashed line) in Fig. 6(b) and for h/	 = 2
(blue dash-dotted line) in Fig. 6(c). This behavior corresponds
to the case when the DOS Nf (E) minigap is already closed
and the Nf (0) at the Fermi energy is larger than unity. The
corresponding DOS energy dependencies are presented in the
insets of the plots in Figs. 6(b) and 6(c).

At large enough df and exchange fields the DOS Nf (E) ≈
1 and the current, Eq. (1), is given by the same equation as the
current in the NIS tunnel junction,

I = 1

eR

∫ ∞

−∞
dE Ns(E) [f (E − eV ) − f (E)] . (28)

At small temperature T � Tc, this equation is well approxi-
mated by taking T = 0,

I = �(eV − 	)
1

eR

∫ eV

	

E dE√
E2 − 	2

= �(eV − 	)

√
(eV )2 − 	2

eR
. (29)

The red short-dashed line in Fig. 6(d) (df /ξn = 3, h/	 =
4, no magnetic scattering) almost coincides with this result

FIG. 7. (Color online) Current-voltage characteristics of a SIFS
junction for 1/τm	 = 1 (black solid lines) and 1/τm	 = 3 (red short-
dashed lines) for different values of the F-layer thickness df . The
temperature T = 0.1Tc. The exchange field h/	 = 2 [plots (a) and
(b)] and h/	 = 4 [plots (c) and (d)]. The thickness df /ξn = 0.5 [plots
(a) and (c)] and df /ξn = 1 [plots (b) and (d)]. Insets in (a) and (c) are
explained in the text.

except for the small region eV ≈ 	, since for our numerically
calculated curves we fix temperature T = 0.1Tc � Tc.

Figure 7 shows current-voltage characteristics of a SIFS
junction in case of finite magnetic scattering. Here for thin
F layers we observe a “double-kink” structure, see Figs.
7(a) and 7(c). It corresponds to the DOS Nf (E) with small
minigap and finite subgap value smaller than unity. Such a
DOS structure is typical in the presence of magnetic scattering
and thin enough ferromagnetic interlayer, see Fig. 4(a). The
corresponding DOS energy dependencies are presented in the
insets of the plots in Figs. 6(a) [1/τm	 = 3,h/	 = 2,df /ξn =
0.5] and 6(b) [1/τm	 = 3,h/	 = 4,df /ξn = 0.5]. For finite
magnetic scattering the nonmonotonic features of CVC are
smeared. We do not show the curves for df /ξn � 2, since
they do not significantly differ from the curves obtained from
Eq. (29).

Figures 6(a) and 7(a) show that for a thin enough ferromag-
netic layer the current has an onset in the interval [	, 2	] (for
temperatures T � TC). The value of this onset, according to
Eq. (2), is 	 + Eg , where Eg is the DOS minigap, 0 < Eg <

	. Increasing exchange field, magnetic scattering, and/or F-
layer thickness, the minigap closes and the current turns to zero
at eV < 	, having an onset at eV = 	. The dependence of
the minigap Eg on the parameters characterizing the material
properties of the ferromagnetic interlayer is discussed in
Sec. III.

We conclude that we observe interesting features in the
SIFS CVC if the DOS Nf (E) near the insulating barrier has
a nontrivial shape in the subgap region. In the case when
Nf ≈ 1, these features disappear and the CVC coincide with
those of the NIS tunnel junction, Eq. (28).
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FIG. 8. (Color online) (a) Schematic of a current biased SIFS
Josephson junction. Iext is the external bias current. (b) Potential
U (φ) vs the phase difference φ between two superconductors. ωp is
the Josephson plasma frequency of the junction.

V. MACROSCOPIC QUANTUM TUNNELING
IN A SIFS JUNCTION

In this section, motivated by experimental studies on the
(thermal and quantum) switching58 and quantum coherent
oscillations26 in SFS and SIFS junctions, we calculate the
MQT escape rate in a current-biased SIFS junction as shown
in Fig. 8(a). The CVC obtained in the previous section enable
us to investigate the influence of the quasiparticle dissipation
on MQT.

It is important to note that MQT can be used as a mea-
surement process of a superconducting phase qubit.59 Thus,
the calculation of the MQT rate by taking into account the
quasiparticle dissipation will be very important for analyzing
the fidelity of the measurement process for phase qubits. In
the following calculation, for simplicity, we have ignored the
influence from an environmental circuit on MQT which can
be experimentally reduced by a noise filtering technique.60

The partition function of a junction can be described
by an imaginary-time functional integral over the macro-
scopic variable (the phase difference φ between two
superconductors);61–64 i.e.,

Z =
∫

Dφ(τ ) exp

(
−Seff[φ]

h̄

)
. (30)

In the strong insulating barrier limit, i.e., γB1 � 1, the
effective action Seff is given by

Seff[φ] =
∫ h̄β

0
dτ

[
M

2

(
∂φ(τ )

∂τ

)2

+ U (φ)

]
+ Sα[φ], (31a)

Sα[φ] = −
∫ h̄β

0
dτ

∫ h̄β

0
dτ ′α(τ − τ ′) cos

φ(τ ) − φ(τ ′)
2

.

(31b)

In this equation, β = 1/kBT , M = C(h̄/2e)2 is the mass (C
is the capacitance of the junction) and the potential U (φ) can
be described by a tilted washboard potential [Fig. 8(b)]; i.e.,

U (φ) = −EJ [sgn(Ic) cos φ + yφ], (32)

with y ≡ Iext/|Ic|, where EJ = h̄|Ic|/2e is the Josephson
coupling energy, Ic is the Josephson critical current, and Iext is
the external bias current. The dissipation kernel α(τ ) is related
to the quasiparticle current I under constant bias voltage V by

α(τ ) = h̄

e

∫ ∞

0

dω

2π
exp (−ωτ ) I

(
V = h̄ω

e

)
(33)

at zero temperature.61–63

As clearly seen from Figs. 6 and 7, the CVC has a gap
structure due to the isotropic superconducting gap in the
left superconductor electrode. In such a case, the dissipation
kernel α decays exponentially as a function of imaginary time
τ for |τ | � h̄/	. The typical dynamical time scale of the
macroscopic variable φ is of the order of the inverse Joseph-
son plasma frequency ωp = √

2e|Ic|/h̄C(1 − y2)1/4 which is
much smaller than 	. Thus, the phase varies slowly with the
time scale given by h̄/	, and we can expand φ(τ ) − φ(τ ′) in
Eq. (31b) about τ = τ ′. This gives

Sα[φ] ≈ δC

2

∫ h̄β

0
dτ

[
h̄

2e

∂φ(τ )

∂τ

]2

, (34)

where

δC = 2

(
2e

h̄

)2 ∫ ∞

0
dτ α(τ )τ 2. (35)

Hence, the dissipation action Sα acts as a kinetic term so that
the effect of the quasiparticles results in an increase of the
capacitance, C → C + δC ≡ Cren.

In the case of a thin ferromagnetic layer (df = 0.5ξn)
we numerically obtain δC ≈ h̄/	R for CVC presented in
Figs. 6(a), 7(a), and 7(c) [“kink” and “double-kink” structures].
For a thick ferromagnetic layer we can use Eq. (29) to calculate
δC,

δC = 4h̄

π	R

∫ ∞

0
dx x2

∫ ∞

1
dz e−xz

√
z2 − 1 ≈ 2h̄

	R
. (36)

For intermediate df we numerically find δC ≈ (1–2) h̄/	R.
Considering Nb as a superconductor (	 = 1.3 meV) we
therefore obtain δC ≈ (0.5–1)r−1 pF, where r is the junction
resistance R in �. To insure a small dissipative correction of
capacitance, δC � C, we have a constraint,

RC � h̄/	; (37)

i.e., the typical time constant RC of a SIFS junction should
be much larger than the dynamical damping scale for the
dissipation kernel α(τ ). For example, in Ref. 13 the following
parameters of a Nb/Al2O3/Ni0.6Cu0.4/Nb SIFS junction were
reported, C = 800 pF and R = 55 m�, which correspond to
δC ≈ 10–18 pF. Thus, even for the low resistive tunnel barrier
in Ref. 13, we have the condition Eq. (37) satisfied.

In order to see the effect of the quasiparticle dissipation on
macroscopic quantum dynamics, we will investigate MQT in
current-biased SIFS junctions. The MQT escape rate � from
the metastable potential at zero temperature is given by66

� = lim
β→∞

2

β
Im ln Z. (38)

By using the Caldeira and Leggett theory,68 the MQT rate is
approximated as

� = ω̂p

2π

√
120πB exp(−B), (39)

where

ω̂p =
√

2e|Ic|
h̄Cren

(1 − y2)1/4 (40)
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is the renormalized Josephson plasma frequency and B =
Seff[φB]/h̄ is the bounce exponent, which is the value of the
action Seff evaluated along the bounce trajectory φB(τ ). The
analytic expression for the bounce exponent is given by

B = 12

5e

√
h̄

2e
|Ic|Cren(1 − y2)5/4. (41)

At high temperatures, the thermally activated decay domi-
nates the escape process. Then the escape rate is given by the
Kramers formula, � = (ω̂p/2π ) exp(−U0/kBT ), where U0 is
the barrier height.66 Below the crossover temperature T ∗, the
escape process is dominated by MQT. In the low dissipative
(underdamping) cases, T ∗ is approximately given by66,67

T ∗ = h̄ω̂p(y = 〈y〉)
2πkB

. (42)

Here 〈y〉 = ∫ 1
0 dyP (y)y is the average switching current,

where P (y) is the switching current distribution which is
related to the escape rate � as60

P (y) = 1

v
�(y) exp

[
−1

v

∫ y

0
�(y ′)dy ′

]
. (43)

In this equation, v ≡ |dy/dt | is the sweep rate of the external
bias current. Importantly, T ∗ is reduced in the presence of
dissipative effects.68

By using Eqs. (36) and (39), we calculate � and compare it
with the case without the quasiparticle dissipation. In Fig. 9,
we numerically plot � and �0 for C = 800 pF and |Ic| =
500 μA13 and several values of R, where �0 is the MQT
escape rate in the absence of the quasiparticle dissipation
[Cren → C in Eq. (39)]. As seen in this figure, � shows
strong dependence on the junction resistance R, and � is
almost identical to �0 in the case of large R, e.g., R = 55 m�

(�h̄/C	 ≈ 0.63 m�), which corresponds to the actual SIFS
junction.13 We also calculate T ∗ for a realistic case (R = 55
m�) and find that T ∗ = 7.4 mK for the dissipative case
(Cren = C + δC) and T ∗ = 7.5 mK for the dissipationless

FIG. 9. (Color online) The MQT escape rate for a current-biased
SIFS junction as a function of the bias current Iext for several values
of the junction resistance R. �0 (black solid line) and � (red dashed,
yellow dot-dashed, and blue dotted lines) are the MQT escape rate
without and with quasiparticle dissipation, respectively. Parameters
are C = 800 pF, 	 = 1.3 meV, and |Ic| = 500 μA (Ref. 13).

case (Cren = C). As expected, the T ∗ suppression is small
enough to allow experimental observations of MQT. Thus we
can conclude that the influence of the quasiparticle dissipation
on the macroscopic quantum dynamics of SIFS junction is
very small for the case when the condition Eq. (37) is hold.
This fact strongly suggests the great advantage of realistic
SIFS junctions for qubit applications. The smallness of the
quasiparticle dissipation in SIFS junctions is due to the
superconducting gap in the left S electrode and the strong
insulating barrier (γB1 � 1) between the left S and F layers.

It is important to note that such a weak quasiparticle-
dissipation nature of MQT has been also predicted in π junc-
tions based on S/ferromagnetic insulator (FI)/S junctions.64,65

However no ferromagnetic insulator based Josephson junc-
tions have been experimentally realized at present. On the
other hands, the fabrication of SIFS junction is easily realized
based on the current fabrication technology.13–15

VI. CONCLUSION

We have developed a quantitative theory that describes the
properties of the DOS and the current-voltage characteristics
of a SIFS junction in the dirty limit. We considered the case of
a strong insulating barrier in a SIFS junction such that the left
S layer and the right F/S bilayer are decoupled. In this case
we can obtain the current-voltage characteristics of a SIFS
junction in the framework of standard tunnel theory. In order
to calculate quasiparticle current we first calculated the DOS
in the ferromagnetic layer of the F/S bilayer. We described
the DOS behavior as a function of parameters characterizing
properties of the ferromagnetic layer. In our theory we consider
three such parameters: thickness of the ferromagnetic layer
df , exchange field h, and magnetic scattering τm. We have
discussed the DOS properties paying special attention to
the DOS oscillations at the Fermi energy. We have also
proposed to measure the exchange field in experiments on
weak ferromagnets by measuring the DOS peak at E = h. We
compared the results, obtained with a self-consistent numerical
method, with a known analytical DOS approximation, which
is valid when the ferromagnetic layer is thick enough.

Using the numerically obtained DOS we have calculated
the current-voltage characteristics of a SIFS junction and have
observed features which are the signatures of the proximity
effect in the S/F bilayer. We showed that there exists typical
shape patterns of current-voltage characteristics related to the
typical DOS structures in the ferromagnetic interlayer.

Finally, we have calculated the macroscopic quantum
tunneling escape rate for the current-biased SIFS junctions
by taking into account the dissipative correction due to the
quasiparticle tunneling. Based on this we concluded that the
influence of the quasiparticle dissipation on the macroscopic
quantum dynamics of SIFS junctions is small, which is a great
advantage of SIFS junctions for qubit applications compared
to other types of ferromagnetic π junctions.
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