ОТЗЫВ официального оппонента
на диссертацию на соискание ученой степени
кандидата физико-математических наук
Бондарева Всеволода Олеговича
на тему: «Флаттер упругих пластин в сверхзвуковом потоке газа при
наличии пограничного слоя»
по специальности 01.02.05 – «Механика жидкости, газа и плазмы»

Предметом исследования диссертационной работы В.О.Бондарева
является так называемый одномодовый флаттер двумерных панелей при
обтекании их сверхзвуковым потоком газа с учетом вязкости. В отличие от
флаттера связанного типа, известного с 40-х годов XX века, этот вид
флаттера изучается лишь в последние два десятилетия. Его отличает то, что
колебания панелей могут наблюдаться при относительно небольших
сверхзвуковых и даже трансзвуковых скоростях набегающего потока, что
особенно актуально при рассмотрении усталостных свойств обшивок
коммерческих самолетов, на которых локальные сверхзвуковые зоны могут
образовываться, например, на поверхностях крыльев и мотогондол.

Несмотря на активное изучение в последнее время механизмов
порождения и развития одномодового флаттера в основном аналитическими
и полуаналитическими методами в упрощенных постановках, исследования
влияния вязкости и характеристик пограничного слоя (как и исследования
влияния многих других аэродинамических эффективов связанных, например,
с трехмерностью формы, многослойностью и анизотропией панелей из
композитных материалов) на неустойчивость и одномодовый флаттер
пластин ранее не проводились. Это дает основание утверждать, что тема
dиссертации В.О.Бондарева, является актуальной для современной науки и
практики.
В рамках этой обширной научной проблемы целью работы являлось нахождение определяющих зависимостей одномодового флаттера и неустойчивости тонких двумерных пластин бесконечной и конечной длины при малых сверхзвуковых скоростях без учета и с учетом вязкости от свойств выпуклости и относительной толщины двумерного пограничного слоя. Результаты, полученные в диссертации, могут служить основой для исследований флаттера и способов управления неустойчивостью панелей в более сложных постановках, например, с учетом трехмерности течения (скользящее крыло, рампа, пylon, продольная и поперечная кривизна поверхности и т.п.), анизотропии и многослойности панелей, сложной геометрии и конечности в поперечном направлении их передней и задней кромок, а также непараллельности линий тока в пограничном слое.

В своей работе В.О.Бондарев использовал подход, состоящий в последовательном развитии и обосновании теоретических положений и численных результатов (от главы к главе диссертации, от простого к сложному) применительно к рассматриваемым им явлениям, что делает работу хорошо структурированной. Во Введении диссертации приводится детальный обзор существующих теоретических и численных подходов к описанию панельного флаттера, а также предлагаемая методология и методы исследования. В соответствии с этим разделом и хорошо представленной библиографией работ других авторов, предложенные В.О.Бондаревым решения разрабатываемой им научной проблемы основываются на существующих физических представлениях и хорошо аргументированы, в частности в явной форме сформулированы все основные физические и математические предположения и ограничения, в рамках которых решается задача о влиянии пограничного слоя на устойчивость колебаний оболочки, включая возникающие малые параметры.

Достоверность аналитических результатов диссертации обусловлена использованием стандартных методов линеаризации системы
уравнений газовой динамики для возмущений сжимаемого газа (как с учетом, так и без учета вязкости) в рамках так называемого локально-параллельного приближения и известных асимптотических методов теории гидродинамической устойчивости, типа метода ВКБ и критерия глобальной неустойчивости А.Г. Куликовского, а также уравнения Кирхгофа-Лява для описания колебаний оболочек.

Достоверность численных результатов подкрепляется исследованием сеточной сходимости и сравнением предельных случаев с аналитическими решениями. При численном решении задач на собственные значения с использованием конечных разностей автор широко использует постановку асимптотических граничных условий и метод пристрелки — подходы, которые хорошо отработаны и признаны эффективными для этих задач. В последней главе диссертации путем непосредственного моделирования вязких течений сжимаемого газа в рамках решения уравнений Навье-Стокса методом контрольных объемов делается прогноз способности различных конкретных криволинейных оболочек в потоке противостоять одномодовому флаттеру. Другими словами, результаты этой главы могут служить основой для проведения соответствующих исследований, направленных на экспериментальную проверку сделанных в диссертации выводов.

Основные научные результаты по теме диссертации опубликованы в 5 статьях в ведущих мировых рецензируемых журналах по направлению исследований в течение 2014-2018 годов, а также представлены в материалах многочисленных всероссийских и международных конференций и симпозиумов по специальности диссертанта, начиная с 2014 года.

Можно утверждать, что содержание диссертации В.О.Бондарева отражает и систематизирует значительный объем проделанных диссертантом исследований, изложенных в его публикациях по разрабатываемой теме. Эти
комплексные исследования включают в себя теоретическую работу и расчеты, выполненные на высоком научном уровне с применением широкого арсенала современных численных методов. Следующие выносимые В.О.Бондаревым на защиту результаты получены впервые и содержат существенную научную новизну: в двумерной постановке в рамках невязкого и вязкого приближений для пластин как бесконечной, так и конечной длины получены критерии стабилизации и дестабилизации их колебаний в зависимости от типа профиля пограничного слоя (обобщенно-выпуклые и с обобщенной точкой перегиба) и его толщины, обезразмеренной по толщине пластины, а также от значения фазовой скорости распространения и частоты возмущения. Кроме того, показано, что на ряде актуальных для приложений криволинейных поверхностей существуют гидродинамически устойчивые ламинарные течения с профилями пограничного слоя, имеющими обобщенную точку перегиба, усиливающие флаттер упругой поверхности.

Диссертация написана доходчиво, в целом грамотно и аккуратно оформлена. По каждой главе и работе в целом сделаны четкие выводы. Вместе с тем, на мой взгляд в работе присутствует ряд определенных недочетов, не влияющих на главные результаты диссертации, на которых тем не менее, хотелось бы остановиться отдельно.

1. В работе рассматриваются исключительно двумерные возмущения. При этом автор вероятно неявно предполагает, что трехмерные (наклонные) возмущения менее склонны к неустойчивости и одномеровому флаттеру. Известно, что в похожих задачах о гидродинамической неустойчивостей над податливыми поверхностями это не так (аналог теоремы Сквайра доказать в этом случае нельзя). Можно ли для задач, рассмотренных в диссертации, утверждать, что двумерные возмущения одномодового флаттера самые «опасные»?
2. На стр. 20 (глава 1) пренебрежение развитием пограничного слоя обосновывается тем, что «...длина пластины достаточно мала по сравнению с расстоянием, на котором существенно изменяется пограничный слой.» Вместе с тем в этой главе рассматривается безграничная пластина, поэтому имеется явное противоречие. Предлагаемая В.О. Бондаревым «замороженность» пограничного слоя в данном случае может быть справедлива, но по другой причине. Хотелось бы, чтобы автор ее назвал.

3. На стр. 20 и 54 утверждается, что могут встречаться погранслой, когда «... доминирующие турбулентные пульсационные частоты намного выше частот нарастающих колебаний пластины.» Обычно в турбулентных погранслоях доминируют низкие частоты, поэтому автору следует пояснить свою мысль, например, привести конкретные примеры погранслоев, подпадающих под его ограничение.

4. На стр. 106 утверждается, что «турбулентный пограничный слой на плоской пластине (степенной профиль) оказывает стабилизирующее влияние на пластину.» Автору нужно пояснить более подробно, что он имеет ввиду, т.к. возмущения в турбулентном погранслое как правило нельзя рассматривать в линейном приближении.

5. На стр. 47 и 78 автор описывает алгоритм нахождения собственных значений методом пристрелки. Этот итерационный метод требует начального приближения. Откуда это берется, т.е. что обеспечивает нахождение интересующего автора (как правило наиболее нарастающего) собственного значения из всего спектра возмущений задачи?

6. На стр. 58 при формировании ур. (3.3.1), утверждается, что «Из двух линейно независимых регулярных решений может быть сформирована одна линейная комбинация, удовлетворяющая условию затухания возмущений ни бесконечности.» Однако в ур. (3.3.1) и ниже используется, как можно предположить из текста, только одно
регистральное решение, а не их комбинация. Поэтому автор должен четко объяснить смысл функций с нижним индексом “г” в разделе 3.3.

7. В тексте также встречается ряд незначительных грамматических опечаток (типа «траспирирование» вместо «траспирирование» на стр. 99 и английское «as» вместо «при» на стр. 45) и ряд выражений из научного жаргона, не влияющих на понимание смысла диссертации. Кроме того, на стр. 20 утверждается, что «ламинарные пограничные слои наблюдаются в экспериментах до чисел Рейнольдса порядка \(\sim 10^5 \), рассчитанных на основе толщины вытеснения пограничного слоя [81]», что не соответствует действительности для актуальных аэродинамических приложений. Реальная величина этих чисел Рейнольдса \(\sim 10^3 \). Видимо автор хотел использовать нормировку по длине пластины, как в цитируемой им работе: тогда число будет верным. В противном случае он должен привести примеры столь устойчивых погранслоев.

Вместе с тем, указанные замечания не умаляют значимости диссертационного исследования. Диссертация отвечает требованиям, установленным Московскому государственным университетом имени М.В. Ломоносова к работам подобного рода. Содержание диссертации соответствует паспорту специальности 01.02.05 – «Механика жидкости, газа и плазмы» (по физико-математическим наукам), а также критериям, определенным пп. 2.1-2.5 Положения о присуждении ученых степеней в Московском государственном университете имени М.В. Ломоносова, а также оформлена, согласно приложениям № 5, 6 Положения о диссертационном совете Московского государственного университета имени М.В. Ломоносова.

Таким образом, соискатель Бондарев Всеволод Олегович заслуживает присуждения ученой степени кандидата физико-математических наук по специальности 01.02.05 – «Механика жидкости, газа и плазмы».
Официальный оппонент:
чл. корр. РАН, доктор физико-математических наук
заведующий лабораторией
Физико-математическое моделирование неоднородных течений
ОРГ. ПРАВ.ФОРМА «Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук»

Бойко Андрей Владиславович 25.03.2019

Контактные данные:
tел.: 7(913)9570657, e-mail: boiko@itam.nsc.ru
Специальность, по которой официальным оппонентом защищена диссертация:
01.02.05 – «Механика жидкости, газа и плазмы»

Адрес места работы:
630090, г. Новосибирск, ул. Институтская, д. 4/1,
ИППМ СО РАН
Тел.: +7(383)3304278; e-mail: boiko@itam.nsc.ru